Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

邮发代号 80-969

2019 Impact Factor: 3.552

Frontiers of Chemical Science and Engineering  2024, Vol. 18 Issue (3): 33   https://doi.org/10.1007/s11705-024-2395-3
  本期目录
Cobalt-nitrogen co-doped porous carbon sphere as highly efficient catalyst for liquid-phase cyclohexane oxidation with molecular oxygen and the active sites investigation
Lei Chen, Yuan Sun, Jinshan Chi, Wei Xiong(), Pingle Liu, Fang Hao()
College of Chemical Engineering, National & Local United Engineering Research Centre for Chemical Process Simulation and Intensification, Xiangtan University, Xiangtan 411105, China
 全文: PDF(7422 KB)   HTML
Abstract

The selective oxidation of cyclohexane to cyclohexanone and cyclohexanol (KA oil) is a challenging issue in the chemical industry. At present the industrial conversion of cyclohexane to cyclohexanone and cyclohexanol is normally controlled at less than 5% selectivity. Thus, the development of highly active and stable catalysts for the aerobic oxidation of cyclohexane is necessary to overcome this low-efficiency process. Therefore, we have developed a cobalt-nitrogen co-doped porous sphere catalyst, Co-NC-x (x is the Zn/Co molar ratio, where x = 0, 0.5, 1, 2, and 4) by pyrolyzing resorcinol-formaldehyde resin microspheres. It achieved 88.28% cyclohexanone and cyclohexanol selectivity and a cyclohexane conversion of 8.88% under Co-NC-2. The results showed that the introduction of zinc effectively alleviated the aggregation of Co nanoparticles and optimized the structural properties of the material. In addition, Co0 and pyridinic-N are proposed to be the possible active species, and their proportion efficiently increased in the presence of Zn2+ species. In this study, we developed a novel strategy to design highly active catalysts for cyclohexane oxidation.

Key wordsKA oil production    cyclohexane selective oxidation    cobalt-nitrogen co-doped porous carbon spheres    metal-organic framework
收稿日期: 2023-10-15      出版日期: 2024-02-07
Corresponding Author(s): Wei Xiong,Fang Hao   
 引用本文:   
. [J]. Frontiers of Chemical Science and Engineering, 2024, 18(3): 33.
Lei Chen, Yuan Sun, Jinshan Chi, Wei Xiong, Pingle Liu, Fang Hao. Cobalt-nitrogen co-doped porous carbon sphere as highly efficient catalyst for liquid-phase cyclohexane oxidation with molecular oxygen and the active sites investigation. Front. Chem. Sci. Eng., 2024, 18(3): 33.
 链接本文:  
https://academic.hep.com.cn/fcse/CN/10.1007/s11705-024-2395-3
https://academic.hep.com.cn/fcse/CN/Y2024/V18/I3/33
Fig.1  
Fig.2  
Fig.3  
Fig.4  
Fig.5  
Fig.6  
Fig.7  
CatalystCon./%Sel./%KA molar ratio
KACHHPAcidEster
Co-NC-28.8888.280.2210.910.590.69
Co-NC-2b)7.5688.920.769.560.760.63
Co-NC-2c)7.9885.111.879.033.980.61
Co-NC-2d)8.2685.001.768.624.610.67
Tab.1  
Fig.8  
Fig.9  
CHHP/eVQ=O/eVCy–OH/eVO–O bond/nm
Graphite-N?0.73?0.34?0.810.15
Pyridine-N?0.85?0.77?0.820.15
Pyrrolic-N?4.29?4.18?4.240.15
Co–N–C?1.18?1.07?1.370.15
Co4?5.48?1.77?1.280.33
Tab.2  
Fig.10  
1 U Schuchardt , D Cardoso , R Sercheli , R Pereira , Cruz R S da , M C Guerreiro , D Mandelli , E V Spinacé , E L Pires . Cyclohexane oxidation continues to be a challenge. Applied Catalysis A, General, 2001, 211(1): 1–17
https://doi.org/10.1016/S0926-860X(01)00472-0
2 A K Suresh , M M Sharma , T Sridhar . Engineering aspects of industrial liquid-phase air oxidation of hydrocarbons. Industrial & Engineering Chemistry Research, 2000, 39(11): 3958–3997
https://doi.org/10.1021/ie0002733
3 H Li , Y She , T Wang . Advances and perspectives in catalysts for liquid-phase oxidation of cyclohexane. Frontiers of Chemical Science and Engineering, 2012, 6(3): 356–368
https://doi.org/10.1007/s11705-012-0903-3
4 X H Li , J S Chen , X Wang , J Sun , M Antonietti . Metal-free activation of dioxygen by graphene/g-C3N4 nanocomposites: functional dyads for selective oxidation of saturated hydrocarbons. Journal of the American Chemical Society, 2011, 133(21): 8074–8077
https://doi.org/10.1021/ja200997a
5 J Chen , M Chen , B Zhang , R Nie , A Huang , T W Goh , A Volkov , Z Zhang , Q Ren , W Huang . Allylic oxidation of olefins with a manganese-based metal-organic framework. Green Chemistry, 2019, 21(13): 3629–3636
https://doi.org/10.1039/C9GC01337G
6 X R Niu , J Li , L Zhang , Z T Lei , X L Zhao , C H Yang . ZSM-5 functionalized in situ with manganese ions for the catalytic oxidation of cyclohexane. RSC Advances, 2017, 7(80): 50619–50625
https://doi.org/10.1039/C7RA10771D
7 F Yao , L Xu , J Luo , X Li , Y An , C Wan . Biosynthesized Au/TiO2@SBA-15 catalysts for selective oxidation of cyclohexane with O2. Korean Journal of Chemical Engineering, 2018, 35(4): 853–858
https://doi.org/10.1007/s11814-018-0003-2
8 L Liu , R Arenal , D M Meira , A Corma . Generation of gold nanoclusters encapsulated in an MCM-22 zeolite for the aerobic oxidation of cyclohexane. Chemical Communications, 2019, 55(11): 1607–1610
https://doi.org/10.1039/C8CC07185C
9 Y Hong , Y Fang , X Zhou , G Du , J Mai , D Sun , Z Shao . Ionic liquid-modified Co/ZSM-5 catalyzed the aerobic oxidation of cyclohexane: toward improving the activity and selectivity. Industrial & Engineering Chemistry Research, 2019, 58(43): 19832–19838
https://doi.org/10.1021/acs.iecr.9b04100
10 X Guo , M Xu , M She , Y Zhu , T Shi , Z Chen , L Peng , X Guo , M Lin , W Ding . Morphology-reserved synthesis of discrete nanosheets of CuO@SAPO-34 and pore mouth catalysis for one-pot oxidation of cyclohexane. Angewandte Chemie International Edition, 2020, 59(7): 2606–2611
https://doi.org/10.1002/anie.201911749
11 X Niu , Y Sun , Z Lei , G Qin , C Yang . Facile synthesis of hierarchical hollow Mn-ZSM-5 zeolite for enhanced cyclohexane catalytic oxidation. Progress in Natural Science, 2020, 30(1): 35–40
https://doi.org/10.1016/j.pnsc.2019.09.006
12 L Sun , J Liu , W Luo , Y Yang , F Wang , C Weerakkody , S L Suib . Preparation of amorphous copper-chromium oxides catalysts for selective oxidation of cyclohexane. Molecular Catalysis, 2018, 460: 16–26
https://doi.org/10.1016/j.mcat.2018.09.007
13 C Xie , W Wang , Y Yang , L Jiang , Y Chen , J He , J Wang . Enhanced stability and activity for solvent-free selective oxidation of cyclohexane over Cu2O/CuO fabricated by facile alkali etching method. Molecular Catalysis, 2020, 495: 111134
https://doi.org/10.1016/j.mcat.2020.111134
14 E Muhumuza , P Wu , T Nan , L Zhao , P Bai , S Mintova , Z Yan . Perovskite-type LaCoO3 as an efficient and green catalyst for sustainable partial oxidation of cyclohexane. Industrial & Engineering Chemistry Research, 2020, 59(49): 21322–21332
https://doi.org/10.1021/acs.iecr.0c04095
15 Y Zhang , Z Yin , H Hui , H Wang , Y Li , G Liu , J Kang , Z Li , B B Mamba , J Li . Constructing defect-rich V2O5 nanorods in catalytic membrane electrode for highly efficient oxidation of cyclohexane. Journal of Catalysis, 2020, 387: 154–162
https://doi.org/10.1016/j.jcat.2020.04.023
16 A S Guimarães , B Schmitberger , A M Meireles , D C da S Martins , G DeFreitas-Silva . An eco-friendly approach to the cyclohexane oxidation catalyzed by manganese porphyrins: green and solvent-free systems. Polyhedron, 2019, 163: 144–152
https://doi.org/10.1016/j.poly.2019.02.022
17 X F Huang , G P Yuan , G Huang , S J Wei . Study on maximizing catalytic performance of cobalt(II) 5,10,15,20-tetrakis(4-pyridyl)porphyrin for cyclohexane oxidation. Journal of Industrial and Engineering Chemistry, 2019, 77: 135–145
https://doi.org/10.1016/j.jiec.2019.04.028
18 L Q Mo , X F Huang , G Huang , G P Yuan , S J Wei . Highly active catalysis of cobalt tetrakis(pentafluorophenyl)porphyrin promoted by chitosan for cyclohexane oxidation in response-surface-methodology-optimized reaction conditions. ChemistryOpen, 2019, 8(1): 104–113
https://doi.org/10.1002/open.201800268
19 A M Meireles , D C S Martins . Classical and green cyclohexane oxidation catalyzed by manganese porphyrins: ethanol as solvent and axial ligand. Polyhedron, 2020, 187: 114627
https://doi.org/10.1016/j.poly.2020.114627
20 Z Wang , Y Wu , C Wu , J Xie , X Gu , P Yu , M Zong , I D Gates , H Liu , J Rong . Electrophilic oxygen on defect-rich carbon nanotubes for selective oxidation of cyclohexane. Catalysis Science & Technology, 2020, 10(2): 332–336
https://doi.org/10.1039/C9CY02023C
21 Y Guo , T Ying , X Liu , B Shi , Y Wang . A partially graphitic carbon catalyst for aerobic oxidation of cyclohexane. Molecular Catalysis, 2019, 479: 110487
https://doi.org/10.1016/j.mcat.2019.110487
22 S Tang , Z Fu , Y Li , Y Li . Study on boron and fluorine-doped C3N4 as a solid activator for cyclohexane oxidation with H2O2 catalyzed by 8-quinolinolato iron(III) complexes under visible light irradiation. Applied Catalysis A: General, 2020, 590: 117342
https://doi.org/10.1016/j.apcata.2019.117342
23 D Shi , Z Ming , Q Wu , T Lai , K Zheng , C He , J Zhao . A novel photosensitizing decatungstate-based MOF: synthesis and photocatalytic oxidation of cyclohexane with molecular oxygen. Inorganic Chemistry Communications, 2019, 100: 125–128
https://doi.org/10.1016/j.inoche.2018.12.024
24 S Wang , Z Sun , X Zou , Z Zhang , G Fu , L Li , X Zhang , F Luo . Enhancing catalytic aerobic oxidation performance of cyclohexane: via size regulation of mixed-valence {V16} cluster-based metal-organic frameworks. New Journal of Chemistry, 2019, 43(36): 14527–14535
https://doi.org/10.1039/C9NJ03614H
25 H Wang , Y Zhang , L Zhang , Y Guo , S Liu , F Gao , Y Han , G Feng , X Liang , L Ge . Synthesis of C–N dual-doped Cr2O3 visible light-driven photocatalysts derived from metalorganic framework (MOF) for cyclohexane oxidation. RSC Advances, 2016, 6(88): 84871–84881
https://doi.org/10.1039/C6RA09908D
26 Y Fu , W Zhan , Y Guo , Y Guo , Y Wang , G Lu . Highly efficient cobalt-doped carbon nitride polymers for solvent-free selective oxidation of cyclohexane. Green Energy Environment, 2017, 2(2): 142–150
https://doi.org/10.1016/j.gee.2017.01.006
27 C Xu , L Jin , X Wang , Y Chen , L Dai . Honeycomb-like porous Ce–Cr oxide/N-doped carbon nanostructure: achieving high catalytic performance for the selective oxidation of cyclohexane to KA oil. Carbon, 2020, 160: 287–297
https://doi.org/10.1016/j.carbon.2020.01.023
28 R Nie , J Chen , M Chen , Z Qi , T W Goh , T Ma , L Zhou , Y Pei , W Huang . Aerobic oxidation of the C–H bond under ambient conditions using highly dispersed Co over highly porous N-doped carbon. Green Chemistry, 2019, 21(6): 1461–1466
https://doi.org/10.1039/C8GC03653E
29 M Peng , P Liu , Z Li , Z Li , J Wen , C F Yan , Q Zhang , X Zeng , J Zou . Construction of Co/N-doped porous rose-like structure for efficient oxygen reduction reaction catalyst and Zn-air battery. Applied Surface Science, 2021, 566: 150665
https://doi.org/10.1016/j.apsusc.2021.150665
30 F Zhang , S Ji , H Wang , H Liang , X Wang , R Wang . Implanting cobalt atom clusters within nitrogen-doped carbon network as highly stable cathode for lithium–sulfur batteries. Small Methods, 2021, 5(6): 2100066
https://doi.org/10.1002/smtd.202100066
31 J Zhang , Y Su , Q Yu , H Zhang , Z Luo . Facile synthesis of N-doped Co/graphite C composites with melamine as carbon and nitrogen source with enhanced microwave absorption performance. Journal of Materials Science, 2021, 56(36): 19857–19869
https://doi.org/10.1007/s10853-021-06469-x
32 W Zhao , G Li , Z Tang . Metal-organic frameworks as emerging platform for supporting isolated single-site catalysts. Nano Today, 2019, 27: 178–197
https://doi.org/10.1016/j.nantod.2019.05.007
33 J Meng , X Liu , C Niu , Q Pang , J Li , F Liu , Z Liu , L Mai . Advances in metal-organic framework coatings: versatile synthesis and broad applications. Chemical Society Reviews, 2020, 49(10): 3142–3186
https://doi.org/10.1039/C9CS00806C
34 C Wang , J Kim , J Tang , M Kim , H Lim , V Malgras , J You , Q Xu , J Li , Y Yamauchi . New strategies for novel MOF-derived carbon materials based on nanoarchitectures. Chem, 2020, 6(1): 19–40
https://doi.org/10.1016/j.chempr.2019.09.005
35 I S Amiinu , X Liu , Z Pu , W Li , Q Li , J Zhang , H Tang , H Zhang , S Mu . From 3D ZIF nanocrystals to Co-Nx/C nanorod array electrocatalysts for ORR, OER, and Zn-air batteries. Advanced Functional Materials, 2018, 28(5): 1704638
https://doi.org/10.1002/adfm.201704638
36 Q Zhou , Z Zhang , J Cai , B Liu , Y Zhang , X Gong , X Sui , A Yu , L Zhao , Z Wang . et al.. Template-guided synthesis of Co nanoparticles embedded in hollow nitrogen doped carbon tubes as a highly efficient catalyst for rechargeable Zn-air batteries. Nano Energy, 2020, 71: 104592
https://doi.org/10.1016/j.nanoen.2020.104592
37 H Meng , Y Liu , H Liu , S Pei , X Yuan , H Li , Y Zhang . ZIF67@MFC-derived Co/N-C@CNFs interconnected frameworks with graphitic carbon-encapsulated Co nanoparticles as highly stable and efficient electrocatalysts for oxygen reduction reactions. ACS Applied Materials & Interfaces, 2020, 12(37): 41580–41589
https://doi.org/10.1021/acsami.0c12069
38 Z Li , R Liu , C Tang , Z Wang , X Chen , Y Jiang , C Wang , Y Yuan , W Wang , D Wang . et al.. Cobalt nanoparticles and atomic sites in nitrogen-doped carbon frameworks for highly sensitive sensing of hydrogen peroxide. Small, 2020, 16(15): 1902860
https://doi.org/10.1002/smll.201902860
39 J Liang , J Chen , H Shen , K Hu , B Zhao , J Kong . Hollow porous bowl-like nitrogen-doped cobalt/carbon nanocomposites with enhanced electromagnetic wave absorption. Chemistry of Materials, 2021, 33(5): 1789–1798
https://doi.org/10.1021/acs.chemmater.0c04734
40 A Mahsud , J Chen , X Yuan , F Lyu , Q Zhong , J Chen , Y Yin , Q Zhang . Self-templated formation of cobalt-embedded hollow N-doped carbon spheres for efficient oxygen reduction. Nano Research, 2021, 14(8): 2819–2825
https://doi.org/10.1007/s12274-021-3292-4
41 Y V Kaneti , S Dutta , M S A Hossain , M J A Shiddiky , K L Tung , F K Shieh , C K Tsung , K C W Wu , Y Yamauchi . Strategies for improving the functionality of zeolitic imidazolate frameworks: tailoring nanoarchitectures for functional applications. Advanced Materials, 2017, 29(38): 1700213
https://doi.org/10.1002/adma.201700213
42 Q Yu , D Guan , Z Zhuang , J Li , C Shi , W Luo , L Zhou , D Zhao , L Mai . Mass production of monodisperse carbon microspheres with size-dependent supercapacitor performance via aqueous self-catalyzed polymerization. ChemPlusChem, 2017, 82(6): 872–878
https://doi.org/10.1002/cplu.201700182
43 D S Bin , Z X Chi , Y Li , K Zhang , X Yang , Y G Sun , J Y Piao , A M Cao , L J Wan . Controlling the compositional chemistry in single nanoparticles for functional hollow carbon nanospheres. Journal of the American Chemical Society, 2017, 139(38): 13492–13498
https://doi.org/10.1021/jacs.7b07027
44 J Liu , S Z Qiao , H Liu , J Chen , A Orpe , D Zhao , G Q Lu . Extension of the Stöber method to the preparation of monodisperse resorcinol-formaldehyde resin polymer and carbon spheres. Angewandte Chemie International Edition, 2011, 50(26): 5947–5951
https://doi.org/10.1002/anie.201102011
45 C Shi , Y Liu , R Qi , J Li , J Zhu , R Yu , S Li , X Hong , J Wu , S Xi . et al.. Hierarchical N-doped carbon spheres anchored with cobalt nanocrystals and single atoms for oxygen reduction reaction. Nano Energy, 2021, 87: 106153
https://doi.org/10.1016/j.nanoen.2021.106153
46 J Gao , N Ma , Y Zheng , J Zhang , J Gui , C Guo , H An , X Tan , Z Yin , D Ma . Cobalt/nitrogen-doped porous carbon nanosheets derived from polymerizable ionic liquids as bifunctional electrocatalyst for oxygen evolution and oxygen reduction reaction. ChemCatChem, 2017, 9(9): 1601–1609
https://doi.org/10.1002/cctc.201601207
47 M Wu , W Zhan , Y Guo , Y Guo , Y Wang , L Wang , G Lu . An effective Mn–Co mixed oxide catalyst for the solvent-free selective oxidation of cyclohexane with molecular oxygen. Applied Catalysis A: General, 2016, 523: 97–106
https://doi.org/10.1016/j.apcata.2016.06.001
48 I Hermans , T L Nguyen , P A Jacobs , J Peeters . Autoxidation of cyclohexane: conventional views challenged by theory and experiment. ChemPhysChem, 2005, 6(4): 637–645
https://doi.org/10.1002/cphc.200400211
49 E Yuan , H Liu , Y Tao , J Xie , R Jian , P Jian , J Liu . Density functional theory study of selective aerobic oxidation of cyclohexane: the roles of acetic acid and cobalt ion. Journal of Molecular Modeling, 2019, 25(3): 1–10
https://doi.org/10.1007/s00894-019-3949-z
[1] FCE-23074-OF-CL_suppl_1 Download
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed