Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

邮发代号 80-969

2019 Impact Factor: 3.552

Frontiers of Chemical Science and Engineering  2024, Vol. 18 Issue (4): 40   https://doi.org/10.1007/s11705-024-2401-9
  本期目录
Non-isothermal kinetics and characteristics of calcium carbide nitridation reaction with calcium-based additives
Zhihan Zhang1, Mengxiao Yu1, Xiaoyu Zhang1, Jinli Zhang1,2, You Han1,2()
1. School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
2. Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
 全文: PDF(10123 KB)   HTML
Abstract

The nitridation reaction of calcium carbide and N2 at high temperatures is the key step in the production of lime-nitrogen. However, the challenges faced by this process, such as high energy consumption and poor product quality, are mainly attributed to the lack of profound understanding of the reaction. This study aimed to improve this process by investigating the non-isothermal kinetics and reaction characteristics of calcium carbide nitridation reaction at different heating rates (10, 15, 20, and 30 °C·min−1) using thermogravimetric analysis. The kinetic equation for the nitridation reaction of additive-free calcium carbide sample was obtained by combining model-free methods and model-fitting method. The effect of different calcium-based additives (CaCl2 and CaF2) on the reaction was also investigated. The results showed that the calcium-based additives significantly reduced reaction temperature and activation energy Ea by about 40% with CaF2 and by 55%–60% with CaCl2. The reaction model f(α) was also changed from contracting volume (R3) to 3-D diffusion models with D3 for CaCl2 and D4 for CaF2. This study provides valuable information on the mechanism and kinetics of calcium carbide nitridation reaction and new insights into the improvement of the lime-nitrogen process using calcium-based additives.

Key wordslime-nitrogen    calcium carbide    calcium-based additive    thermogravimetric analysis    non-isothermal kinetics
收稿日期: 2023-10-17      出版日期: 2024-03-15
Corresponding Author(s): You Han   
 引用本文:   
. [J]. Frontiers of Chemical Science and Engineering, 2024, 18(4): 40.
Zhihan Zhang, Mengxiao Yu, Xiaoyu Zhang, Jinli Zhang, You Han. Non-isothermal kinetics and characteristics of calcium carbide nitridation reaction with calcium-based additives. Front. Chem. Sci. Eng., 2024, 18(4): 40.
 链接本文:  
https://academic.hep.com.cn/fcse/CN/10.1007/s11705-024-2401-9
https://academic.hep.com.cn/fcse/CN/Y2024/V18/I4/40
Fig.1  
No.Modelg(α) = ktf(α) = (1/k)(dα/dt)
11-D Diffusion (D1)α21/2α
22-D Diffusion (D2)(1 ? α)ln(1 ? α) + α[?ln(1 ? α)]?1
33-D Diffusion (D3)[1 ? (1 ? α)1/3]23/2(1 ? α)2/3[1 ? (1 ? α)1/3]
43-D Diffusion (D4)1 ? (2α/3) ? (1 ? α)2/33/2[(1 ? α)?1/3 ? 1]?1
5Zero-order (F0)α1
6First-order (F1)?ln(1 ? α)1 ? α
7Second-order (F2)[1/(1 ? α)] ? 1(1 ? α)2
8Third-order (F3)[1/(1 ? α)2] ? 1(1 ? α)3
9Contracting area (R2)1 ? (1 ? α)1/22(1 ? α)1/2
10Contracting volume (R3)1 ? (1 ? α)1/33(1 ? α)2/3
11Avrami-Erofeyev (A2)[?ln(1 ? α)]1/22(1 ? α)[?ln(1 ? α)]1/2
12Avrami-Erofeyev (A3)[?ln(1 ? α)]1/33(1 ? α)[?ln(1 ? α)]2/3
13Avrami-Erofeyev (A4)[?ln(1 ? α)]1/44(1 ? α)[?ln(1 ? α)]3/4
Tab.1  
Fig.2  
Fig.3  
Fig.4  
Fig.5  
Fig.6  
Fig.7  
Sampleβ/(°C·min?1)Ti/°CTm/°CTf/°Ctc/minRmax × 103/s?1R' × 104/s?1
CC1080712121260453.330.80
1581112321286323.851.02
2083412421294235.021.08
3088812411300146.601.36
CCCl1061610551145530.726.08
1562110801162361.078.42
2063010961221301.4010.80
3062911241256211.9513.20
CCF1069311051190501.025.27
1569011351200341.525.02
2068911451215262.215.68
3070511601248182.977.07
CCM1060810651162550.795.68
1562310881212391.047.08
2063411071225301.338.25
3066911411250192.2810.80
Tab.2  
MethodEa/(kJ·mol?1)ΔEa/%
CCCCClCCFCCMCCClCCFCCM
FWO497.16212.34299.43216.3657.2939.7756.48
KAS497.91201.86292.24205.9159.4641.3158.65
Starink498.38202.53292.88206.5659.3641.2358.55
FR475.76205.42285.01210.9556.8240.0955.66
Tab.3  
Fig.8  
Fig.9  
1 Y Nagumo , K Tanaka , K Tewari , K Thiraporn , T Tsuchida , T Honma , N Ohtake , K Sueyoshi , Y Takahashi , T Ohyama . Rapid quantification of cyanamide by ultra-high-pressure liquid chromatography in fertilizer, soil or plant samples. Journal of Chromatography A, 2009, 1216(29): 5614–5618
https://doi.org/10.1016/j.chroma.2009.05.067
2 K H R Rouwenhorst , A S Travis , L Lefferts . 1921–2021: a century of renewable ammonia synthesis. Sustainable Chemistry, 2022, 3(2): 149–171
https://doi.org/10.3390/suschem3020011
3 A Yamamoto , H Akiyama , T Naokawa , Y Miyazaki , Y Honda , Y Sano , Y Nakajima , K Yagi . Lime-nitrogen application affects nitrification, denitrification, and N2O emission in an acidic tea soil. Biology and Fertility of Soils, 2014, 50(1): 53–62
https://doi.org/10.1007/s00374-013-0830-6
4 T Aono . Studies on reaction between gas and solid. VI. Azotation of calcium carbide and the effect of catalysers on its velocity. Bulletin of the Chemical Society of Japan, 1932, 7(9): 287–297
https://doi.org/10.1246/bcsj.7.287
5 T Aono . Studies on reactions between gas and solid. VIII. The mechanism of nitrogenation of calcium carbide. Bulletin of the Chemical Society of Japan, 1941, 16(4): 106–114
https://doi.org/10.1246/bcsj.16.106
6 L J Hellinckx . A problem of discrimination between a diffusional or a flow mechanism. Chemical Engineering Science, 1962, 17(12): 997–1005
https://doi.org/10.1016/0009-2509(62)80078-5
7 S Nagai , T Kanazawa , H Ishida . (111–112) Influence of potassic ores on the nitrogenation of calcium carbide. VII. Effects of fluoride and phosphate. Journal of the Society of Chemical Industry, Japan, 1953, 56(4): 242–243
8 L Zhang , J Wu , H Yang . Study on thermal analysis kinetics of copper slag reduction. Journal of Thermal Analysis and Calorimetry, 2023, 148(10): 4267–4280
https://doi.org/10.1007/s10973-023-12038-y
9 L Zhang , H Yang . Study on oxidation kinetics and mechanism of copper slag under non-isothermal conditions. Mining, Metallurgy & Exploration, 2022, 39(4): 1587–1596
https://doi.org/10.1007/s42461-022-00614-z
10 B Lyu , G Wang , F Yang , H Zuo , Q Xue , J Wang . Kinetic analysis of isothermal and non-isothermal reduction of iron ore fines in hydrogen atmosphere. Metals, 2022, 12(10): 1754
https://doi.org/10.3390/met12101754
11 C J M Hessels , T A M Homan , N G Deen , Y Tang . Reduction kinetics of combusted iron powder using hydrogen. Powder Technology, 2022, 407: 117540
https://doi.org/10.1016/j.powtec.2022.117540
12 R Wang , Z Liu , L Ji , X Guo , X Lin , J Wu , Q Liu . Reaction kinetics of CaC2 formation from powder and compressed feeds. Frontiers of Chemical Science and Engineering, 2016, 10(4): 517–525
https://doi.org/10.1007/s11705-016-1585-z
13 S Cordova , K Estala-Rodriguez , E Shafirovich . Oxidation kinetics of magnesium particles determined by isothermal and non-isothermal methods of thermogravimetric analysis. Combustion and Flame, 2022, 237: 111861
https://doi.org/10.1016/j.combustflame.2021.111861
14 F Si , H Zhang , X Feng , J Dou , L Wu , L Li , L Wang , L Zhao . Thermal analysis kinetics study of pulverized coal combustion under oxygen-rich atmosphere. ACS Omega, 2023, 8(37): 33975–33981
https://doi.org/10.1021/acsomega.3c04837
15 M V Kök , B Yildirim . Gasification kinetics of Thrace region coal by thermogravimetry analysis. Journal of Petroleum Science Engineering, 2020, 188: 106869
https://doi.org/10.1016/j.petrol.2019.106869
16 R Mao , J Shao , G Wang , F Wang , C Wang . Thermal behavior and kinetics analysis of co-combustion of petroleum coke and paper sludge-derived hydrochar. Waste Management, 2022, 153: 405–414
https://doi.org/10.1016/j.wasman.2022.09.028
17 Y Liu , J Qu , X Wu , K Zhang , Y Zhang . Reaction kinetics and internal diffusion of Zhundong char gasification with CO2. Frontiers of Chemical Science and Engineering, 2021, 15(2): 373–383
https://doi.org/10.1007/s11705-020-1949-2
18 A Singh , S Singh , P K Soni , N Mukherjee . Non-isothermal thermogravimetric degradation kinetics, reaction models and thermodynamic parameters of vinylidene fluoride based fluorinated polymers. Journal of Macromolecular Science Part B: Physics, 2020, 59(1): 1–24
https://doi.org/10.1080/00222348.2019.1679986
19 R Kaur , P Gera , M K Jha , T Bhaskar . Pyrolysis kinetics and thermodynamic parameters of castor (Ricinus communis) residue using thermogravimetric analysis. Bioresource Technology, 2018, 250: 422–428
https://doi.org/10.1016/j.biortech.2017.11.077
20 N Dilmaç . Isothermal and non-isothermal reduction kinetics of iron ore oxygen carrier by CO: modelistic and model-free approaches. Fuel, 2021, 296: 120707
https://doi.org/10.1016/j.fuel.2021.120707
21 S Vyazovkin , A K Burnham , J M Criado , L A Pérez-Maqueda , C Popescu , N Sbirrazzuoli . ICTAC kinetics committee recommendations for performing kinetic computations on thermal analysis data. Thermochimica Acta, 2011, 520(1–2): 1–19
https://doi.org/10.1016/j.tca.2011.03.034
22 R K Singh , T Patil , D Pandey , S P Tekade , A N Sawarkar . Co-pyrolysis of petroleum coke and banana leaves biomass: kinetics, reaction mechanism, and thermodynamic analysis. Journal of Environmental Management, 2022, 301: 113854
https://doi.org/10.1016/j.jenvman.2021.113854
23 J H Flynn , L A Wall . A quick, direct method for the determination of activation energy from thermogravimetric data. Journal of Polymer Science Part B: Polymer Letters, 1966, 4(5): 323–328
https://doi.org/10.1002/pol.1966.110040504
24 C D Doyle . Series approximations to the equation of thermogravimetric data. Nature, 1965, 207(4994): 290–291
https://doi.org/10.1038/207290a0
25 T Akahira , T Sunose . Method of determining activation deterioration constant of electrical insulating materials. Res Rep Chiba Inst Technol, 1971, 16: 22–31
26 M J Starink . A new method for the derivation of activation energies from experiments performed at constant heating rate. Thermochimica Acta, 1996, 288(1–2): 97–104
https://doi.org/10.1016/S0040-6031(96)03053-5
27 E Müsellim , M H Tahir , M S Ahmad , S Ceylan . Thermokinetic and TG/DSC-FTIR study of pea waste biomass pyrolysis. Applied Thermal Engineering, 2018, 137: 54–61
https://doi.org/10.1016/j.applthermaleng.2018.03.050
28 D Su , X Chen , X Wei , J Liang , L Tang , L Wang . Comparison of thermal stability between dicyclopentadiene/hydrogenated dicyclopentadiene petroleum resin: thermal decomposition characteristics, kinetics and evolved gas analysis by TGA/TG-MS. Thermochimica Acta, 2021, 699: 178853
https://doi.org/10.1016/j.tca.2020.178853
29 A W Coats , J P Redfern . Kinetic parameters from thermogravimetric data. Nature, 1964, 201(4914): 68–69
https://doi.org/10.1038/201068a0
30 W Poomsawat , S Poomsawat . Pyrolysis kinetic behavior of composite polypropylene-biomass solid fuels derived via co-hydrothermal carbonization process. Thermal Science and Engineering Progress, 2023, 43: 101953
https://doi.org/10.1016/j.tsep.2023.101953
31 M Khachani , A E Hamidi , M Halim , S Arsalane . Non-isothermal kinetic and thermodynamic studies of the dehydroxylation process of synthetic calcium hydroxide Ca(OH)2. Journal of Materials & Environmental Sciences, 2014, 5(2): 615–624
32 M Kumar Trivedi . Effect of biofield energy treatment on physical and structural properties of calcium carbide and praseodymium oxide. International Journal of Materials Science and Applications, 2015, 4(6): 390–395
https://doi.org/10.11648/j.ijmsa.20150406.14
33 M M Trubyanov , G M Mochalov , S S Suvorov , E S Puzanov , A N Petukhov , I V Vorotyntsev , V M Vorotyntsev . Towards the interaction between calcium carbide and water during gas-chromatographic determination of trace moisture in ultra-high purity ammonia. Journal of Chromatography A, 2018, 1560: 71–77
https://doi.org/10.1016/j.chroma.2018.05.028
34 R Huang , Z Teng , S Li . Gaussian model analysis and thermal decomposition kinetics of nature fibers. Journal of Cleaner Production, 2022, 357: 131784
https://doi.org/10.1016/j.jclepro.2022.131784
35 Z Li . General rate equation theory for gas-solid reaction kinetics and its application to CaO carbonation. Chemical Engineering Science, 2020, 227: 115902
https://doi.org/10.1016/j.ces.2020.115902
36 M L Kastens , W G McBurney . Calcium cyanamide. Industrial & Engineering Chemistry, 1951, 43(5): 1020–1033
https://doi.org/10.1021/ie50497a013
37 A Klimek , J Yount , D Wozniak , M Zeller , D G Piercey . A laboratory preparation of high-purity calcium cyanamide. Inorganic Chemistry, 2023, 62(40): 16280–16282
https://doi.org/10.1021/acs.inorgchem.3c02235
[1] FCE-23080-OF-ZZ_suppl_1 Download
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed