Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

邮发代号 80-969

2019 Impact Factor: 3.552

Frontiers of Chemical Science and Engineering  2024, Vol. 18 Issue (7): 77   https://doi.org/10.1007/s11705-024-2419-z
  本期目录
Siliceous mesocellular foam supported Cu catalysts for promoting non-thermal plasma activated CO2 hydrogenation toward methanol synthesis
Yi Chen1, Shaowei Chen1, Yan Shao2, Cui Quan3, Ningbo Gao3, Xiaolei Fan4,5,6(), Huanhao Chen1()
1. State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
2. School of Environmental Science and Engineering, Nanjing Tech University, Nanjing 211816, China
3. School of Energy and Power Engineering, Xi’an Jiaotong University, Xi’an 710049, China
4. Department of Chemical Engineering, School of Engineering, The University of Manchester, Manchester M139PL, UK
5. Nottingham Ningbo China Beacons of Excellence Research and Innovation Institute, University of Nottingham Ningbo China, Ningbo 315048, China
6. Institute of Wenzhou, Zhejiang University, Wenzhou 325006, China
 全文: PDF(1024 KB)   HTML
Abstract

Electrified non-thermal plasma (NTP) catalytic hydrogenation is the promising alternative to the thermal counterparts, being able to be operated under mild conditions and compatible with green electricity/hydrogen. Rational design of the catalysts for such NTP-catalytic systems is one of the keys to improve the process efficiency. Here, we present the development of siliceous mesocellular foam (MCF) supported Cu catalysts for NTP-catalytic CO2 hydrogenation to methanol. The findings show that the pristine MCF support with high specific surface area and large mesopore of 784 m2·g−1 and ~8.5 nm could promote the plasma discharging and the diffusion of species through its framework, outperforming other control porous materials (viz., silicalite-1, SiO2, and SBA-15). Compared to the NTP system employing the bare MCF, the inclusion of Cu and Zn in MCF (i.e., Cu1Zn1/MCF) promoted the methanol formation of the NTP-catalytic system with a higher space-time yield of methanol at ~275 μmol·gcat−1·h−1 and a lower energy consumption of 26.4 kJ·mmolCH3OH−1 (conversely, ~225 μmol·gcat−1·h−1 and ~71 kJ·mmolCH3OH−1, respectively, for the bare MCF system at 10.1 kV). The findings suggest that inclusion of active metal sites (especially Zn species) could stabilize the CO2/CO-related intermediates to facilitate the surface reaction toward methanol formation.

Key wordsnon-thermal plasma (NTP) catalysis    Cu catalyst    CO2 hydrogenation    methanol    siliceous mesocellular foam (MCF)
收稿日期: 2023-12-15      出版日期: 2024-04-24
Corresponding Author(s): Xiaolei Fan,Huanhao Chen   
 引用本文:   
. [J]. Frontiers of Chemical Science and Engineering, 2024, 18(7): 77.
Yi Chen, Shaowei Chen, Yan Shao, Cui Quan, Ningbo Gao, Xiaolei Fan, Huanhao Chen. Siliceous mesocellular foam supported Cu catalysts for promoting non-thermal plasma activated CO2 hydrogenation toward methanol synthesis. Front. Chem. Sci. Eng., 2024, 18(7): 77.
 链接本文:  
https://academic.hep.com.cn/fcse/CN/10.1007/s11705-024-2419-z
https://academic.hep.com.cn/fcse/CN/Y2024/V18/I7/77
Fig.1  
Fig.2  
CatalystsSBET/(m2·g?1)VTotal*)/(cm3·g?1)
MCF7840.98
SBA-156841.07
S-14320.36
SiO21250.73
Cu0.5/MCF4630.90
Cu1/MCF3180.81
Cu3/MCF3750.78
Cu5/MCF3920.88
Cu1Zn1/MCF3840.79
Tab.1  
Fig.3  
Fig.4  
Fig.5  
1 Y Ou , C Roney , J Alsalam , K Calvin , J Creason , J Edmonds , A A Fawcett , P Kyle , K Narayan , P O’Rourke . et al.. Deep mitigation of CO2 and non-CO2 greenhouse gases toward 1.5 degrees C and 2 degrees C futures. Nature Communications, 2021, 12(1): 6245
https://doi.org/10.1038/s41467-021-26509-z
2 A M Alamer , M Ouyang , F H Alshafei , M A Nadeem , Y Alsalik , J T Miller , M Flytzani-Stephanopoulos , E C H Sykes , V Manousiouthakis , N M Eagan . Design of dilute palladium-indium alloy catalysts for the selective hydrogenation of CO2 to methanol. ACS Catalysis, 2023, 13(15): 9987–9996
https://doi.org/10.1021/acscatal.3c01861
3 A Saravanan , P Senthil Kumar , D V N Vo , S Jeevanantham , V Bhuvaneswari , V Anantha Narayanan , P R Yaashikaa , S Swetha , B Reshma . A comprehensive review on different approaches for CO2 utilization and conversion pathways. Chemical Engineering Science, 2021, 236: 116515
https://doi.org/10.1016/j.ces.2021.116515
4 C Kim , C-J Yoo , H-S Oh , B K Min , U Lee . Review of carbon dioxide utilization technologies and their potential for industrial application. Journal of CO2 Utilization, 2022, 65: 102239
5 S Sun , H Sun , P T Williams , C Wu . Recent advances in integrated CO2 capture and utilization: a review. Sustainable Energy & Fuels, 2021, 5(18): 4546–4559
https://doi.org/10.1039/D1SE00797A
6 R P Ye , J Ding , W Gong , M D Argyle , Q Zhong , Y Wang , C K Russell , Z Xu , A G Russell , Q Li , M Fan , Y G Yao . CO2 hydrogenation to high-value products via heterogeneous catalysis. Nature Communications, 2019, 10(1): 5698
https://doi.org/10.1038/s41467-019-13638-9
7 H Yang , C Zhang , P Gao , H Wang , X Li , L Zhong , W Wei , Y Sun . A review of the catalytic hydrogenation of carbon dioxide into value-added hydrocarbons. Catalysis Science & Technology, 2017, 7(20): 4580–4598
https://doi.org/10.1039/C7CY01403A
8 F C Meunier , I Dansette , A Paredes-Nunez , Y Schuurman . Cu-bound formates are main reaction intermediates during CO2 hydrogenation to methanol over Cu/ZrO2. Angewandte Chemie International Edition, 2023, 62(29): e202303939
https://doi.org/10.1002/anie.202303939
9 B Lu , F Wu , X Li , C Luo , L Zhang . Reconstruction of interface oxygen vacancy for boosting CO2 hydrogenation by Cu/CeO2 catalysts with thermal treatment. Carbon Capture Science & Technology, 2024, 10: 100–173
https://doi.org/10.1016/j.ccst.2023.100173
10 P S Murthy , L Wilson , X Zhang , W Liang , J Huang . Ni-doped metal-azolate framework-6 derived carbon as a highly active catalyst for CO2 conversion through the CO2 hydrogenation reaction. Carbon Capture Science & Technology, 2023, 7: 100–104
https://doi.org/10.1016/j.ccst.2023.100104
11 J L Snider , V Streibel , M A Hubert , T S Choksi , E Valle , D C Upham , J Schumann , M S Duyar , A Gallo , F Abild-Pedersen . et al.. Revealing the synergy between oxide and alloy phases on the performance of bimetallic In-Pd catalysts for CO2 hydrogenation to methanol. ACS Catalysis, 2019, 9(4): 3399–3412
https://doi.org/10.1021/acscatal.8b04848
12 A Zachopoulos , E Heracleous . Overcoming the equilibrium barriers of CO2 hydrogenation to methanol via water sorption: a thermodynamic analysis. Journal of CO2 Utilization, 2017, 21: 360–367
13 S Xu , H Chen , X Fan . Rational design of catalysts for non-thermal plasma (NTP) catalysis: a reflective review. Catalysis Today, 2023, 419: 114–144
https://doi.org/10.1016/j.cattod.2023.114144
14 Y Zhang , B Wang , Z Ji , Y Jiao , Y Shao , H Chen , X Fan . Plasma-catalytic CO2 methanation over NiFen/(Mg, Al)Ox catalysts: catalyst development and process optimisation. Chemical Engineering Journal, 2023, 465: 142855
https://doi.org/10.1016/j.cej.2023.142855
15 Y Sun , J Wu , Y Wang , J Li , N Wang , J Harding , S Mo , L Chen , P Chen , M Fu , D Ye , J Huang , X Tu . Plasma-catalytic CO2 hydrogenation over a Pd/ZnO catalyst: in situ probing of gas-phase and surface reactions. JACS Au, 2022, 2(8): 1800–1810
https://doi.org/10.1021/jacsau.2c00028
16 D Y Kim , H Ham , X Chen , S Liu , H Xu , B Lu , S Furukawa , H H Kim , S Takakusagi , K Sasaki , T Nozaki . Cooperative catalysis of vibrationally excited CO2 and alloy catalyst breaks the thermodynamic equilibrium limitation. Journal of the American Chemical Society, 2022, 144(31): 14140–14149
https://doi.org/10.1021/jacs.2c03764
17 Y Wang , W Yang , S Xu , S Zhao , G Chen , A Weidenkaff , C Hardacre , X Fan , J Huang , X Tu . Shielding protection by mesoporous catalysts for improving plasma-catalytic ambient ammonia synthesis. Journal of the American Chemical Society, 2022, 144(27): 12020–12031
https://doi.org/10.1021/jacs.2c01950
18 S Xu , S Chansai , C Stere , B Inceesungvorn , A Goguet , K Wangkawong , S F R Taylor , N Al-Janabi , C Hardacre , P A Martin . et al.. Sustaining metal-organic frameworks for water-gas shift catalysis by non-thermal plasma. Nature Catalysis, 2019, 2(2): 142–148
https://doi.org/10.1038/s41929-018-0206-2
19 Q Jin , S Chen , X Meng , R Zhou , M Xu , M Yang , H Xu , X Fan , H Chen . Methanol steam reforming for hydrogen production over Ni/ZrO2 catalyst: comparison of thermal and non-thermal plasma catalysis. Catalysis Today, 2024, 425: 114360
https://doi.org/10.1016/j.cattod.2023.114360
20 R Vakili , R Gholami , C E Stere , S Chansai , H Chen , S M Holmes , Y Jiao , C Hardacre , X Fan . Plasma-assisted catalytic dry reforming of methane (DRM) over metal-organic frameworks (MOFs)-based catalysts. Applied Catalysis B: Environmental, 2020, 260: 118–195
https://doi.org/10.1016/j.apcatb.2019.118195
21 X Jiang , X Nie , X Guo , C Song , J G Chen . Recent advances in carbon dioxide hydrogenation to methanol via heterogeneous catalysis. Chemical Reviews, 2020, 120(15): 7984–8034
https://doi.org/10.1021/acs.chemrev.9b00723
22 B Eliasson , U Kogelschatz , B Xue , L M Zhou . Hydrogenation of carbon dioxide to methanol with a discharge-activated catalyst. Industrial & Engineering Chemistry Research, 1998, 37(8): 3350–3357
https://doi.org/10.1021/ie9709401
23 A Bill , B Eliasson , U Kogelschatz , L M Zhou . Comparison of CO2 hydrogenation in a catalytic reactor and in a dielectric-barrier discharge. Studies in Surface Science and Catalysis, 1998, 114: 541–544
https://doi.org/10.1016/S0167-2991(98)80816-1
24 L Wang , Y Yi , H Guo , X Tu . Atmospheric pressure and room temperature synthesis of methanol through plasma-catalytic hydrogenation of CO2. ACS Catalysis, 2018, 8(1): 90–100
https://doi.org/10.1021/acscatal.7b02733
25 Z Cui , S Meng , Y Yi , A Jafarzadeh , S Li , E C Neyts , Y Hao , L Li , X Zhang , X Wang . et al.. Plasma-catalytic methanol synthesis from CO2 hydrogenation over a supported Cu cluster catalyst: insights into the reaction mechanism. ACS Catalysis, 2022, 12(2): 1326–1337
https://doi.org/10.1021/acscatal.1c04678
26 Y L Men , Y Liu , Q Wang , Z H Luo , S Shao , Y B Li , Y X Pan . Highly dispersed Pt-based catalysts for selective CO2 hydrogenation to methanol at atmospheric pressure. Chemical Engineering Science, 2019, 200: 167–175
https://doi.org/10.1016/j.ces.2019.02.004
27 X Zhang , Z Sun , Y Shan , H Pan , Y Jin , Z Zhu , L Zhang , K Li . Boosting methanol production via plasma catalytic CO2 hydrogenation over a MnOx/ZrO2 catalyst. Catalysis Science & Technology, 2023, 13(8): 2529–2539
https://doi.org/10.1039/D2CY02015G
28 M Ronda-Lloret , Y Wang , P Oulego , G Rothenberg , X Tu , N R Shiju . CO2 hydrogenation at atmospheric pressure and low temperature using plasma-enhanced catalysis over supported cobalt oxide catalysts. ACS Sustainable Chemistry & Engineering, 2020, 8(47): 17397–17407
https://doi.org/10.1021/acssuschemeng.0c05565
29 S Meng , L Wu , M Liu , Z Cui , Q Chen , S Li , J Yan , L Wang , X Wang , J Qian , H Guo , J Niu , A Bogaerts , Y Yi . Plasma‐driven CO2 hydrogenation to CH3OH over Fe2O3/γ‐Al2O3 catalyst. AIChE Journal. American Institute of Chemical Engineers, 2023, 69(10): e18154
https://doi.org/10.1002/aic.18154
30 R Michiels , Y Engelmann , A Bogaerts . Plasma catalysis for CO2 hydrogenation: unlocking new pathways toward CH3OH. Journal of Physical Chemistry C, 2020, 124(47): 25859–25872
https://doi.org/10.1021/acs.jpcc.0c07632
31 J WangK ZhangA BogaertsV Meynen. 3D porous catalysts for plasma-catalytic dry reforming of methane: how does the pore size affect the plasma-catalytic performance? Chemical Engineering Journal, 2023, 464: 142574
32 O Daoura , M-N Kaydouh , N El-Hassan , P Massiani , F Launay , M Boutros . Mesocellular silica foam-based Ni catalysts for dry reforming of CH4 (by CO2). Journal of CO2 Utilization, 2018, 24: 112–119
33 X Yan , L Zhang , Y Zhang , K Qiao , Z Yan , S Komarneni . Amine-modified mesocellular silica foams for CO2 capture. Chemical Engineering Journal, 2011, 168(2): 918–924
https://doi.org/10.1016/j.cej.2011.01.066
34 P Bai , Z Zhao , Y Zhang , Z He , Y Liu , C Wang , S Ma , P Wu , L Zhao , S Mintova . et al.. Rational design of highly efficient PdIn-In2O3 interfaces by a capture-alloying strategy for benzyl alcohol partial oxidation. ACS Applied Materials & Interfaces, 2023, 15(15): 19653–19664
https://doi.org/10.1021/acsami.3c00810
35 P Wu , Y Cao , L Zhao , Y Wang , Z He , W Xing , P Bai , S Mintova , Z Yan . Formation of PdO on Au-Pd bimetallic catalysts and the effect on benzyl alcohol oxidation. Journal of Catalysis, 2019, 375: 32–43
https://doi.org/10.1016/j.jcat.2019.05.003
36 S Wang , L Song , Z Qu . Cu/ZnAl2O4 catalysts prepared by ammonia evaporation method: improving methanol selectivity in CO2 hydrogenation via regulation of metal-support interaction. Chemical Engineering Journal, 2023, 469: 144008
https://doi.org/10.1016/j.cej.2023.144008
37 S Kuld , M Thorhauge , H Falsig , C F Elkjær , S Helveg , I Chorkendorff , J Sehested . Quantifying the promotion of Cu catalysts by ZnO for methanol synthesis. Science, 2016, 352(6288): 969–974
https://doi.org/10.1126/science.aaf0718
38 M Turco , G Bagnasco , C Cammarano , P Senese , U Costantino , M Sisani . Cu/ZnO/Al2O3 catalysts for oxidative steam reforming of methanol: the role of Cu and the dispersing oxide matrix. Applied Catalysis B: Environmental, 2007, 77(1-2): 46–57
https://doi.org/10.1016/j.apcatb.2007.07.006
39 F Arena , R Giovenco , T Torre , A Venuto , A Parmaliana . Activity and resistance to leaching of Cu-based catalysts in the wet oxidation of phenol. Applied Catalysis B: Environmental, 2003, 45(1): 51–62
https://doi.org/10.1016/S0926-3373(03)00163-2
40 K Xiao , Q Wang , X Qi , L Zhong . For better industrial Cu/ZnO/Al2O3 methanol synthesis catalyst: a compositional study. Catalysis Letters, 2017, 147(6): 1581–1591
https://doi.org/10.1007/s10562-017-2022-8
41 S Navarro-Jaén , M Virginie , J Thuriot-Roukos , R Wojcieszak , A Y Khodakov . Structure-performance correlations in the hybrid oxide-supported copper-zinc SAPO-34 catalysts for direct synthesis of dimethyl ether from CO2. Journal of Materials Science, 2022, 57(5): 3268–3279
https://doi.org/10.1007/s10853-022-06890-w
42 S Xu , S Chansai , S Xu , C E Stere , Y Jiao , S Yang , C Hardacre , X Fan . CO poisoning of Ru catalysts in CO2 hydrogenation under thermal and plasma conditions: a combined kinetic and diffuse reflectance infrared fourier transform spectroscopy-mass spectrometry study. ACS Catalysis, 2020, 10(21): 12828–12840
https://doi.org/10.1021/acscatal.0c03620
43 H Chen , Y Mu , Y Shao , S Chansai , S Xu , C E Stere , H Xiang , R Zhang , Y Jiao , C Hardacre . et al.. Coupling non-thermal plasma with Ni catalysts supported on BETA zeolite for catalytic CO2 methanation. Catalysis Science & Technology, 2019, 9(15): 4135–4145
https://doi.org/10.1039/C9CY00590K
44 H Chen , Y Mu , Y Shao , S Chansai , H Xiang , Y Jiao , C Hardacre , X Fan . Nonthermal plasma (NTP) activated metal-organic frameworks (MOFs) catalyst for catalytic CO2 hydrogenation. AIChE Journal, 2020, 66(4): e16853
https://doi.org/10.1002/aic.16853
45 Q Z Zhang , A Bogaerts . Propagation of a plasma streamer in catalyst pores. Plasma Sources Science & Technology, 2018, 27(3): 035009
https://doi.org/10.1088/1361-6595/aab47a
46 Q Z Zhang , A Bogaerts . Plasma streamer propagation in structured catalysts. Plasma Sources Science & Technology, 2018, 27(10): 105013
https://doi.org/10.1088/1361-6595/aae430
47 S Kattel , P J Ramírez , J G Chen , J A Rodriguez , P Liu . Active sites for CO2 hydrogenation to methanol on Cu/ZnO catalysts. Science, 2017, 355(6331): 1296–1299
https://doi.org/10.1126/science.aal3573
48 Y Yan , R J Wong , Z Ma , F Donat , S Xi , S Saqline , Q Fan , Y Du , A Borgna , Q He . et al.. CO2 hydrogenation to methanol on tungsten-doped Cu/CeO2 catalysts. Applied Catalysis B: Environmental, 2022, 306: 121098
https://doi.org/10.1016/j.apcatb.2022.121098
49 W Wang , Z Qu , L Song , Q Fu . CO2 hydrogenation to methanol over Cu/CeO2 and Cu/ZrO2 catalysts: tuning methanol selectivity via metal-support interaction. Journal of Energy Chemistry, 2020, 40: 22–30
https://doi.org/10.1016/j.jechem.2019.03.001
[1] FCE-23098-OF-CY_suppl_1 Download
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed