Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

邮发代号 80-969

2019 Impact Factor: 3.552

Frontiers of Chemical Science and Engineering  2024, Vol. 18 Issue (3): 30   https://doi.org/10.1007/s11705-024-2393-5
  本期目录
Combined effects of sea urchin-like structure and mixed Cu+/Cu0 states on promoting C2 formation in electrocatalytic CO2 reduction
Mengqing Shan, Dongsheng Lu, Jiatong Dong, Shen Yan, Jinyu Han, Hua Wang()
Collaborative Innovation Center of Chemical Science and Engineering, Key Laboratory for Green Chemical Technology of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300354, China
 全文: PDF(10817 KB)   HTML
Abstract

Surface engineering and Cu valence regulation are essential factors in improving the C2 selectivity during the electrochemical reduction of CO2. Herein, we present a sea urchin-like CuO/Cu2O catalyst derived from rhombic dodecahedra Cu2O through one-step oxidation/etching method where the mixed Cu+/Cu0 states are formed via in situ reduction during electrocatalysis. The combined effects of the morphology and the mixed Cu+/Cu0 states on C–C coupling are evaluated by the Faradaic efficiency of C2 and the C2/C1 ratio obtained in an H-cell. R-CuO/Cu2O exhibited 49.5% Faradaic efficiency of C2 with a C2/C1 ratio of 3.1 at −1.4 V vs. reversible hydrogen electrode, which are 1.5 and 3.2 times higher than those of R-Cu2O, respectively. Using a flow-cell, 68.0% Faradaic efficiency of C2 is achieved at a current density of 500 mA·cm−2. The formation of the mixed Cu+/Cu0 states was confirmed by in situ Raman spectra. Additionally, the sea urchin-like structure provides more active sites and enables faster electron transfer. As a result, the excellent C2 production on R-CuO/Cu2O is primarily attributed to the synergistic effects of the sea urchin-like structure and the stable mixed Cu+/Cu0 states. Therefore, this work presents an integrated strategy for developing Cu-based electrocatalysts for C2 production through electrochemical CO2 reduction.

Key wordsCO2 electrolysis    sea urchin-like structure    Cu+/Cu0    C2 products
收稿日期: 2023-09-21      出版日期: 2024-02-06
Corresponding Author(s): Hua Wang   
 引用本文:   
. [J]. Frontiers of Chemical Science and Engineering, 2024, 18(3): 30.
Mengqing Shan, Dongsheng Lu, Jiatong Dong, Shen Yan, Jinyu Han, Hua Wang. Combined effects of sea urchin-like structure and mixed Cu+/Cu0 states on promoting C2 formation in electrocatalytic CO2 reduction. Front. Chem. Sci. Eng., 2024, 18(3): 30.
 链接本文:  
https://academic.hep.com.cn/fcse/CN/10.1007/s11705-024-2393-5
https://academic.hep.com.cn/fcse/CN/Y2024/V18/I3/30
Fig.1  
Fig.2  
Fig.3  
Fig.4  
Fig.5  
Fig.6  
Fig.7  
Fig.8  
1 Y J Zhao , X Y Wang , X H Sang , S X Zheng , B Yang , L C Lei , Y Hou , Z J Li . Spin polarization strategy to deploy proton resource over atomic-level metal sites for highly selective CO2 electrolysis. Frontiers of Chemical Science and Engineering, 2022, 16(12): 1772–1781
https://doi.org/10.1007/s11705-022-2197-4
2 A R Woldu , Z Huang , P Zhao , L Hu , D Astruc . Electrochemical CO2 reduction (CO2RR) to multi-carbon products over copper-based catalysts. Coordination Chemistry Reviews, 2022, 454: 214340
https://doi.org/10.1016/j.ccr.2021.214340
3 J Wang , H Wang , Z Han , J Han . Electrodeposited porous Pb electrode with improved electrocatalytic performance for the electroreduction of CO2 to formic acid. Frontiers of Chemical Science and Engineering, 2016, 9(1): 57–63
https://doi.org/10.1007/s11705-014-1444-8
4 J P Qu , X J Cao , L Gao , J Y Li , L Li , Y H Xie , Y F Zhao , J Q Zhang , M H Wu , H Liu . Electrochemical carbon dioxide reduction to ethylene: from mechanistic understanding to catalyst surface engineering. Nano-Micro Letters, 2023, 15(1): 178
https://doi.org/10.1007/s40820-023-01146-x
5 D Yao , C Tang , A Vasileff , X Zhi , Y Jiao , S Z Qiao . The controllable reconstruction of Bi-MOFs for electrochemical CO2 reduction through electrolyte and potential mediation. Angewandte Chemie International Edition, 2021, 60(33): 18178–18184
https://doi.org/10.1002/anie.202104747
6 P Saha , S Amanullah , A Dey . Selectivity in electrochemical CO2 reduction. Accounts of Chemical Research, 2022, 55(2): 134–144
https://doi.org/10.1021/acs.accounts.1c00678
7 J X Zhu , J T Li , R H Lu , R H Yu , S Y Zhao , C B Li , L Lv , L X Xia , X Chen , W Cai . et al.. Surface passivation for highly active, selective, stable, and scalable CO2 electroreduction. Nature Communications, 2023, 14(1): 4670
https://doi.org/10.1038/s41467-023-40342-6
8 P C Chen , C B Chen , Y Yang , A L Maulana , J B Jin , J L Feijoo , P D Yang . Chemical and structural evolution of AgCu catalysts in electrochemical CO2 reduction. Journal of the American Chemical Society, 2023, 145(18): 10116–10125
https://doi.org/10.1021/jacs.3c00467
9 S M Li , X D Yan , J Q Tang , D X Cao , X L Sun , G L Tian , X K Tang , H F Guo , Q Y Wu , J Sun . et al.. Cu26 nanoclusters with quintuple ligand shells for CO2 electrocatalytic reduction. Chemistry of Materials, 2023, 35(15): 6123–6132
https://doi.org/10.1021/acs.chemmater.3c01247
10 M Y Wang , S B Zhang , M Li , A G Han , X L Zhu , Q F Ge , J Y Han , H Wang . Facile synthesis of hierarchical flower-like Ag/Cu2O and Au/Cu2O nanostructures and enhanced catalytic performance in electrochemical reduction of CO2. Frontiers of Chemical Science and Engineering, 2020, 14(5): 813–823
https://doi.org/10.1007/s11705-019-1854-8
11 J L Wang , H Y Tan , Y P Zhu , H Chu , H M Chen . Linking the dynamic chemical state of catalysts with the product profile of electrocatalytic CO2 reduction. Angewandte Chemie, 2021, 133(32): 17394–17407
https://doi.org/10.1002/ange.202017181
12 Q Zhang , J Wang , F Guo , G He , X Yang , W Li , J Xu , Z Yin . Nitrogen cold plasma treatment stabilizes Cu0/Cu+ electrocatalysts to enhance CO2 to C2 conversion. Journal of Energy Chemistry, 2023, 84: 321–328
https://doi.org/10.1016/j.jechem.2023.05.008
13 X Yuan , S Chen , D Cheng , L Li , W Zhu , D Zhong , Z J Zhao , J Li , T Wang , J Gong . Controllable Cu0–Cu+ sites for electrocatalytic reduction of carbon dioxide. Angewandte Chemie International Edition, 2021, 60(28): 15344–15347
https://doi.org/10.1002/anie.202105118
14 L R Sun , J Y Han , Q F Ge , X L Zhu , H Wang . Understanding the role of Cu+/Cu0 sites at Cu2O based catalysts in ethanol production from CO2 electroreduction—a DFT study. RSC Advances, 2022, 12(30): 19394–19401
https://doi.org/10.1039/D2RA02753D
15 S N Wang , D Wang , B Q Tian , X X Gao , L Han , Y Zhong , S C Song , Z L Wang , Y P Li , J N Gui . et al.. Synergistic Cu+/Cu0 on Cu2O–Cu interfaces for efficient and selective C2+ production in electrocatalytic CO2 conversion. Science China Materials, 2023, 66(5): 1801–1809
https://doi.org/10.1007/s40843-022-2344-2
16 T W He , C Tang , A R Puente Santiago , R Luque , H Pan , A J Du . Tuning CO binding strength via engineering the copper/borophene interface for highly efficient conversion of CO into ethanol. Journal of Materials Chemistry A, 2021, 9(22): 13192–13199
https://doi.org/10.1039/D1TA02355A
17 C Kim , K M Cho , K Park , J Y Kim , G T Yun , F M Toma , I Gereige , H T Jung . Cu/Cu2O interconnected porous aerogel catalyst for highly productive electrosynthesis of ethanol from CO2. Advanced Functional Materials, 2021, 31(32): 2102142
https://doi.org/10.1002/adfm.202102142
18 W Liu , P B Zhai , A Li , B Wei , K P Si , Y Wei , X G Wang , G D Zhu , Q Chen , X K Gu . et al.. Electrochemical CO2 reduction to ethylene by ultrathin CuO nanoplate arrays. Nature Communications, 2022, 13(1): 1877
https://doi.org/10.1038/s41467-022-29428-9
19 K Jiang , Y F Huang , G S Zeng , F M Toma , W A III Goddard , A T Bell . Effects of surface roughness on the electrochemical reduction of CO2 over Cu. ACS Energy Letters, 2020, 5(4): 1206–1214
https://doi.org/10.1021/acsenergylett.0c00482
20 J Q Sang , P F Wei , T F Liu , H F Lv , X M Ni , D F Gao , J W Zhang , H F Li , Y P Zang , F Yang . et al.. A reconstructed Cu2P2O7 catalyst for selective CO2 electroreduction to multicarbon products. Angewandte Chemie International Edition, 2021, 61(5): e202114238
https://doi.org/10.1002/anie.202114238
21 W Li , X L Feng , Z Zhang , X Jin , D P Liu , Y Zhang . A controllable surface etching strategy for well-defined spiny yolk@shell CuO@CeO2 cubes and their catalytic performance boost. Advanced Functional Materials, 2018, 28(49): 1802559
https://doi.org/10.1002/adfm.201802559
22 Q Hua , K Chen , S J Chang , Y S Ma , W X Huang . Crystal plane-dependent compositional and structural evolution of uniform Cu2O nanocrystals in aqueous ammonia solutions. Journal of Physical Chemistry C, 2011, 115(42): 20618–20627
https://doi.org/10.1021/jp206966f
23 F Scholten , K L C Nguyen , J P Bruce , M Heyde , B Roldan Cuenya . Identifying structure-selectivity correlations in the electrochemical reduction of CO2: a comparison of well-ordered atomically clean and chemically etched copper single-crystal surfaces. Angewandte Chemie International Edition, 2021, 60(35): 19169–19175
https://doi.org/10.1002/anie.202103102
24 P P Yang , X L Zhang , F Y Gao , Y R Zheng , Z Z Niu , X Yu , R Liu , Z Z Wu , S Qin , L P Chi . et al.. Protecting copper oxidation state via intermediate confinement for selective CO2 electroreduction to C2+ fuels. Journal of the American Chemical Society, 2020, 142(13): 6400–6408
https://doi.org/10.1021/jacs.0c01699
25 W C Huang , L M Lyu , Y C Yang , M H Huang . Synthesis of Cu2O nanocrystals from cubic to rhombic dodecahedral structures and their comparative photocatalytic activity. Journal of the American Chemical Society, 2011, 134(2): 1261–1267
https://doi.org/10.1021/ja209662v
26 J J Huang , Z Chen , J M Cai , Y Z Jin , T Wang , J H Wang . Activating copper oxide for stable electrocatalytic ammonia oxidation reaction via in-situ introducing oxygen vacancies. Nano Research, 2022, 15(7): 5987–5994
https://doi.org/10.1007/s12274-022-4279-5
27 X Yan , C Chen , Y Wu , S Liu , Y Chen , R Feng , J Zhang , B Han . Efficient electroreduction of CO2 to C2+ products on CeO2 modified CuO. Chemical Science, 2021, 12(19): 6638–6645
https://doi.org/10.1039/D1SC01117K
28 M H Alabsi , X L Wang , P Zheng , A Ramirez , A J Duan , C M Xu , K W Huang . Screening and design of active metals on dendritic mesoporous Ce0.3Zr0.7O2 for efficient CO2 hydrogenation to methanol. Fuel, 2022, 317: 123471
https://doi.org/10.1016/j.fuel.2022.123471
29 X Q Wang , Q Chen , Y J Zhou , H M Li , J W Fu , M Liu . Cu-based bimetallic catalysts for CO2 reduction reaction. Advanced Sensor and Energy Materials, 2022, 1(3): 100023
https://doi.org/10.1016/j.asems.2022.100023
30 H Q Luo , B Li , J G Ma , P Cheng . Surface modification of Nano-Cu2O for controlling CO2 electrochemical reduction to ethylene and syngas. Angewandte Chemie International Edition, 2022, 61(11): e202116736
https://doi.org/10.1002/anie.202116736
31 T C Chou , C C Chang , H L Yu , W Y Yu , C L Dong , Vélez J J Velasco , C H Chuang , L C Chen , J F Lee , J M Chen . et al.. Controlling the oxidation state of the Cu electrode and reaction intermediates for electrochemical CO2 reduction to ethylene. Journal of the American Chemical Society, 2020, 142(6): 2857–2867
https://doi.org/10.1021/jacs.9b11126
32 Z Z Wu , X L Zhang , Z Z Niu , F Y Gao , P P Yang , L P Chi , L Shi , W S Wei , R Liu , Z Chen . et al.. Identification of Cu(100)/Cu(111) interfaces as superior active sites for CO dimerization during CO2 electroreduction. Journal of the American Chemical Society, 2021, 144(1): 259–269
https://doi.org/10.1021/jacs.1c09508
33 D G Park , J W Choi , H Chun , H S Jang , H Lee , W H Choi , B C Moon , K H Kim , M G Kim , K M Choi . et al.. Increasing CO binding energy and defects by preserving Cu oxidation state via O2-plasma-assisted N doping on CuO enables high C2+ selectivity and long-term stability in electrochemical CO2 reduction. ACS Catalysis, 2023, 13(13): 9222–9233
https://doi.org/10.1021/acscatal.3c01441
34 M W Fang , M L Wang , Z W Wang , Z X Zhang , H C Zhou , L M Dai , Y Zhu , L Jiang . Hydrophobic, ultrastable Cuδ+ for robust CO2 electroreduction to C2 products at ampere-current levels. Journal of the American Chemical Society, 2023, 145(20): 11323–11332
https://doi.org/10.1021/jacs.3c02399
35 J Wordsworth , T M Benedetti , S V Somerville , W Schuhmann , R D Tilley , J J Gooding . The influence of nanoconfinement on electrocatalysis. Angewandte Chemie International Edition, 2022, 61(28): e202200755
https://doi.org/10.1002/anie.202200755
36 S Lee , D Kim , J Lee . Electrocatalytic production of C3–C4 compounds by conversion of CO2 on a chloride-induced Bi-phasic Cu2O–Cu catalyst. Angewandte Chemie International Edition, 2015, 54(49): 14701–14705
https://doi.org/10.1002/anie.201505730
37 S Y Kuang , M L Li , R Xia , L Xing , Y Q Su , Q Fan , J P Liu , E J M Hensen , X B Ma , S Zhang . Stable surface-anchored Cu nanocubes for CO2 electroreduction to ethylene. ACS Applied Nano Materials, 2020, 3(8): 8328–8334
https://doi.org/10.1021/acsanm.0c01745
38 W Yang , H Liu , Y Qi , Y Li , Y Cui , L Yu , X Cui , D Deng . Boosting C–C coupling to multicarbon products via high-pressure CO electroreduction. Journal of Energy Chemistry, 2023, 85: 102–107
https://doi.org/10.1016/j.jechem.2023.06.013
39 P Sebastián-Pascual , M Escudero-Escribano . Addressing the interfacial properties for CO electroreduction on Cu with cyclic voltammetry. ACS Energy Letters, 2019, 5(1): 130–135
https://doi.org/10.1021/acsenergylett.9b02456
40 C Choi , S Kwon , T Cheng , M J Xu , P Tieu , C Lee , J Cai , H M Lee , X Q Pan , X F Duan . et al.. Highly active and stable stepped Cu surface for enhanced electrochemical CO2 reduction to C2H4. Nature Catalysis, 2020, 3(10): 804–812
https://doi.org/10.1038/s41929-020-00504-x
41 Y W Jiang , X Y Wang , D L Duan , C H He , J Ma , W Q Zhang , H J Liu , R Long , Z B Li , T T Kong . et al.. Structural reconstruction of Cu2O superparticles toward electrocatalytic CO2 reduction with high C2+ products selectivity. Advanced Science, 2022, 9(16): 2105292
https://doi.org/10.1002/advs.202105292
42 P Liu , E J M Hensen . Highly efficient and robust Au/MgCuCr2O4 catalyst for gas-phase oxidation of ethanol to acetaldehyde. Journal of the American Chemical Society, 2013, 135(38): 14032–14035
https://doi.org/10.1021/ja406820f
43 Z H Lyu , S Q Zhu , M H Xie , Y Zhang , Z T Chen , R H Chen , M K Tian , M F Chi , M H Shao , Y N Xia . Controlling the surface oxidation of Cu nanowires improves their catalytic selectivity and stability toward C2+ products in CO2 reduction. Angewandte Chemie International Edition, 2021, 60(4): 1909–1915
https://doi.org/10.1002/anie.202011956
44 M C Xie , Y Shen , W C Ma , D Y Wei , B Zhang , Z H Wang , Y H Wang , Q H Zhang , S J Xie , C Wang . et al.. Fast screening for copper-based bimetallic electrocatalysts: efficient electrocatalytic reduction of CO2 to C2+ products on magnesium-modified copper. Angewandte Chemie International Edition, 2022, 61(51): e202213423
https://doi.org/10.1002/anie.202213423
45 Y Wang , J K Zhao , C Cao , J Ding , R Y Wang , J Zeng , J Bao , B Liu . Amino-functionalized Cu for efficient electrochemical reduction of CO to acetate. ACS Catalysis, 2023, 13(6): 3532–3540
https://doi.org/10.1021/acscatal.2c05140
46 G Y Duan , X Q Li , G R Ding , L J Han , B H Xu , S J Zhang . Highly efficient electrocatalytic CO2 reduction to C2+ products on a poly(ionic liquid)-based Cu0–CuI tandem catalyst. Angewandte Chemie International Edition, 2022, 61(9): e202110657
https://doi.org/10.1002/anie.202110657
47 J Zhang , Y Wang , Z Li , S Xia , R Cai , L Ma , T Zhang , J Ackley , S Yang , Y Wu . et al.. Grain boundary-derived Cu+/Cu0 interfaces in CuO nanosheets for low overpotential carbon dioxide electroreduction to ethylene. Advanced Science, 2022, 9(21): 2200454
https://doi.org/10.1002/advs.202200454
48 Q Lei , L Huang , J Yin , B Davaasuren , Y Yuan , X Dong , Z Wu , X Wang , K Yao , X Lu . et al.. Structural evolution and strain generation of derived-Cu catalysts during CO2 electroreduction. Nature Communications, 2022, 13(1): 4857
https://doi.org/10.1038/s41467-022-32601-9
49 S Chen , Y Li , Z Bu , F Yang , J Luo , Q An , Z Zeng , J Wang , S Deng . Boosting CO2-to-CO conversion on a robust single-atom copper decorated carbon catalyst by enhancing intermediate binding strength. Journal of Materials Chemistry A, 2021, 9(3): 1705–1712
https://doi.org/10.1039/D0TA08496D
50 H Liu , B Y Miao , H Chuai , X Chen , S Zhang , X B Ma . Nanoporous tin oxides for efficient electrochemical CO2 reduction to formate. Green Chemical Engineering, 2022, 3(2): 138–145
https://doi.org/10.1016/j.gce.2021.11.001
[1] FCE-23072-OF-SM_suppl_1 Download
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed