Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

邮发代号 80-969

2019 Impact Factor: 3.552

Frontiers of Chemical Science and Engineering  2024, Vol. 18 Issue (7): 74   https://doi.org/10.1007/s11705-024-2427-z
  本期目录
Defect engineering on constructing surface active sites in catalysts for environment and energy applications
Yawen Cai1,2, Baowei Hu1, Xiangke Wang1,2()
1. School of Life Science, Shaoxing University, Shaoxing 312000, China
2. College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
 全文: PDF(2993 KB)   HTML
Abstract

The precise engineering of surface active sites is deemed as an efficient protocol for regulating surfaces and catalytic properties of catalysts. Defect engineering is the most feasible option to modulate the surface active sites of catalysts. Creating specific active sites on the catalyst allows precise modulation of its electronic structure and physicochemical characteristics. Here, we outlined the engineering of several types of defects, including vacancy defects, void defects, dopant-related defects, and defect-based single atomic sites. An overview of progress in fabricating structural defects on catalysts via de novo synthesis or post-synthetic modification was provided. Then, the applications of the well-designed defective catalysts in energy conversion and environmental remediation were carefully elucidated. Finally, current challenges in the precise construction of active defect sites on the catalyst and future perspectives for the development directions of precisely controlled synthesis of defective catalysts were also proposed.

Key wordsdefect engineering    vacancy    void defects    doping    single atomic sites
收稿日期: 2023-12-15      出版日期: 2024-06-17
Corresponding Author(s): Xiangke Wang   
 引用本文:   
. [J]. Frontiers of Chemical Science and Engineering, 2024, 18(7): 74.
Yawen Cai, Baowei Hu, Xiangke Wang. Defect engineering on constructing surface active sites in catalysts for environment and energy applications. Front. Chem. Sci. Eng., 2024, 18(7): 74.
 链接本文:  
https://academic.hep.com.cn/fcse/CN/10.1007/s11705-024-2427-z
https://academic.hep.com.cn/fcse/CN/Y2024/V18/I7/74
Fig.1  
Fig.2  
Fig.3  
Fig.4  
Fig.5  
Fig.6  
Fig.7  
Fig.8  
1 M Beller , G Centi . Catalysis and sustainable development: the marriage for innovation. ChemSusChem, 2009, 2(6): 459–460
https://doi.org/10.1002/cssc.200900118
2 N Linares , A M Silvestre-Albero , E Serrano , J Silvestre-Albero , J García-Martínez . Mesoporous materials for clean energy technologies. Chemical Society Reviews, 2014, 43(22): 7681–7717
https://doi.org/10.1039/C3CS60435G
3 E Roduner . Understanding catalysis. Chemical Society Reviews, 2014, 43(24): 8226–8239
https://doi.org/10.1039/C4CS00210E
4 C Vogt , B M Weckhuysen . The concept of active site in heterogeneous catalysis. Nature Reviews Chemistry, 2022, 6(2): 89–111
https://doi.org/10.1038/s41570-021-00340-y
5 Y Wang , L Chen , H Cao , Z Chi , C Chen , X Duan , Y Xie , F Qi , W Song , J Liu . et al.. Role of oxygen vacancies and Mn sites in hierarchical Mn2O3/LaMnO3–δ perovskite composites for aqueous organic pollutants decontamination. Applied Catalysis B: Environmental, 2019, 245: 546–554
https://doi.org/10.1016/j.apcatb.2019.01.025
6 H Hattori . Solid base catalysts: generation of basic sites and application to organic synthesis. Applied Catalysis A, General, 2001, 222(1-2): 247–259
https://doi.org/10.1016/S0926-860X(01)00839-0
7 I E Wachs , C A Roberts . Monitoring surface metal oxide catalytic active sites with Raman spectroscopy. Chemical Society Reviews, 2010, 39(12): 5002–5017
https://doi.org/10.1039/c0cs00145g
8 Y Du , H Sheng , D Astruc , M Zhu . Atomically precise noble metal nanoclusters as efficient catalysts: a bridge between structure and properties. Chemical Reviews, 2020, 120(2): 526–622
https://doi.org/10.1021/acs.chemrev.8b00726
9 F Kröger . Defect chemistry in crystalline solids. Annual Review of Materials Science, 1977, 7(1): 449–475
https://doi.org/10.1146/annurev.ms.07.080177.002313
10 T Tang , Z Wang , J Guan . A review of defect engineering in two-dimensional materials for electrocatalytic hydrogen evolution reaction. Chinese Journal of Catalysis, 2022, 43(3): 636–678
https://doi.org/10.1016/S1872-2067(21)63945-1
11 J M Thomas , R Raja , D W Lewis . Single-site heterogeneous catalysts. Angewandte Chemie International Edition, 2005, 44(40): 6456–6482
https://doi.org/10.1002/anie.200462473
12 L Liu , A Corma . Structural transformations of solid electrocatalysts and photocatalysts. Nature Reviews Chemistry, 2021, 5(4): 256–276
https://doi.org/10.1038/s41570-021-00255-8
13 T Zambelli , J Wintterlin , J Trost , G Ertl . Identification of the “active sites” of a surface-catalyzed reaction. Science, 1996, 273(5282): 1688–1690
https://doi.org/10.1126/science.273.5282.1688
14 Y Sun , S Gao , F Lei , Y Xie . Atomically-thin two-dimensional sheets for understanding active sites in catalysis. Chemical Society Reviews, 2015, 44(3): 623–636
https://doi.org/10.1039/C4CS00236A
15 D Yan , Y Li , J Huo , R Chen , L Dai , S Wang . Defect chemistry of nonprecious-metal electrocatalysts for oxygen reactions. Advanced Materials, 2017, 29(48): 1606459
https://doi.org/10.1002/adma.201606459
16 C Xie , D Yan , H Li , S Du , W Chen , Y Wang , Y Zou , R Chen , S Wang . Defect chemistry in heterogeneous catalysis: recognition, understanding, and utilization. ACS Catalysis, 2020, 10(19): 11082–11098
https://doi.org/10.1021/acscatal.0c03034
17 M Lannoo , J Bourgoin . Atomic configuration of point defects. In: Point Defects in Semiconductors I. Springer Series in Solid-State Sciences. Berlin, Heidelberg: Springer-Verlag, 1981, 22: 1–35
18 A Leonardi , P Scardi . Dislocation effects on the diffraction line profiles from nanocrystalline domains. Metallurgical and Materials Transactions. A, Physical Metallurgy and Materials Science, 2016, 47(12): 5722–5732
https://doi.org/10.1007/s11661-015-2863-y
19 E R Hemesath , D K Schreiber , E B Gulsoy , C F Kisielowski , A K Petford-Long , P W Voorhees , L J Lauhon . Catalyst incorporation at defects during nanowire growth. Nano Letters, 2012, 12(1): 167–171
https://doi.org/10.1021/nl203259f
20 P Rudolph . Fundamentals and engineering of defects. Progress in Crystal Growth and Characterization of Materials, 2016, 62(2): 89–110
https://doi.org/10.1016/j.pcrysgrow.2016.04.004
21 Y Murakami . Material defects as the basis of fatigue design. International Journal of Fatigue, 2012, 41: 2–10
https://doi.org/10.1016/j.ijfatigue.2011.12.001
22 R Schlögl . Heterogeneous catalysis. Angewandte Chemie International Edition, 2015, 54(11): 3465–3520
https://doi.org/10.1002/anie.201410738
23 Y Zhang , F Gao , H You , Z Li , B Zou , Y Du . Recent advances in one-dimensional noble-metal-based catalysts with multiple structures for efficient fuel-cell electrocatalysis. Coordination Chemistry Reviews, 2022, 450: 214244
https://doi.org/10.1016/j.ccr.2021.214244
24 B Wang , J Liu , S Yao , F Liu , Y Li , J He , Z Lin , F Huang , C Liu , M Wang . Vacancy engineering in nanostructured semiconductors for enhancing photocatalysis. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2021, 9(32): 17143–17172
https://doi.org/10.1039/D1TA03895H
25 Y Sun , H Wang , Q Xing , W Cui , J Li , S Wu , L Sun . The pivotal effects of oxygen vacancy on Bi2MoO6: promoted visible light photocatalytic activity and reaction mechanism. Chinese Journal of Catalysis, 2019, 40(5): 647–655
https://doi.org/10.1016/S1872-2067(19)63277-8
26 S Guan , L Wang , S Xu , D Yang , G I N Waterhouse , X Qu , S Zhou . Vacancy-enhanced generation of singlet oxygen for photodynamic therapy. Chemical Science, 2019, 10(8): 2336–2341
https://doi.org/10.1039/C8SC05275A
27 X Zheng , Y Li , L Zhang , L Shen , Y Xiao , Y Zhang , C Au , L Jiang . Insight into the effect of morphology on catalytic performance of porous CeO2 nanocrystals for H2S selective oxidation. Applied Catalysis B: Environmental, 2019, 252: 98–110
https://doi.org/10.1016/j.apcatb.2019.04.014
28 S Zhou , W Jin , Y Ding , B Shao , B Wang , X Hu , Y Kong . In-situ intercalation of Au nanoparticles and magnetic γ-Fe2O3 in the walls of MCM-41 with abundant void defects for highly efficient reduction of 4-nitrophenol and organic dyes. Dalton Transactions, 2018, 47(47): 16862–16875
https://doi.org/10.1039/C8DT03054E
29 Q Tang , Y Ma , J Wang . The active sites engineering of catalysts for CO2 activation and conversion. Solar RRL, 2021, 5(2): 2000443
https://doi.org/10.1002/solr.202000443
30 G Connell , J A Dumesic . The generation of Brønsted and Lewis acid sites on the surface of silica by addition of dopant cations. Journal of Catalysis, 1987, 105(2): 285–298
https://doi.org/10.1016/0021-9517(87)90059-5
31 J Lee , A Kumar , M G Kim , T Yang , X Shao , X Liu , Y Liu , Y Hong , A R Jadhav , M Liang . et al.. Single-metal-atom dopants increase the Lewis acidity of metal oxides and promote nitrogen fixation. ACS Energy Letters, 2021, 6(12): 4299–4308
https://doi.org/10.1021/acsenergylett.1c02136
32 Y Zhang , L Guo , L Tao , Y Lu , S Wang . Defect-based single-atom electrocatalysts. Small Methods, 2019, 3(9): 1800406
https://doi.org/10.1002/smtd.201800406
33 Q Xue , Y Xie , S Wu , T Wu , Y Soo , S Day , C C Tang , H W Man , S T Yuen , K Wong . et al.. A rational study on the geometric and electronic properties of single-atom catalysts for enhanced catalytic performance. Nanoscale, 2020, 12(45): 23206–23212
https://doi.org/10.1039/D0NR06006B
34 J Xi , H S Jung , Y Xu , F Xiao , J W Bae , S Wang . Synthesis strategies, catalytic applications, and performance regulation of single-atom catalysts. Advanced Functional Materials, 2021, 31(12): 2008318
https://doi.org/10.1002/adfm.202008318
35 D Liu , Q He , S Ding , L Song . Structural regulation and support coupling effect of single-atom catalysts for heterogeneous catalysis. Advanced Energy Materials, 2020, 10(32): 2001482
https://doi.org/10.1002/aenm.202001482
36 R Lang , X Du , Y Huang , X Jiang , Q Zhang , Y Guo , K Liu , B Qiao , A Wang , T Zhang . Single-atom catalysts based on the metal-oxide interaction. Chemical Reviews, 2020, 120(21): 11986–12043
https://doi.org/10.1021/acs.chemrev.0c00797
37 S Bai , N Zhang , C Gao , Y Xiong . Defect engineering in photocatalytic materials. Nano Energy, 2018, 53: 296–336
https://doi.org/10.1016/j.nanoen.2018.08.058
38 G Zhuang , J Yan , Y Wen , Z Zhuang , Y Yu . Two-dimensional transition metal oxides and chalcogenides for advanced photocatalysis: progress, challenges, and opportunities. Solar RRL, 2021, 5(6): 2000403
https://doi.org/10.1002/solr.202000403
39 Y Zhou , F Wang , J Zhou , B Dong , Y Dong , X Liu , B Liu , J Yu , Y Chai . Triple captured iron by defect abundant NiO for efficient water oxidation. Inorganic Chemistry Frontiers, 2022, 9(6): 1281–1292
https://doi.org/10.1039/D1QI01595H
40 W Gao , J Chi , Z Wang , J Lin , D Liu , J Zeng , J Yu , L Wang , Y Chai , B Dong . Optimized bimetallic nickel-iron phosphides with rich defects as enhanced electrocatalysts for oxygen evolution reaction. Journal of Colloid and Interface Science, 2019, 537: 11–19
https://doi.org/10.1016/j.jcis.2018.10.099
41 G Ye , L Wan , Q Zhang , H Liu , J Zhou , L Wu , X Zeng , H Wang , X Chen , J Wang . Boosting catalytic performance of MOF-808(Zr) by direct generation of rich defective Zr nodes via a solvent-free approach. Inorganic Chemistry, 2023, 62(10): 4248–4259
https://doi.org/10.1021/acs.inorgchem.2c04364
42 Z Fang , B Bueken , D E De Vos , R A Fischer . Defect-engineered metal-organic frameworks. Angewandte Chemie International Edition, 2015, 54(25): 7234–7254
https://doi.org/10.1002/anie.201411540
43 D S ShollR P Lively. Defects in metal-organic frameworks: challenge or opportunity? Journal of Physical Chemistry Letters, 2015, 6(17): 3437–3444
44 P Gao , Z Chen , Y Gong , R Zhang , H Liu , P Tang , X Chen , S Passerini , J Liu . The role of cation vacancies in electrode materials for enhanced electrochemical energy storage: synthesis, advanced characterization, and fundamentals. Advanced Energy Materials, 2020, 10(14): 1903780
https://doi.org/10.1002/aenm.201903780
45 Q Pang , L Yang , Q Li . Vacancies in metal-organic frameworks: formation, arrangement, and functions. Small Structures, 2022, 3(5): 2100203
https://doi.org/10.1002/sstr.202100203
46 Y Wu , Y Li , J Gao , Q Zhang . Recent advances in vacancy engineering of metal-organic frameworks and their derivatives for electrocatalysis. SusMat, 2021, 1(1): 66–87
https://doi.org/10.1002/sus2.3
47 J Ren , M Ledwaba , N M Musyoka , H W Langmi , M Mathe , S Liao , W Pang . Structural defects in metal-organic frameworks (MOFs): formation, detection and control towards practices of interests. Coordination Chemistry Reviews, 2017, 349: 169–197
https://doi.org/10.1016/j.ccr.2017.08.017
48 F G Cirujano , N Martin , L H Wee . Design of hierarchical architectures in metal-oganic frameworks for catalysis and adsorption. Chemistry of Materials, 2020, 32(24): 10268–10295
https://doi.org/10.1021/acs.chemmater.0c02973
49 I A Lázaro , H Szalad , P Valiente , J Albero , H García , C Martí-Gastaldo . Tuning the photocatalytic activity of Ti-based metal-organic frameworks through modulator defect-engineered functionalization. ACS Applied Materials & Interfaces, 2022, 14(18): 21007–21017
https://doi.org/10.1021/acsami.2c02668
50 R Wei , C A Gaggioli , G Li , T Islamoglu , Z Zhang , P Yu , O K Farha , C J Cramer , L Gagliardi , D Yang . et al.. Tuning the properties of Zr6O8 nodes in the metal organic framework UiO-66 by selection of node-bound ligands and linkers. Chemistry of Materials, 2019, 31(5): 1655–1663
https://doi.org/10.1021/acs.chemmater.8b05037
51 G Barin , V Krungleviciute , O Gutov , J T Hupp , T Yildirim , O K Farha . Defect creation by linker fragmentation in metal-organic frameworks and its effects on gas uptake properties. Inorganic Chemistry, 2014, 53(13): 6914–6919
https://doi.org/10.1021/ic500722n
52 N E El-Gamel . Generation of defect-modulated metal-organic frameworks by fragmented-linker co-assembly of CPO-27(M) frameworks. European Journal of Inorganic Chemistry, 2015, 2015(8): 1351–1358
https://doi.org/10.1002/ejic.201403110
53 Z Fan , J Wang , W Wang , S Burger , Z Wang , Y Wang , C Wöll , M Cokoja , R A Fischer . Defect engineering of copper paddlewheel-based metal-organic frameworks of type NOTT-100: implementing truncated linkers and its effect on catalytic properties. ACS Applied Materials & Interfaces, 2020, 12(34): 37993–38002
https://doi.org/10.1021/acsami.0c07249
54 L Lei , D Huang , M Cheng , R Deng , S Chen , Y Chen , W Wang . Defects engineering of bimetallic Ni-based catalysts for electrochemical energy conversion. Coordination Chemistry Reviews, 2020, 418: 213372
https://doi.org/10.1016/j.ccr.2020.213372
55 X Zhang , Z Zhang , H Huang , Y Wang , N Tong , J Lin , D Liu , X Wang . Oxygen vacancy modulation of two-dimensional γ-Ga2O3 nanosheets as efficient catalysts for photocatalytic hydrogen evolution. Nanoscale, 2018, 10(45): 21509–21517
https://doi.org/10.1039/C8NR07186A
56 S Chen , H Huang , D Zhao , J Zhou , J Yu , B Qu , Q Liu , H Sun , J Zhao . Direct growth of polycrystalline GaN porous layer with rich nitrogen vacancies: application to catalyst-free electrochemical detection. ACS Applied Materials & Interfaces, 2020, 12(48): 53807–53815
https://doi.org/10.1021/acsami.0c15824
57 J Wang , S Lin , N Tian , T Ma , Y Zhang , H Huang . Nanostructured metal sulfides: classification, modification strategy, and solar-driven CO2 reduction application. Advanced Functional Materials, 2021, 31(9): 2008008
https://doi.org/10.1002/adfm.202008008
58 X Jing , N Lu , J Huang , P Zhang , Z Zhang . One-step hydrothermal synthesis of S-defect-controlled ZnIn2S4 microflowers with improved kinetics process of charge-carriers for photocatalytic H2 evolution. Journal of Energy Chemistry, 2021, 58: 397–407
https://doi.org/10.1016/j.jechem.2020.10.032
59 K Li , J Yang , J Gu . Hierarchically porous MOFs synthesized by soft-template strategies. Accounts of Chemical Research, 2022, 55(16): 2235–2247
https://doi.org/10.1021/acs.accounts.2c00262
60 G Cai , H L Jiang . A modulator-induced defect-formation strategy to hierarchically porous metal-organic frameworks with high stability. Angewandte Chemie International Edition, 2017, 56(2): 563–567
https://doi.org/10.1002/anie.201610914
61 D Yuan , D Zhao , D Sun , H Zhou . An isoreticular series of metal-organic frameworks with dendritic hexacarboxylate ligands and exceptionally high gas-uptake capacity. Angewandte Chemie, 2010, 122(31): 5485–5489
https://doi.org/10.1002/ange.201001009
62 D Zhao , D Yuan , D Sun , H Zhou . Stabilization of metal-organic frameworks with high surface areas by the incorporation of mesocavities with microwindows. Journal of the American Chemical Society, 2009, 131(26): 9186–9188
https://doi.org/10.1021/ja901109t
63 O K Farha , A Ö Yazaydın , I Eryazici , C D Malliakas , B G Hauser , M G Kanatzidis , S T Nguyen , R Q Snurr , J T Hupp . De novo synthesis of a metal-organic framework material featuring ultrahigh surface area and gas storage capacities. Nature Chemistry, 2010, 2(11): 944–948
https://doi.org/10.1038/nchem.834
64 H Furukawa , N Ko , Y B Go , N Aratani , S B Choi , E Choi , A Ö Yazaydin , R Q Snurr , M O’Keeffe , J Kim . et al.. Ultrahigh porosity in metal-organic frameworks. Science, 2010, 329(5990): 424–428
https://doi.org/10.1126/science.1192160
65 M Li , Y Liu , F Li , C Shen , Y V Kaneti , Y Yamauchi , B Yuliarto , B Chen , C Wang . Defect-rich hierarchical porous UiO-66(Zr) for tunable phosphate removal. Environmental Science & Technology, 2021, 55(19): 13209–13218
https://doi.org/10.1021/acs.est.1c01723
66 C Tang , H Wang , X Chen , B Li , T Hou , B Zhang , Q Zhang , M Titirici , F Wei . Topological defects in metal-free nanocarbon for oxygen electrocatalysis. Advanced Materials, 2016, 28(32): 6845–6851
https://doi.org/10.1002/adma.201601406
67 F Zoller , S Häringer , D Böhm , J Luxa , Z Sofer , D Fattakhova-Rohlfing . Carbonaceous oxygen evolution reaction catalysts: from defect and doping-induced activity over hybrid compounds to ordered framework structures. Small, 2021, 17(48): 2007484
https://doi.org/10.1002/smll.202007484
68 A Zhang , Y Liang , H Zhang , Z Geng , J Zeng . Doping regulation in transition metal compounds for electrocatalysis. Chemical Society Reviews, 2021, 50(17): 9817–9844
https://doi.org/10.1039/D1CS00330E
69 K E Karakitsou , X E Verykios . Effects of altervalent cation doping of titania on its performance as a photocatalyst for water cleavage. Journal of Physical Chemistry, 1993, 97(6): 1184–1189
https://doi.org/10.1021/j100108a014
70 Z Shen , X Jin , J Tian , M Li , Y Yuan , S Zhang , S Fang , X Fan , W Xu , H Lu . et al.. Cation-doped ZnS catalysts for polysulfide conversion in lithium-sulfur batteries. Nature Catalysis, 2022, 5(6): 555–563
https://doi.org/10.1038/s41929-022-00804-4
71 J Xie , Q Lü , W Qiao , C Bu , Y Zhang , X Zhai , R Lü , Y Chai , B Dong . Enhancing cobalt-oxygen bond to stabilize defective Co2MnO4 in acidic oxygen evolution. Acta Physico-Chimica Sinica, 2024, 40(3): 2305021
72 Y Sun , K Xu , Z Wei , H Li , T Zhang , X Li , W Cai , J Ma , H J Fan , Y Li . Strong electronic interaction in dual-cation-incorporated NiSe2 nanosheets with lattice distortion for highly efficient overall water splitting. Advanced Materials, 2018, 30(35): 1802121
https://doi.org/10.1002/adma.201802121
73 S Patnaik , D P Sahoo , K Parida . Recent advances in anion doped g-C3N4 photocatalysts: a review. Carbon, 2021, 172: 682–711
https://doi.org/10.1016/j.carbon.2020.10.073
74 L Jiang , X Yuan , Y Pan , J Liang , G Zeng , Z Wu , H Wang . Doping of graphitic carbon nitride for photocatalysis: a reveiw. Applied Catalysis B: Environmental, 2017, 217: 388–406
https://doi.org/10.1016/j.apcatb.2017.06.003
75 C Lu , P Zhang , S Jiang , X Wu , S Song , M Zhu , Z Lou , Z Li , F Liu , Y Liu . et al.. Photocatalytic reduction elimination of UO22+ pollutant under visible light with metal-free sulfur doped g-C3N4 photocatalyst. Applied Catalysis B: Environmental, 2017, 200: 378–385
https://doi.org/10.1016/j.apcatb.2016.07.036
76 H Xu , T Zhang , D Wang , D Cai , S Chen , H Wang , S Shu , Y Zhu . Degradation of tetracycline using persulfate activated by a honeycomb structured S-doped g-C3N4/biochar under visible light. Separation and Purification Technology, 2022, 300: 121833
https://doi.org/10.1016/j.seppur.2022.121833
77 V Hasija , P Singh , S Thakur , K Stando , V Nguyen , Q Van Le , S M Alshehri , T Ahamad , K C Wu , P Raizada . Oxygen doping facilitated N-vacancies in g-C3N4 regulates electronic band gap structure for trimethoprim and Cr(VI) mitigation: simulation studies and photocatalytic degradation pathways. Applied Materials Today, 2022, 29: 101676
https://doi.org/10.1016/j.apmt.2022.101676
78 X Zhang , F Li , R Fan , J Zhao , B Dong , F Wang , H Liu , J Yu , C Liu , Y F Chai . P double-doped Fe3O4 with abundant defect sites for efficient hydrogen evolution at high current density. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2021, 9(28): 15836–15845
https://doi.org/10.1039/D1TA03686F
79 H Rong , T Zhan , Y Sun , Y Wen , X Liu , H Teng . ZIF-8 derived nitrogen, phosphorus and sulfur tri-doped mesoporous carbon for boosting electrocatalysis to oxygen reduction in universal pH range. Electrochimica Acta, 2019, 318: 783–793
https://doi.org/10.1016/j.electacta.2019.06.122
80 L Tian , X Pang , H Xu , D Liu , X Lu , J Li , J Wang , Z Li . Cation-anion dual doping modifying electronic structure of hollow CoP nanoboxes for enhanced water oxidation electrocatalysis. Inorganic Chemistry, 2022, 61(42): 16944–16951
https://doi.org/10.1021/acs.inorgchem.2c03060
81 C Yuan , T Xu , M Guo , T Zhang , X Yu . Cation/anion-doping induced electronic structure regulation strategy to boost the catalytic hydrogen evolution from ammonia borane hydrolysis. Applied Catalysis B: Environmental, 2023, 321: 122044
https://doi.org/10.1016/j.apcatb.2022.122044
82 P Wang , X Ma , X Hao , B Tang , A Abudula , G Guan . Oxygen vacancy defect engineering to promote catalytic activity toward the oxidation of VOCs: a critical review. Catalysis Reviews, 2022, 66(2): 586–639
https://doi.org/10.1080/01614940.2022.2078555
83 Y Huang , Y Yu , Y Yu , B Zhang . Oxygen vacancy engineering in photocatalysis. Solar RRL, 2020, 4(8): 2000037
https://doi.org/10.1002/solr.202000037
84 L Fu , H Chen , K Wang , X Wang . Oxygen-vacancy generation in MgFe2O4 by high temperature calcination and its improved photocatalytic activity for CO2 reduction. Journal of Alloys and Compounds, 2022, 891: 161925
https://doi.org/10.1016/j.jallcom.2021.161925
85 L Su , Y Zhang , X Zhan , L Zhang , Y Zhao , X Zhu , H Wu , H Chen , C Shen , L Wang . Pr6O11: temperature-dependent oxygen vacancy regulation and catalytic performance for lithium-oxygen batteries. ACS Applied Materials & Interfaces, 2022, 14(36): 40975–40984
https://doi.org/10.1021/acsami.2c10602
86 Z Li , Q Yan , Q Jiang , Y Gao , T Xue , R Li , Y Liu , Q Wang . Oxygen vacancy mediated CuyCo3–yFe1Ox mixed oxide as highly active and stable toluene oxidation catalyst by multiple phase interfaces formation and metal doping effect. Applied Catalysis B: Environmental, 2020, 269: 118827
https://doi.org/10.1016/j.apcatb.2020.118827
87 Q Xie , M Wang , Y Xu , X Li , X Zhou , L Hong , L Jiang , W Lin . S vacancy modulated ZnxCd1–xS/CoP quantum dots for efficient H2 evolution from water splitting under visible light. Journal of Energy Chemistry, 2021, 61: 210–218
https://doi.org/10.1016/j.jechem.2021.03.019
88 R Zhang , X Ning , Z Wang , H Zhao , Y He , Z Han , P Du , X Lu . Significantly promoting the photogenerated charge separation by introducing an oxygen vacancy regulation strategy on the FeNiOOH co-catalyst. Small, 2022, 18(20): 2107938
https://doi.org/10.1002/smll.202107938
89 Y Chang , H Huang , T Yang , L Wang , H Zhu , C Zhong . Simultaneous introduction of oxygen vacancies and hierarchical pores into titanium-based metal-organic framework for enhanced photocatalytic performance. Journal of Colloid and Interface Science, 2021, 599: 785–794
https://doi.org/10.1016/j.jcis.2021.04.134
90 W Gao , S Li , H He , X Li , Z Cheng , Y Yang , J Wang , Q Shen , X Wang , Y Xiong . et al.. Vacancy-defect modulated pathway of photoreduction of CO2 on single atomically thin AgInP2S6 sheets into olefiant gas. Nature Communications, 2021, 12(1): 4747
https://doi.org/10.1038/s41467-021-25068-7
91 L Yi , L Chen , C Lu , Y Ni , Z Xu . Effects of oxygen defects on structure and properties of Sm0.5Sr0.5CoO3–δ annealed in different atmospheres. Journal of Rare Earths, 2013, 31(12): 1183–1190
https://doi.org/10.1016/S1002-0721(12)60424-4
92 K Wang , Y Chang , L Lv , Y Long . Effect of annealing temperature on oxygen vacancy concentrations of nanocrystalline CeO2 film. Applied Surface Science, 2015, 351: 164–168
https://doi.org/10.1016/j.apsusc.2015.05.122
93 Q Li , X Zhu , J Yang , Q Yu , X Zhu , J Chu , Y Du , C Wang , Y Hua , H Li . et al.. Plasma treated Bi2WO6 ultrathin nanosheets with oxygen vacancies for improved photocatalytic CO2 reduction. Inorganic Chemistry Frontiers, 2020, 7(3): 597–602
https://doi.org/10.1039/C9QI01370A
94 X Li , J Zhang , F Zhou , H Zhang , J Bai , Y Wang , H Wang . Preparation of N-vacancy-doped g-C3N4 with outstanding photocatalytic H2O2 production ability by dielectric barrier discharge plasma treatment. Chinese Journal of Catalysis, 2018, 39(6): 1090–1098
https://doi.org/10.1016/S1872-2067(18)63046-3
95 L Wu , Y Li , Z Fu , B Su . Hierarchically structured porous materials: synthesis strategies and applications in energy storage. National Science Review, 2020, 7(11): 1667–1701
https://doi.org/10.1093/nsr/nwaa183
96 H Huang , J Li , K Wang , T Han , M Tong , L Li , Y Xie , Q Yang , D Liu , C Zhong . An in situ self-assembly template strategy for the preparation of hierarchical-pore metal-organic frameworks. Nature Communications, 2015, 6(1): 8847
https://doi.org/10.1038/ncomms9847
97 A Kirchon , J Li , F Xia , G S Day , B Becker , W Chen , H Sue , Y Fang , H Zhou . Modulation versus templating: fine-tuning of hierarchally porous PCN-250 using fatty acids to engineer guest adsorption. Angewandte Chemie International Edition, 2019, 58(36): 12425–12430
https://doi.org/10.1002/anie.201905006
98 M Hu , Y Ju , K Liang , T Suma , J Cui , F Caruso . Void engineering in metal-organic frameworks via synergistic etching and surface functionalization. Advanced Functional Materials, 2016, 26(32): 5827–5834
https://doi.org/10.1002/adfm.201601193
99 X Liang , N Fu , S Yao , Z Li , Y Li . The progress and outlook of metal single-atom-site catalysis. Journal of the American Chemical Society, 2022, 144(40): 18155–18174
https://doi.org/10.1021/jacs.1c12642
100 Y Pan , C Zhang , Z Liu , C Chen , Y Li . Structural regulation with atomic-level precision: from single-atomic site to diatomic and atomic interface catalysis. Matter, 2020, 2(1): 78–110
https://doi.org/10.1016/j.matt.2019.11.014
101 X Rong , H Wang , X Lu , R Si , T Lu . Controlled synthesis of a vacancy-defect single-atom catalyst for boosting CO2 electroreduction. Angewandte Chemie, 2020, 132(5): 1977–1981
https://doi.org/10.1002/ange.201912458
102 S Ji , Y Chen , X Wang , Z Zhang , D Wang , Y Li . Chemical synthesis of single atomic site catalysts. Chemical Reviews, 2020, 120(21): 11900–11955
https://doi.org/10.1021/acs.chemrev.9b00818
103 L Yuan , T Tang , J Hu , L Wan . Confinement strategies for precise synthesis of efficient electrocatalysts from the macroscopic to the atomic level. Accounts of Materials Research, 2021, 2(10): 907–919
https://doi.org/10.1021/accountsmr.1c00135
104 Y Chen , S Ji , C Chen , Q Peng , D Wang , Y Li . Single-atom catalysts: synthetic strategies and electrochemical applications. Joule, 2018, 2(7): 1242–1264
https://doi.org/10.1016/j.joule.2018.06.019
105 S Liang , L Zou , L Zheng , L Li , X Wang , L Song , J Xu . Highly stable Co single atom confined in hierarchical carbon molecular sieve as efficient electrocatalysts in metal-air batteries. Advanced Energy Materials, 2022, 12(11): 2103097
https://doi.org/10.1002/aenm.202103097
106 X Cheng , J Wang , K Zhao , Y Bi . Spatially confined iron single-atom and potassium ion in carbon nitride toward efficient CO2 reduction. Applied Catalysis B: Environmental, 2022, 316: 121643
https://doi.org/10.1016/j.apcatb.2022.121643
107 Q Mo , L Zhang , S Li , H Song , Y Fan , C Su . Engineering single-atom sites into pore-confined nanospaces of porphyrinic metal-organic frameworks for the highly efficient photocatalytic hydrogen evolution reaction. Journal of the American Chemical Society, 2022, 144(49): 22747–22758
https://doi.org/10.1021/jacs.2c10801
108 Y Wang , D Wang , Y Li . Rational design of single-atom site electrocatalysts: from theoretical understandings to practical applications. Advanced Materials, 2021, 33(34): 2008151
https://doi.org/10.1002/adma.202008151
109 J Wan , W Chen , C Jia , L Zheng , J Dong , X Zheng , Y Wang , W Yan , C Chen , Q Peng . et al.. Defect effects on TiO2 nanosheets: stabilizing single atomic site Au and promoting catalytic properties. Advanced Materials, 2018, 30(11): 1705369
https://doi.org/10.1002/adma.201705369
110 J Jin , X Han , Y Fang , Z Zhang , Y Li , T Zhang , A Han , J Liu . Microenvironment engineering of Ru single-atom catalysts by regulating the cation vacancies in NiFe-layered double hydroxides. Advanced Functional Materials, 2022, 32(8): 2109218
https://doi.org/10.1002/adfm.202109218
111 Z Chen , X Li , J Zhao , S Zhang , J Wang , H Zhang , J Zhang , Q Dong , W Zhang , W Hu . et al.. Stabilizing Pt single atoms through Pt-Se electron bridges on vacancy-enriched nickel selenide for efficient electrocatalytic hydrogen evolution. Angewandte Chemie International Edition, 2023, 62(39): e202308686
https://doi.org/10.1002/anie.202308686
112 S Hejazi , H Mehdi-pour , C O Otieno , J Müller , S Pour-Ali , M Shahsanaei , S S Tafreshi , B Butz , M S Killian , S Mohajernia . Room-temperature defect-engineered titania: an efficient platform for Pt single atom decoration for photocatalytic H2 evolution. International Journal of Hydrogen Energy, 2024, 51: 222–233
https://doi.org/10.1016/j.ijhydene.2023.08.126
113 L Geng , Q Zhang , X Wang , H Han , Y Zhang , C Li , Z Li , D Zhang , X Zhang , A Abdukayum . et al.. Electronic modulation induced by oxygen vacancy creating in copper oxides toward accelerated hydrogenation kinetics of nitroaromatics. Applied Catalysis B: Environmental, 2024, 343: 123575
https://doi.org/10.1016/j.apcatb.2023.123575
114 H Huang , A Cho , S Kim , H Jun , A Lee , J W Han , J Lee . Structural design of amorphous CoMoPx with abundant active sites and synergistic catalysis effect for effective water splitting. Advanced Functional Materials, 2020, 30(43): 2003889
https://doi.org/10.1002/adfm.202003889
115 W Liu , C Luo , S Zhang , B Zhang , J Ma , X Wang , W Liu , Z Li , Q Yang , W Lv . Cobalt-doping of molybdenum disulfide for enhanced catalytic polysulfide conversion in lithium-sulfur batteries. ACS Nano, 2021, 15(4): 7491–7499
https://doi.org/10.1021/acsnano.1c00896
116 X Zhong , W Yi , Y Qu , L Zhang , H Bai , Y Zhu , J Wan , S Chen , M Yang , L Huang . et al.. Co single-atom anchored on Co3O4 and nitrogen-doped active carbon toward bifunctional catalyst for zinc-air batteries. Applied Catalysis B: Environmental, 2020, 260: 118188
https://doi.org/10.1016/j.apcatb.2019.118188
117 H Yang , X Liu , M Hao , Y Xie , X Wang , H Tian , G I N Waterhouse , P E Kruger , S G Telfer , S Ma . Functionalized iron-nitrogen-carbon electrocatalyst provides a reversible electron transfer platform for efficient uranium extraction from seawater. Advanced Materials, 2021, 33(51): 2106621
https://doi.org/10.1002/adma.202106621
118 H Yang , Y Liu , X Liu , X Wang , H Tian , G I N Waterhouse , P E Kruger , S G Telfer , S Ma . Large-scale synthesis of N-doped carbon capsules supporting atomically dispersed iron for efficient oxygen reduction reaction electrocatalysis. eScience, 2022, 2(2): 227–234
119 X Liu , Y Xie , M Hao , Z Chen , H Yang , G I N Waterhouse , S Ma , X Wang . Highly efficient electrocatalytic uranium extraction from seawater over an amidoxime-functionalized In-N-C catalyst. Advanced Science (Weinheim, Baden-Wurttemberg, Germany), 2022, 9(23): 2201735
https://doi.org/10.1002/advs.202201735
120 X Liu , Y Xie , Y Li , M Hao , Z Chen , H Yang , G I N Waterhouse , S Ma , X Wang . Functional carbon capsules supporting ruthenium nanoclusters for efficient electrocatalytic 99TcO4-/ReO4- removal from acidic and alkaline nuclear wastes. Advanced Science, 2023, 10(30): 2303536
https://doi.org/10.1002/advs.202303536
121 W Gao , M Yang , J Chi , X Zhang , J Xie , B Guo , L Wang , Y Chai , B Dong . In situ construction of surface defects of carbon-doped ternary cobalt-nickel-iron phosphide nanocubes for efficient overall water splitting. Science China Materials, 2019, 62: 1285–1296
https://doi.org/10.1007/s40843-019-9434-7
122 G Zhao , G M Busser , C Froese , B Hu , S A Bonke , A Schnegg , Y Ai , D Wei , X Wang , B Peng . et al.. Anaerobic alcohol conversion to carbonyl compounds over nanoscaled Rh-doped SrTiO3 under visible light. Journal of Physical Chemistry Letters, 2019, 10(9): 2075–2080
https://doi.org/10.1021/acs.jpclett.9b00621
123 Y Hu , G Zhao , Q Pan , H Wang , Z Shen , B Peng , G W Busser , X Wang , M Muhler . Highly selective anaerobic oxidation of alcohols over Fe‐doped SrTiO3 under visible light. ChemCatChem, 2019, 11(20): 5139–5144
https://doi.org/10.1002/cctc.201901451
124 B Li , J Hong , Y Ai , Y Hu , Z Shen , S Li , Y Zou , S Zhang , X Wang , G Zhao . et al.. Visible-near-infrared-light-driven selective oxidation of alcohols over nanostructured Cu doped SrTiO3 in water under mild condition. Journal of Catalysis, 2021, 399: 142–149
https://doi.org/10.1016/j.jcat.2021.05.008
125 Z Shen , Y Hu , Q Pan , C Huang , B Zhu , W Xia , H Wang , J Yue , M Muhler , G Zhao . et al.. Oxygen vacancies-enriched Ta-doped Bi2WO6 with Pt as cocatalyst for boosting the dehydrogenation of benzyl alcohol in water. Applied Surface Science, 2022, 571: 151370
https://doi.org/10.1016/j.apsusc.2021.151370
126 Y Zou , Y Hu , A Uhrich , Z Shen , B Peng , Z Ji , M Muhler , G Zhao , X Wang , X Xu . Steering accessible oxygen vacancies for alcohol oxidation over defective Nb2O5 under visible light illumination. Applied Catalysis B: Environmental, 2021, 298: 120584
https://doi.org/10.1016/j.apcatb.2021.120584
127 S Zhang , Y Liu , P Gu , R Ma , T Wen , G Zhao , L Li , Y Ai , C Hu , X Wang . Enhanced photodegradation of toxic organic pollutants using dual-oxygen-doped porous g-C3N4: mechanism exploration from both experimental and DFT studies. Applied Catalysis B: Environmental, 2019, 248: 1–10
https://doi.org/10.1016/j.apcatb.2019.02.008
128 S Zhang , Y Liu , R Ma , D Jia , T Wen , Y Ai , G Zhao , F Fang , B Hu , X Wang . Molybdenum(VI)-oxo clusters incorporation activates g-C3N4 with simultaneously regulating charge transfer and reaction centers for boosting photocatalytic performance. Advanced Functional Materials, 2022, 32(38): 2204175
https://doi.org/10.1002/adfm.202204175
129 C Li , Y Guo , D Tang , Y Guo , G Wang , H Jiang , J Li . Optimizing electron structure of Zn-doped AgFeO2 with abundant oxygen vacancies to boost photocatalytic activity for Cr(VI) reduction and organic pollutants decomposition: DFT insights and experimental. Chemical Engineering Journal, 2021, 411: 128515
https://doi.org/10.1016/j.cej.2021.128515
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed