Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

邮发代号 80-969

2019 Impact Factor: 3.552

Frontiers of Chemical Science and Engineering  2024, Vol. 18 Issue (4): 46   https://doi.org/10.1007/s11705-024-2407-3
  本期目录
Fabrication of surface passivated two-dimensional MFI zeolite for alkylation between toluene with methanol
Zhenyuan Zou1, Shengzhi Gan1, Ting Pu1, Xingxing Zeng1, Yi Huang2, Baoyu Liu1()
1. School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
2. School of Engineering, Institute for Materials & Processes, the University of Edinburgh, Edinburgh EH9 3FB, United Kingdom
 全文: PDF(8880 KB)   HTML
Abstract

The fabrication of suitable MFI zeolites to effectively produce para-xylene through the alkylation between toluene and methanol is highly desired. Here, the two-dimensional pillared MFI zeolite was modified by silicalite-1, and its morphology and structure were systematically investigated by tuning the concentration of Si species during the secondary crystallization process. The MFI zeolites were characterized by X-ray diffraction, transmission electron microscopy, pyridine-infrared and N2 adsorption-desorption isotherms. The characterization results showed that the external Brønsted acid sites of surface passivated P-MFI-x samples have been successfully shielded. Interestingly, the P-MFI-23 showed long lifetime and high selectivity of para-xylene (about 35%) based on the cooperation between opened interlamellar structure and passivated silicalite-1 layer. It was found that the accumulated hard coke in the interior of MFI zeolites not only blocked the channels of zeolites but also covered the acidic sites, resulting in the deactivation of catalyst. Furthermore, the highest selectivity of para-xylene (about 48%) can be achieved for P-MFI-30 under harsh reaction condition, which also exhibited excellent regeneration property in the alkylation reaction between toluene and methanol. The strategy described in present research may open a window for the design of other advanced materials.

Key wordsalkylation    MFI    nanosheets    catalysis
收稿日期: 2023-12-15      出版日期: 2024-03-15
Corresponding Author(s): Baoyu Liu   
 引用本文:   
. [J]. Frontiers of Chemical Science and Engineering, 2024, 18(4): 46.
Zhenyuan Zou, Shengzhi Gan, Ting Pu, Xingxing Zeng, Yi Huang, Baoyu Liu. Fabrication of surface passivated two-dimensional MFI zeolite for alkylation between toluene with methanol. Front. Chem. Sci. Eng., 2024, 18(4): 46.
 链接本文:  
https://academic.hep.com.cn/fcse/CN/10.1007/s11705-024-2407-3
https://academic.hep.com.cn/fcse/CN/Y2024/V18/I4/46
  
Fig.1  
Fig.2  
CatalystsSBETa)/(m2·g?1)Sextb)/(m2·g?1)Smicroc)/(m2·g?1)Vtold)/(cm3·g?1)Vmicroe)/(cm3·g?1)Vmesof)/(cm3·g?1)
P-MFI6895351540.6340.0790.555
P-MFI-234661403260.2440.1290.115
P-MFI-264441343100.2330.1230.110
P-MFI-303591262330.2160.1230.093
Tab.1  
Fig.3  
  
CatalystsSi/Ala)Total Br?nsted acid sitesb)/(mmol·g?1)External Br?nsted acid sitesc)/(mmol·g?1)fBd)
P-MFI520.0740.05980%
P-MFI-23910.049
P-MFI-26930.035
P-MFI-301030.035
Tab.2  
Fig.4  
Fig.5  
CatalystsSBETa)/(m2·g?1)Sextb)/(m2·g?1)Smicroc)/(m2·g?1)Vtold)/(cm3·g?1)Vmicroe)/(cm3·g?1)Vmesof)/(cm3·g?1)
P-MFI6895351540.6340.0790.555
Spent P-MFI3532521010.4320.0520.380
P-MFI-303591262330.2160.1230.093
Spent P-MFI-3011391040.0700.0550.015
Tab.3  
CatalystsP-MFISpent P-MFIP-MFI-30Spent P-MFI-30
Total Br?nsted acid sitesa) /(mmol·g?1)0.0740.0120.0350.001
Tab.4  
Fig.6  
  
CatalystsSample weight/mgSoft cokea)/mgHard cokeb)/mgAverage coke ratec)/(mg·h?1)
P-MFI-239.430.0490.9040.041
P-MFI-269.370.0610.7910.066
P-MFI-308.660.0510.8180.082
Tab.5  
CatalystsSBETa)/(m2·g?1)Sextb)/(m2·g?1)Smicroc)/(m2·g?1)Vtold)/(cm3·g?1)Vmicroe)/(cm3·g?1)Vmesof)/(cm3·g?1)
P-MFI6895351540.6340.0790.555
R-P-MFI4643281360.5040.0710.433
P-MFI-303591262330.2160.1230.093
R-P-MFI-303291222070.2490.1090.140
Tab.6  
Fig.7  
Fig.8  
1 H Han , A F Zhang , L M Ren , X W Nie , M Liu , Y Liu , C Shi , H Yang , C S Song , X W Guo . Coke-resistant (Pt + Ni)/ZSM-5 catalyst for shape-selective alkylation of toluene with methanol to para-xylene. Chemical Engineering Science, 2022, 252: 117529
https://doi.org/10.1016/j.ces.2022.117529
2 R A F Tomás , J C M Bordado , J F P Gomes . p-xylene oxidation to terephthalic acid: a literature review oriented toward process optimization and development. Chemical Reviews, 2013, 113(10): 7421–7469
https://doi.org/10.1021/cr300298j
3 H Han , H Yang , A F Zhang , L M Ren , X W Nie , C Q Chen , M Liu , C A Shi , C S Song , X W Guo . Design of highly stable metal/ZSM-5 catalysts for the shape-selective alkylation of toluene with methanol to para-xylene. Inorganic Chemistry Frontiers, 2022, 9(13): 3348–3358
https://doi.org/10.1039/D2QI00686C
4 M T Ashraf , R Chebbi , N A Darwish . Process of p-xylene production by highly selective methylation of toluene. Industrial & Engineering Chemistry Research, 2013, 52(38): 13730–13737
https://doi.org/10.1021/ie401156x
5 W Vermeiren , J P Gilson . Impact of zeolites on the petroleum and petrochemical industry. Topics in Catalysis, 2009, 52(9): 1131–1161
https://doi.org/10.1007/s11244-009-9271-8
6 A M Niziolek , O Onel , C A Floudas . Production of benzene, toluene, and xylenes from natural gas via methanol: process synthesis and global optimization. AIChE Journal. American Institute of Chemical Engineers, 2016, 62(5): 1531–1556
https://doi.org/10.1002/aic.15144
7 T Li , T Shoinkhorova , J Gascon , J Ruiz-Martínez . Aromatics production via methanol-mediated transformation routes. ACS Catalysis, 2021, 11(13): 7780–7819
https://doi.org/10.1021/acscatal.1c01422
8 S Ilias , A Bhan . The mechanism of aromatic dealkylation in methanol-to-hydrocarbons conversion on H-ZSM-5: What are the aromatic precursors to light olefins?. Journal of Catalysis, 2014, 311: 6–16
https://doi.org/10.1016/j.jcat.2013.11.003
9 J Čejka , B Wichterlová . Acid-catalyzed synthesis of mono- and dialkyl benzenes over zeolites: active sites, zeolite topology, and reaction mechanisms. Catalysis Reviews. Science and Engineering, 2002, 44(3): 375–421
https://doi.org/10.1081/CR-120005741
10 B Xue , J Chen , N Liu , J Guo , J Xu , C F Xu , Q M Shen , Y X Li . Role of complex equilibrium in the shape-selective performances of MgO/MCM-22 catalysts prepared by complexing impregnation. Catalysis Communications, 2014, 56: 174–178
https://doi.org/10.1016/j.catcom.2014.07.019
11 C Lee , S Lee , W Kim , R Ryoo . High utilization of methanol in toluene methylation using MFI zeolite nanosponge catalyst. Catalysis Today, 2018, 303: 143–149
https://doi.org/10.1016/j.cattod.2017.09.056
12 Y R Wang , M Liu , A F Zhang , Y Zuo , F S Ding , Y Chang , C S Song , X W Guo . Methanol usage in toluene methylation over Pt modified ZSM-5 catalyst: effects of total pressure and carrier gas. Industrial & Engineering Chemistry Research, 2017, 56(16): 4709–4717
https://doi.org/10.1021/acs.iecr.7b00318
13 J H Li , H Xiang , M Liu , Q L Wang , Z R Zhu , Z H Hu . The deactivation mechanism of two typical shape-selective HZSM-5 catalysts for alkylation of toluene with methanol. Catalysis Science & Technology, 2014, 4(8): 2639–2649
https://doi.org/10.1039/c4cy00095a
14 C Jo , K Cho , J Kim , R Ryoo . MFI zeolite nanosponges possessing uniform mesopores generated by bulk crystal seeding in the hierarchical surfactant-directed synthesis. Chemical Communications, 2014, 50(32): 4175–4177
https://doi.org/10.1039/C4CC01070A
15 J L Sotelo , M A Uguina , J L Valverde , D P Serrano . Deactivation of toluene alkylation with methanol over magnesium-modified ZSM-5 Shape selectivity changes induced by coke formation. Applied Catalysis A, General, 1994, 114(2): 273–285
https://doi.org/10.1016/0926-860X(94)80179-7
16 P Dong , Z Y Li , D L Wang , X R Wang , Y Q Guo , G X Li , D Q Zhang . Alkylation of benzene by methanol: thermodynamics analysis for designing and designing for enhancing the selectivity of toluene and para-xylene. Catalysis Letters, 2019, 149(1): 248–258
https://doi.org/10.1007/s10562-018-2590-2
17 S Ren , C Tian , Y H Yue , W Zou , W M Hua , Z Gao . Selective alkylation of benzene with methanol to toluene and xylene over sheet-like ZSM-5 with controllable b-oriented length. Catalysis Letters, 2023, 4: 352–361
https://doi.org/10.1007/s10562-023-04352-9
18 F Xiong , C Ji , S Z Gan , P Liang , Y Huang , J Shang , B Y Liu , J X Dong . Tuning the mesoscopically structured ZSM-5 nanosheets for the alkylation between toluene and methanol. AIChE Journal. American Institute of Chemical Engineers, 2023, 69(6): e18054
https://doi.org/10.1002/aic.18054
19 C F Wang , Q Zhang , Y F Zhu , D K Zhang , J Y Chen , F K Chiang . p-Xylene selectivity enhancement in methanol toluene alkylation by separation of catalysis function and shape-selective function. Molecular Catalysis, 2017, 433: 242–249
https://doi.org/10.1016/j.mcat.2016.12.007
20 J Prech , P Pizarro , D P Serrano , J Cejka . From 3D to 2D zeolite catalytic materials. Chemical Society Reviews, 2018, 47(22): 8263–8306
https://doi.org/10.1039/C8CS00370J
21 X L Shao , S Q Wang , Y H Zhou , X Zhang , H Z Tian , Z Wang , Z Y Yuan , H T Wang . Synthesis of multilamellar ZSM-5 nanosheets with tailored b-axis thickness. Microporous and Mesoporous Materials, 2022, 345: 112252
https://doi.org/10.1016/j.micromeso.2022.112252
22 X H Meng , C H Lin , Y H Zhang , H B Qin , S Cao , L H Duan . Mass transfer behavior of benzene in hierarchically structured ZSM-5. Frontiers in Chemistry, 2019, 7: 502
https://doi.org/10.3389/fchem.2019.00502
23 M Choi , K Na , J Kim , Y Sakamoto , O Terasaki , R Ryoo . Stable single-unit-cell nanosheets of zeolite MFI as active and long-lived catalysts. Nature, 2009, 461(7261): 246–249
https://doi.org/10.1038/nature08288
24 K Na , M Choi , W Park , Y Sakamoto , O Terasaki , R Ryoo . Pillared MFI zeolite nanosheets of a single-unit-cell thickness. Journal of the American Chemical Society, 2010, 132(12): 4169–4177
https://doi.org/10.1021/ja908382n
25 X F Shen , W T Mao , Y H Ma , D D Xu , P Wu , O Terasaki , L Han , S N Che . A hierarchical MFI zeolite with a two-dimensional square mesostructure. Angewandte Chemie International Edition, 2018, 57(3): 724–728
https://doi.org/10.1002/anie.201710748
26 B Y Liu , C Wattanaprayoon , S C Oh , L Emdadi , D X Liu . Synthesis of organic pillared MFI zeolite as bifunctional acid-base catalyst. Chemistry of Materials, 2015, 27(5): 1479–1487
https://doi.org/10.1021/cm5033833
27 D D Xu , Y H Ma , Z F Jing , L Han , B Singh , J Feng , X F Shen , F L Cao , P Oleynikov , H Sun . et al.. π–π interaction of aromatic groups in amphiphilic molecules directing for single-crystalline mesostructured zeolite nanosheets. Nature Communications, 2014, 5(1): 4262
https://doi.org/10.1038/ncomms5262
28 J Hao , D G Cheng , F Q Chen , X L Zhan . n-heptane catalytic cracking on ZSM-5 zeolite nanosheets: effect of nanosheet thickness. Microporous and Mesoporous Materials, 2021, 310: 110647
https://doi.org/10.1016/j.micromeso.2020.110647
29 L Wei , K C Song , W Wu , S Holdren , G H Zhu , E Shulman , W J Shang , H Y Chen , M R Zachariah , D X Liu . Vapor-phase strategy to pillaring of two-dimensional zeolite. Journal of the American Chemical Society, 2019, 141(22): 8712–8716
https://doi.org/10.1021/jacs.9b03479
30 W Park , D Yu , K Na , K E Jelfs , B Slater , Y Sakamoto , R Ryoo . Hierarchically structure-directing effect of multi-ammonium surfactants for the generation of MFI zeolite nanosheets. Chemistry of Materials, 2011, 23(23): 5131–5137
https://doi.org/10.1021/cm201709q
31 X F Shen , W T Mao , Y H Ma , H G Peng , D D Xu , P Wu , L Han , S A Che . Mesoporous MFI zeolite with a 2D square structure directed by surfactants with an azobenzene tail group. Chemistry, 2018, 24(34): 8615–8623
https://doi.org/10.1002/chem.201800307
32 K S W Sing . Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984). Pure and Applied Chemistry, 1985, 57(4): 603–619
https://doi.org/10.1351/pac198557040603
33 P Morales-Pacheco , F Alvarez , L Bucio , J M Domínguez . Synthesis and structural properties of zeolitic nanocrystals II: FAU-type zeolites. Journal of Physical Chemistry C, 2009, 113(6): 2247–2255
https://doi.org/10.1021/jp8070713
34 Y Q Huang , F Xiong , Z Y Zou , Y Huang , Z X Zhao , B Y Liu , J X Dong . Fabrication of β-zeolite nanocrystal aggregates for the alkylation of benzene and cyclohexene. Industrial & Engineering Chemistry Research, 2023, 62(1): 190–198
https://doi.org/10.1021/acs.iecr.2c03417
35 Y Q Huang , M N Wang , Y Huang , J Shang , B Y Liu . Mesoporous beta zeolites with controlled distribution of bronsted acid sites for alkylation of benzene with cyclohexene. Results in Engineering, 2023, 19: 101377
https://doi.org/10.1016/j.rineng.2023.101377
[1] FCE-23086-OF-ZZ_suppl_1 Download
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed