Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

邮发代号 80-969

2019 Impact Factor: 3.552

Frontiers of Chemical Science and Engineering  2024, Vol. 18 Issue (4): 43   https://doi.org/10.1007/s11705-024-2404-6
  本期目录
Micro-nanoarchitectonic of aluminum-hydrogel propellant with static stability and dynamic rheology
Huiyan Guo, Huaiyu Li, Hongzhi Zhang, Lun Pan, Chengxiang Shi, Kang Xue(), Xiangwen Zhang, Ji-Jun Zou()
Key Laboratory for Advanced Fuel and Propellant of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
 全文: PDF(4812 KB)   HTML
Abstract

The aluminum-water system is a promising propellant due to high energy and low signal characteristics, and the gel form is easier to store and utilize. In this work, hydrogels of water and aluminum particles were prepared using the low-molecular-weight gellant agarose. The various physical properties of gel systems, including the water loss rate, phase transition temperature, and centrifugal stability at different gellant and aluminum contents, were examined. Rheological properties were assessed through shear thinning tests, thixotropy tests, strain sweep analysis, and frequency sweep experiments. The microstructure of the gel was obtained through scanning electron microscopy images. The results show that the aluminum-hydrogel network structure is composed of micron-scale aluminum and agarose nanosheets, and the unique micro-nanostructure endows the gel with excellent mechanical strength and thermal stability, which improve with increasing gellant and aluminum contents. Notably, the gel with 2% agarose and 20% aluminum had the best performance; the storage modulus reached 90647 Pa, which was within the linear viscoelastic region, and the maximum withstand pressure was 111.2 kPa, which was 118.8% greater than that of the pure hydrogel. Additionally, the gel demonstrates remarkable shear thinning behavior and can undergo gel-sol transformation upon shearing or heating to exceeding 114 °C.

Key wordsaluminum-water propellant    gelled propellant    rheological property    mechanical strength
收稿日期: 2023-10-30      出版日期: 2024-03-20
Corresponding Author(s): Kang Xue,Ji-Jun Zou   
 引用本文:   
. [J]. Frontiers of Chemical Science and Engineering, 2024, 18(4): 43.
Huiyan Guo, Huaiyu Li, Hongzhi Zhang, Lun Pan, Chengxiang Shi, Kang Xue, Xiangwen Zhang, Ji-Jun Zou. Micro-nanoarchitectonic of aluminum-hydrogel propellant with static stability and dynamic rheology. Front. Chem. Sci. Eng., 2024, 18(4): 43.
 链接本文:  
https://academic.hep.com.cn/fcse/CN/10.1007/s11705-024-2404-6
https://academic.hep.com.cn/fcse/CN/Y2024/V18/I4/43
Fig.1  
Fig.2  
Fig.3  
Fig.4  
Fig.5  
Fig.6  
Fig.7  
Parameter1% agarose2% agarose
0% Al5% Al10% Al15% Al20% Al0% Al5% Al10% Al15% Al20% Al
K/Pa·sn97.38162.61369.13555.161320.7212.11468.36991.31948.23565.8
n0.060.0480.0510.0380.020.1130.0350.0370.0010.007
R20.98990.99570.99230.99440.97840.99060.99450.99110.99240.9888
Tab.1  
Fig.8  
Fig.9  
Fig.10  
1 Y L Huang , Z L Ye , X K Wan , G Yao , J Y Duan , J J Liu , M D Yao , X Sun , Z X Deng , K Shen . et al.. Systematic mining and evaluation of the sesquiterpene skeletons as high energy aviation fuel molecules. Advanced Science, 2023, 10(23): 2300889
https://doi.org/10.1002/advs.202300889
2 J R Nie , T H Jia , L Pan , X W Zhang , J J Zou . Development of high-energy-density liquid aerospace fuel: a perspective. Transactions of Tianjin University, 2022, 28(1): 1–5
https://doi.org/10.1007/s12209-021-00302-x
3 P F Tang , B Yang , R Li , Y C Wang , X D Li , G C Yang . Ti3C2 MXene: a reactive combustion catalyst for efficient burning rate control of ammonium perchlorate based solid propellant. Carbon, 2022, 186: 678–687
https://doi.org/10.1016/j.carbon.2021.10.069
4 J W Cao , Y C Zhang , L Pan , C X Shi , X W Zhang , J J Zou . Synthesis and characterization of gelled high-density fuels with low-molecular mass gellant. Propellants Explosives Pyrotechnics, 2020, 45(7): 1018–1026
https://doi.org/10.1002/prep.201900397
5 K Lysien , A Stolarczyk , T Jarosz . Solid propellant formulations: a review of recent progress and utilized components. Materials, 2021, 14(21): 6657
https://doi.org/10.3390/ma14216657
6 S V Shorunov , D P Zarezin , V O Samoilov , M A Rudakova , R S Borisov , A L Maximov , M V Bermeshev . Synthesis and properties of high-energy-density hydrocarbons based on 5-vinyl-2-norbornene. Fuel, 2021, 283: 118935
https://doi.org/10.1016/j.fuel.2020.118935
7 A S Moghaddam , M R Rezaei , S Tavangar . Experimental investigation of characteristic length influence on a combustion chamber performance with liquid and gelled UDMH/IRFNA bi-propellants. Propellants Explosives Pyrotechnics, 2019, 44(9): 1154–1159
https://doi.org/10.1002/prep.201900035
8 J J ZouX W ZhangL Pan. High-Energy-Density Fuels for Advanced Propulsion: Design and Synthesis. Hoboken, New Jersey: Wiley, 2021
9 B V S Jyoti , S W Baek . Rheological characterization of ethanolamine gel propellants. Journal of Energetic Materials, 2016, 34(3): 260–278
https://doi.org/10.1080/07370652.2015.1061617
10 Y Liu , H Z Zhang , L Pan , K Xue , X W Zhang , J J Zou . High-energy-density gelled fuels with high stability and shear thinning performance. Chinese Journal of Chemical Engineering, 2022, 43: 99–109
https://doi.org/10.1016/j.cjche.2022.01.007
11 B Natan , D Hasan . Advances in gel propulsion. Journal of Energetic Materials, 2019, 18(4): 303–323
12 J W CaoL PanX W ZhangJ J Zou. Physicochemical and rheological properties of Al/JP-10 gelled fuel. Chinese Journal of Energetic Materials, 2020, 28(5): 382–390 (in Chinese)
13 K Xue , J W Cao , L Pan , X W Zhang , J J Zou . Review on design, preparation and performance characterization of gelled fuels for advanced propulsion. Frontiers of Chemical Science and Engineering, 2022, 16(6): 819–837
https://doi.org/10.1007/s11705-021-2122-2
14 L K Han , R D Wang , W Y Chen , Z Wang , X Y Zhu , T Z Huang . Preparation and combustion mechanism of boron-based high-energy fuels. Catalysts, 2023, 13(2): 378
https://doi.org/10.3390/catal13020378
15 D O Glushkov , K K Paushkina , A O Pleshko , A O Yanovsky . Ignition and combustion behavior of gel fuel particles with metal and non-metal additives. Acta Astronautica, 2023, 202: 637–652
https://doi.org/10.1016/j.actaastro.2022.11.027
16 D L Yang , Z X Xia , L Y Huang , L K Ma , B B Chen , Y C Feng . Synthesis of metallized kerosene gel and its characterization for propulsion applications. Fuel, 2020, 262: 116684
https://doi.org/10.1016/j.fuel.2019.116684
17 A Saberimoghaddam , Z Emamifard , M Mahdi Bahri Rasht Abadi , N Meyghani . Investigation of the effective parameters on the preparation of the gelled IRFNA. Propellants Explosives Pyrotechnics, 2019, 44(12): 1621–1627
https://doi.org/10.1002/prep.201900258
18 S Rahimi , D Hasan , A Peretz . Development of laboratory-scale gel-propulsion technology. Journal of Propulsion and Power, 2004, 20(1): 93–100
https://doi.org/10.2514/1.9235
19 F S Wang , J Chen , T Zhang , H S Guan , H M Li . Experimental study on spray characteristics of ADN/water-based gel propellant with impinging jet injectors. Propellants, Explosives, Pyrotechnics, 2020, 45(9): 1357–1365
https://doi.org/10.1002/prep.202000001
20 M B Padwal , B Natan , D P Mishra . Gel propellants. Progress in Energy and Combustion Science, 2021, 83: 100885
https://doi.org/10.1016/j.pecs.2020.100885
21 X D Guo , F S Li , G Z Bian , G P Liu . Coating treatment of Mg powders and their water reaction characteristics. Advanced Materials Research, 2013, 781–784: 2463–2470
https://doi.org/10.4028/www.scientific.net/AMR.781-784.2463
22 J M Bergthorson , Y Yavor , J Palecka , W Georges , M Soo , J Vickery , S Goroshin , D L Frost , A J Higgins . Metal-water combustion for clean propulsion and power generation. Applied Energy, 2017, 186: 13–27
https://doi.org/10.1016/j.apenergy.2016.10.033
23 I GhedjattiS W YuanH X Wang. Energy generation from metal-water reaction for power systems, underwater and aerospace propulsion applications. In: 2019 16th International Bhurban Conference on Applied Sciences and Technology. New York: IEEE, 2019, 49–54
24 K NishiiY MannamiM AkiyamaM MuroharaK HiroyukiK Komurasaki. Experimental study on bulk metal-water combustion for small spacecraft propulsion. In: AIAA Propulsion and Energy 2020 Forum. Reston, Virginia: AIAA, 2020, 3744
25 A A Boryaev . Calculation and experimental estimation of the efficiency of using lithium, sodium, magnesium, and aluminum as fuels in hydro-reactive propellants. Thermal Science and Engineering Progress, 2021, 23: 100881
https://doi.org/10.1016/j.tsep.2021.100881
26 M Zou , R Yang , X Guo , C Cao , J Li . Advances in aluminum/water propellants. Chinese Journal of Energetic Materials, 2007, 15(4): 421–424 (in Chinese)
27 R K Dong , Z Mei , S Y Xu , F Q Zhao , X H Ju , C C Ye . Molecular dynamics simulation on reaction and kinetics isotope effect of nano-aluminum and water. International Journal of Hydrogen Energy, 2019, 44(36): 19474–19483
https://doi.org/10.1016/j.ijhydene.2019.05.217
28 R Murugesan , S R Chakravarthy , J Kandasamy , R Sarathi . Experimental investigation on aluminum-based water ramjet for propelling high-speed underwater vehicles. Journal of Propulsion and Power, 2023, 39(6): 886–895
https://doi.org/10.2514/1.B39133
29 A Hahma , A Gany , K Palovuori . Combustion of activated aluminum. Combustion and Flame, 2006, 145(3): 464–480
https://doi.org/10.1016/j.combustflame.2006.01.003
30 H T Huang , M S Zou , X Y Guo , R J Yang , Y K Li . Analysis of the aluminum reaction efficiency in a hydro-reactive fuel propellant used for a water ramjet. Combustion, Explosion, and Shock Waves, 2013, 49(5): 541–547
https://doi.org/10.1134/S0010508213050055
31 M G Gautham , P A Ramakrishna . Propulsive performance of mechanically activated aluminum-water gelled composite propellant. Journal of Propulsion and Power, 2020, 36(2): 294–301
https://doi.org/10.2514/1.B37614
32 G A Risha , T L Jr Connell , R A Yetter , D S Sundaram , V Yang . Combustion of frozen nanoaluminum and water mixtures. Journal of Propulsion and Power, 2014, 30(1): 133–142
https://doi.org/10.2514/1.B34783
33 M G Gautham , P A Ramakrishna . Combustion characteristics of aluminum-water gelled composite propellant. Journal of Propulsion and Power, 2018, 34(5): 1345–1354
https://doi.org/10.2514/1.B37011
34 C Guo , T Li , Y Zhao , S Bao , H Zhang , R Wu . Aluminum/water reaction mechanism of aluminum-based hydrogels. Chinese Journal of Energetic Materials, 2022, 30(6): 557–563 (in Chinese)
35 A Nakayama , A Kakugo , J P Gong , Y Osada , M Takai , T Erata , S Kawano . High mechanical strength double-network hydrogel with bacterial cellulose. Advanced Functional Materials, 2004, 14(11): 1124–1128
https://doi.org/10.1002/adfm.200305197
36 L C Li , R L Zheng , Y Huang , R Q Sun . Self-sorting assembly in multicomponent self-assembled low molecular weight hydrogels. Progress in Chemistry, 2023, 35(2): 274–286
37 H Espinosa-Andrews , C Velasquez-Ordonez , J M Cervantes-Uc , R Rodriguez-Rodriguez . Water behavior, thermal, structural, and viscoelastic properties of physically cross-linked chitosan hydrogels produced by NaHCO3 as a crosslinking agent. Journal of Materials Science, 2023, 58(13): 6025–6037
38 H H Yang , C C Zhao , Y Wang , Y Y Wang , B F Shi , P F Chen , W Yan . Progress in study on gel propellants and their rheological properties. Journal of Xi’an Jiaotong University, 2022, 56(5): 166–179 (in Chinese)
39 J Horinaka , S Ogawa . Cyclic deformation behavior of agarose hydrogels prepared at different gelation concentrations. International Journal of Biological Macromolecules, 2023, 248: 125904
https://doi.org/10.1016/j.ijbiomac.2023.125904
40 J Zheng , C Zhao , L Zhu , Q Chen , Q Wang . One-pot synthesis of highly mechanical and recoverable double network hydrogels using thermoreversible sol–gel polysaccharide. Advanced Materials, 2013, 25(30): 4171–4176
https://doi.org/10.1002/adma.201300817
41 A Q Chen , X D Guan , X M Li , B H Zhang , B Zhang , J Song . Preparation and characterization of metalized JP-10 gel propellants with excellent thixotropic performance. Propellants Explosives Pyrotechnics, 2017, 42(9): 1007–1013
https://doi.org/10.1002/prep.201700161
42 C Lin , Y Li , W Tang , S Zhou , X Rao . Facile construction of bio-based supramolecular hydrogels from dehydroabietic acid with a tricyclic hydrophenanthrene skeleton and stabilized gel emulsions. Molecules, 2021, 26(21): 6526
https://doi.org/10.3390/molecules26216526
43 Y Sang , M Liu . Nanoarchitectonics through supramolecular gelation: formation and switching of diverse nanostructures. Molecular Systems Design & Engineering, 2019, 4(1): 11–28
https://doi.org/10.1039/C8ME00068A
44 L M Zhang , C X Wu , J Y Huang , X H Peng , P Chen , S Q Tang . Synthesis and characterization of a degradable composite agarose/HA hydrogel. Carbohydrate Polymers, 2012, 88(4): 1445–1452
https://doi.org/10.1016/j.carbpol.2012.02.050
45 J Liao , Y J Wang , B Hou , J M Zhang , H H Huang . Nano-chitin reinforced agarose hydrogels: effects of nano-chitin addition and acidic gas-phase coagulation. Carbohydrate Polymers, 2023, 313: 120902
https://doi.org/10.1016/j.carbpol.2023.120902
46 S Wang , R Zhang , Y Yang , S Wu , Y Cao , A Lu , L Zhang . Strength enhanced hydrogels constructed from agarose in alkali/urea aqueous solution and their application. Chemical Engineering Journal, 2018, 331: 177–184
https://doi.org/10.1016/j.cej.2017.08.118
47 D Sarkar , D Mohapatra , S Ray , S Bhattacharyya , S Adak , N Mitra . Nanostructured Al2O3–ZrO2 composite synthesized by sol–gel technique: powder processing and microstructure. Journal of Materials Science, 2007, 42(5): 1847–1855
48 H S Jo , H Kim , S Y Yoon . Synthesis and characterization of mesoporous aluminum silicate and its adsorption for Pb(II) ions and methylene blue in aqueous solution. Materials, 2022, 15(10): 3562
https://doi.org/10.3390/ma15103562
49 Q CaoF FengX S Wu. Time and temperature dependent constitutive equations modeling of RP-1 jet fuel gel. Chinese Journal of Energetic Materials, 2016, 24(6): 592–598 (in Chinese)
50 X P Qiu , A M Pang , F Jin , W Wei , K H Chen , T J Lu . Preparation and characterization of JP-10 gel propellants with tris-urea low-molecular mass gelators. Propellants Explosives Pyrotechnics, 2016, 41(2): 212–216
https://doi.org/10.1002/prep.201500270
51 Y Hu , Y Kim , I Hong , M Kim , S Jung . Fabrication of flexible pH-responsive agarose/succinoglycan hydrogels for controlled drug release. Polymers, 2021, 13(13): 2049
https://doi.org/10.3390/polym13132049
52 A Jarosz , O Kapusta , D Gugała-Fekner , M Barczak . Synthesis and characterization of agarose hydrogels for release of diclofenac sodium. Materials, 2023, 16(17): 6042
https://doi.org/10.3390/ma16176042
53 J D Dennis , T D Kubal , O Campanella , S F Son , T L Pourpoint . Rheological characterization of monomethyl hydrazine gels. Journal of Propulsion and Power, 2013, 29(2): 313–320
https://doi.org/10.2514/1.B34611
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed