Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

邮发代号 80-969

2019 Impact Factor: 3.552

Frontiers of Chemical Science and Engineering  2024, Vol. 18 Issue (6): 69   https://doi.org/10.1007/s11705-024-2428-y
  本期目录
Zinc(II) metal-organic framework eluting titanium implant as propulsive agent to boost the endothelium regeneration
Wen Liu1, Xiaoyu Wang1,2, Ying Li1, Shihai Xia3, Wencheng Zhang4, Yakai Feng1,5,6()
1. School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
2. College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
3. Department of Hepatopancreatobiliary and Splenic Medicine, Affiliated Hospital, Logistics University of People’s Armed Police Force, Tianjin 300162, China
4. Department of Physiology and Pathophysiology, Logistics University of Chinese People’s Armed Police Force, Tianjin 300309, China
5. Frontiers Science Center for Synthetic Biology, Tianjin University, Tianjin 300072, China
6. Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
 全文: PDF(1049 KB)   HTML
Abstract

The advent of antiproliferative drug-eluting vascular stents can dramatically reduce in-stent restenosis via inhibiting the hyperproliferation of vascular smooth muscle cells. However, the antiproliferative drugs also restrain the repair of the injured endothelial layer, which in turn leads to the very later in-stent restenosis. Evidence points that competent endothelium plays a critical role in guaranteeing the long-term patency via maintaining vascular homeostasis. Boosting the regeneration of endothelium on the implanted vascular stents could be rendered as a promising strategy to reduce stent implantation complications. In this regard, bioactive zinc(II) metal-organic framework modified with endothelial cell-targeting Arg-Glu-Asp-Val peptide was embedded in poly(lactide-co-caprolactone) to serve as a functional coating on the surface of titanium substrate, which can promote the proliferation and migration of endothelial cells. The in vitro cell experiments revealed that the zinc(II) metal-organic framework embedded in the polymer coating was able to modulate the behaviors of endothelial cells owing to the bioactive effects of zinc ion and peptide. Our results confirmed that zinc(II) metal-organic framework eluting coating represented a new possibility for promoting the repair of the damaged endothelium with potential clinical implications in vascular-related biomaterials and tissue engineering applications.

Key wordsZinc(II) metal-organic framework    vascular stent    REDV peptide    endothelium regeneration    coating
收稿日期: 2023-12-30      出版日期: 2024-05-27
Corresponding Author(s): Yakai Feng   
 引用本文:   
. [J]. Frontiers of Chemical Science and Engineering, 2024, 18(6): 69.
Wen Liu, Xiaoyu Wang, Ying Li, Shihai Xia, Wencheng Zhang, Yakai Feng. Zinc(II) metal-organic framework eluting titanium implant as propulsive agent to boost the endothelium regeneration. Front. Chem. Sci. Eng., 2024, 18(6): 69.
 链接本文:  
https://academic.hep.com.cn/fcse/CN/10.1007/s11705-024-2428-y
https://academic.hep.com.cn/fcse/CN/Y2024/V18/I6/69
  
Fig.1  
Fig.2  
Fig.3  
Fig.4  
Fig.5  
Fig.6  
Fig.7  
1 W Frąk , A Wojtasińska , W Lisińska , E Młynarska , B Franczyk , J Rysz . Pathophysiology of cardiovascular diseases: new insights into molecular mechanisms of atherosclerosis, arterial hypertension, and coronary artery disease. Biomedicines, 2022, 10(8): 1938
https://doi.org/10.3390/biomedicines10081938
2 I Cockerill , C W See , M L Young , Y Wang , D Zhu . Designing better cardiovascular stent materials: a learning curve. Advanced Functional Materials, 2021, 31(1): 2005361
https://doi.org/10.1002/adfm.202005361
3 I Andreou , P H Stone , I Ikonomidis , D Alexopoulos , M Sabaté . Recurrent atherosclerosis complications as a mechanism for stent failure. Hellenic Journal of Cardiology, 2020, 61(1): 9–14
https://doi.org/10.1016/j.hjc.2019.04.007
4 Y Zhu , K Liu , M L Chen , Y Liu , A Gao , C Hu , H Li , H G Zhu , H Y Han , J W Zhang . et al.. Triglyceride-glucose index is associated with in-stent restenosis in patients with acute coronary syndrome after percutaneous coronary intervention with drug-eluting stents. Cardiovascular Diabetology, 2021, 20(1): 137
https://doi.org/10.1186/s12933-021-01332-4
5 J Clare , J Ganly , C A Bursill , H Sumer , P Kingshott , J B de Haan . The mechanisms of restenosis and relevance to next generation stent design. Biomolecules, 2022, 12(3): 430
https://doi.org/10.3390/biom12030430
6 W Liu , X Y Wang , Y K Feng . Restoring endothelial function: shedding light on cardiovascular stent development. Biomaterials Science, 2023, 11(12): 4132–4150
https://doi.org/10.1039/D3BM00390F
7 J Y Zhou , M Y Wang , T T Wei , L C Bai , J Zhao , K Wang , Y K Feng . Endothelial cell-mediated gene delivery for in situ accelerated endothelialization of a vascular graft. ACS Applied Materials & Interfaces, 2021, 13(14): 16097–16105
https://doi.org/10.1021/acsami.1c01869
8 Y F Wu , L L Song , M Shafiq , H Ijima , S H Kim , R Wei , D L Kong , X M Mo , K Wang . Peptides-tethered vascular grafts enable blood vessel regeneration via endogenous cell recruitment and neovascularization. Composites. Part B, Engineering, 2023, 252: 110504
https://doi.org/10.1016/j.compositesb.2023.110504
9 S Q Hu , Z H Li , D L Shen , D S Zhu , K Huang , T Su , P U Dinh , J Cores , K Cheng . Exosome-eluting stents for vascular healing after ischaemic injury. Nature Biomedical Engineering, 2021, 5(10): 1174–1188
https://doi.org/10.1038/s41551-021-00705-0
10 P Shah , S Chandra . Review on emergence of nanomaterial coatings in bio-engineered cardiovascular stents. Journal of Drug Delivery Science and Technology, 2022, 70: 103224
https://doi.org/10.1016/j.jddst.2022.103224
11 K S Park , S N Kang , D H Kim , H B Kim , K S Im , W Park , Y J Hong , D K Han , Y K Joung . Late endothelial progenitor cell-capture stents with CD146 antibody and nanostructure reduce in-stent restenosis and thrombosis. Acta Biomaterialia, 2020, 111: 91–101
https://doi.org/10.1016/j.actbio.2020.05.011
12 B Zhang , Y M Qin , Y B Wang . A nitric oxide-eluting and REDV peptide-conjugated coating promotes vascular healing. Biomaterials, 2022, 284: 121478
https://doi.org/10.1016/j.biomaterials.2022.121478
13 B Gao , X Y Wang , M Y Wang , K X You , G S Ahmed Suleiman , X K Ren , J T Guo , S H Xia , W C Zhang , Y K Feng . Superlow dosage of intrinsically bioactive zinc metal-organic frameworks to modulate endothelial cell morphogenesis and significantly rescue ischemic disease. ACS Nano, 2022, 16(1): 1395–1408
https://doi.org/10.1021/acsnano.1c09427
14 M Mohanta , A Thirugnanam . Commercial pure titanium—a potential candidate for cardiovascular stent. Materialwissenschaft und Werkstofftechnik, 2022, 53(12): 1518–1543 (in German)
https://doi.org/10.1002/mawe.202100306
15 X Y Zhang , Y B Wang , J Liu , J Shi , D Mao , A C Midgley , X G Leng , D L Kong , Z H Wang , B Liu . et al.. A metal-organic-framework incorporated vascular graft for sustained nitric oxide generation and long-term vascular patency. Chemical Engineering Journal, 2021, 421: 129577
https://doi.org/10.1016/j.cej.2021.129577
16 X Y Wang , B Gao , S H Xia , W C Zhang , X M Chen , Z Q Li , X Y Meng , Y K Feng . Surface-functionalized zinc MOFs delivering zinc ion and hydrogen sulfide as tailored anti-hindlimb ischemic nanomedicine. Applied Materials Today, 2023, 32: 101843
https://doi.org/10.1016/j.apmt.2023.101843
17 X Ding , W Chin , C N Lee , J L Hedrick , Y Y Yang . Peptide‐functionalized polyurethane coatings prepared via grafting-to strategy to selectively promote endothelialization. Advanced Healthcare Materials, 2018, 7(5): 1700944
https://doi.org/10.1002/adhm.201700944
18 S H Liu , J C Zhi , Y Chen , Z Y Song , L Wang , C Z Tang , S J Li , X P Lai , N G Xu , T Liu . Biomimetic modification on the microporous surface of cardiovascular materials to accelerate endothelialization and regulate intimal regeneration. Biomaterials Advances, 2022, 135: 112666
https://doi.org/10.1016/j.msec.2022.112666
19 M Y Wang , Y Wan , W Liu , B Gao , X Y Wang , W Z Li , S H Xia , W C Zhang , K Wang , Y K Feng . Covalent grafting of zwitterion polymer and REDV peptide onto NiTi alloy surface for anticoagulation and proendothelialization. Polymers for Advanced Technologies, 2023, 34(8): 2663–2673
https://doi.org/10.1002/pat.6080
20 S H Im , D H Im , S J Park , Y Jung , D H Kim , S H Kim . Current status and future direction of metallic and polymeric materials for advanced vascular stents. Progress in Materials Science, 2022, 126: 100922
https://doi.org/10.1016/j.pmatsci.2022.100922
21 G Godwin , S J Jaisingh , M S Priyan , S C E Singh . Wear and corrosion behaviour of Ti-based coating on biomedical implants. Surface Engineering, 2021, 37(1): 32–41
https://doi.org/10.1080/02670844.2020.1730058
22 W J He , L Ye , P Coates , F Caton-Rose , X W Zhao . Construction of fully biodegradable poly(L-lactic acid)/poly(D-lactic acid)-poly(lactide-co-caprolactone) block polymer films: viscoelasticity, processability and flexibility. International Journal of Biological Macromolecules, 2023, 236: 123980
https://doi.org/10.1016/j.ijbiomac.2023.123980
23 Y H Du , L Y Xing , P J Hou , J Qi , X L Liu , Y Y Zhang , D L Chen , Q Li , C D Xiong , T F Huang . et al.. Dual stimulus response mechanical properties tunable biodegradable and biocompatible PLCL/PPDO based shape memory composites. Colloids and Surfaces. A, Physicochemical and Engineering Aspects, 2022, 648: 129244
https://doi.org/10.1016/j.colsurfa.2022.129244
24 X Y Wang , B Gao , M Y Wang , Q L Wang , S H Xia , W C Zhang , X Y Meng , Y K Feng . CO delivery nanosystem based on regenerative bioactive zinc MOFs highlights intercellular crosstalk for enhanced vascular remodeling in CLI therapy. Chemical Engineering Journal, 2023, 452: 139670
https://doi.org/10.1016/j.cej.2022.139670
25 S Jana . Endothelialization of cardiovascular devices. Acta Biomaterialia, 2019, 99: 53–71
https://doi.org/10.1016/j.actbio.2019.08.042
26 Y G Bi , Z T Lin , S T Deng . Fabrication and characterization of hydroxyapatite/sodium alginate/chitosan composite microspheres for drug delivery and bone tissue engineering. Materials Science and Engineering C, 2019, 100: 576–583
https://doi.org/10.1016/j.msec.2019.03.040
27 R Y Zhou , Y M Wu , K Chen , D T Zhang , Q Chen , D H Zhang , Y R She , W J Zhang , L Q Liu , Y Q Zhu . et al.. A polymeric strategy empowering vascular cell selectivity and potential application superior to extracellular matrix peptides. Advanced Materials, 2022, 34(42): 2200464
https://doi.org/10.1002/adma.202200464
28 Q Li , X F Hao , H X Wang , J T Guo , X K Ren , S H Xia , W C Zhang , Y K Feng . Multifunctional REDV-G-TAT-G-NLS-Cys peptide sequence conjugated gene carriers to enhance gene transfection efficiency in endothelial cells. Colloids and Surfaces. B, Biointerfaces, 2019, 184: 110510
https://doi.org/10.1016/j.colsurfb.2019.110510
29 C E Evans , M L Iruela-Arispe , Y Y Zhao . Mechanisms of endothelial regeneration and vascular repair and their application to regenerative medicine. American Journal of Pathology, 2021, 191(1): 52–65
https://doi.org/10.1016/j.ajpath.2020.10.001
30 S Yu , Y Gao , X Mei , T C Ren , S Liang , Z W Mao , C Y Gao . Preparation of an Arg-Glu-Asp-Val peptide density gradient on hyaluronic acid-coated poly(ε-caprolactone) film and its influence on the selective adhesion and directional migration of endothelial cells. ACS Applied Materials & Interfaces, 2016, 8(43): 29280–29288
https://doi.org/10.1021/acsami.6b09375
31 A J Ridley , M A Schwartz , K Burridge , R A Firtel , M H Ginsberg , G Borisy , J T Parsons , A R Horwitz . Cell migration: integrating signals from front to back. Science, 2003, 302(5651): 1704–1709
https://doi.org/10.1126/science.1092053
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed