Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

邮发代号 80-969

2019 Impact Factor: 3.552

Frontiers of Chemical Science and Engineering  2024, Vol. 18 Issue (7): 73   https://doi.org/10.1007/s11705-024-2430-4
  本期目录
Petroleum pitch derived hard carbon via NaCl-template as anode materials with high rate performance for sodium ion battery
Baoyu Wu1, Hao Sun1, Xiaoxue Li1, Yinyi Gao1, Tianzeng Bao2, Hongbin Wu2, Kai Zhu1(), Dianxue Cao1()
1. Key Laboratory of Superlight Materials and Surface Technology of Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
2. Hunan Hongshan New Energy Technology Co., Ltd, Yiyang 413000, China
 全文: PDF(1412 KB)   HTML
Abstract

Sodium-ion batteries (SIBs) have garnered significant interest in energy storage due to their similar working mechanism to lithium ion batteries and abundant reserves of sodium resource. Exploring facile synthesis of a carbon-based anode materials with capable electrochemical performance is key to promoting the practical application of SIBs. In this work, a combination of petroleum pitch and recyclable sodium chloride is selected as the carbon source and template to obtain hard carbon (HC) anode for SIBs. Carbonization times and temperatures are optimized by assessing the sodium ion storage behavior of different HC materials. The optimized HC exhibits a remarkable capacity of over 430 mAh·g–1 after undergoing full activation through 500 cycles at a density of current of 0.1 A·g–1. Furthermore, it demonstrates an initial discharge capacity of 276 mAh·g–1 at a density of current of 0.5 A·g–1. Meanwhile, the optimized HC shows a good capacity retention (170 mAh·g–1 after 750 cycles) and a remarkable rate ability (166 mAh·g–1 at 2 A·g–1). The enhanced capacity is attributed to the suitable degree of graphitization and surface area, which improve the sodium ion transport and storage.

Key wordspetroleum pitch    hard carbon    sodium-ion batteries    high rate    recyclable template
收稿日期: 2023-12-01      出版日期: 2024-06-28
Corresponding Author(s): Kai Zhu,Dianxue Cao   
 引用本文:   
. [J]. Frontiers of Chemical Science and Engineering, 2024, 18(7): 73.
Baoyu Wu, Hao Sun, Xiaoxue Li, Yinyi Gao, Tianzeng Bao, Hongbin Wu, Kai Zhu, Dianxue Cao. Petroleum pitch derived hard carbon via NaCl-template as anode materials with high rate performance for sodium ion battery. Front. Chem. Sci. Eng., 2024, 18(7): 73.
 链接本文:  
https://academic.hep.com.cn/fcse/CN/10.1007/s11705-024-2430-4
https://academic.hep.com.cn/fcse/CN/Y2024/V18/I7/73
Fig.1  
Fig.2  
Fig.3  
Fig.4  
Fig.5  
Fig.6  
1 T Li , C J Chen , A H Brozena , J Y Zhu , L X Xu , C Driemeier , J Q Dai , O J Rojas , A Isogai . et al.. Developing fibrillated cellulose as a sustainable technological material. Nature, 2021, 590(7844): 47–56
https://doi.org/10.1038/s41586-020-03167-7
2 Z F Sun , J H Pan , W W Chen , H Y Chen , S H Zhou , X Y Wu , Y S Wang , K Kim , J Li , H D Liu . et al.. Electrochemical processes and reactions in rechargeable battery materials revealed via in situ transmission electron microscopy. Advanced Energy Materials, 2024, 14(2): 2303165
https://doi.org/10.1002/aenm.202303165
3 R N Fu , J H Pan , M Y Wang , H H Min , H H Dong , R Cai , Z F Sun , Y W Xiong , F H Cui , S Y Lei . et al.. In situ atomic-scale deciphering of multiple dynamic phase transformations and reversible sodium storage in ternary metal sulfide anode. ACS Nano, 2023, 17(13): 12483–12498
https://doi.org/10.1021/acsnano.3c02138
4 M Z Ma , S P Zhang , L F Wang , Y Yao , R W Shao , L Shen , L Yu , J Y Dai , Y Jiang , X L Cheng . et al.. Harnessing the volume expansion of MoS3 anode by structure engineering to achieve high performance beyond lithium-based rechargeable batteries. Advanced Materials, 2021, 33(45): 2106232
https://doi.org/10.1002/adma.202106232
5 M Wang , Q C Wang , X Y Ding , Y S Wang , Y H Xin , P Singh , F Wu , H C Gao . The prospect and challenges of sodium-ion batteries for low-temperature conditions. Interdisciplinary Materials, 2022, 1(3): 373–395
https://doi.org/10.1002/idm2.12040
6 Y Ma , R X Shang , Y H Liu , R Lake , M Ozkan , C S Ozkan . Enabling fast-charging capability for all-solid-state lithium-ion batteries. Journal of Power Sources, 2023, 559: 232647
https://doi.org/10.1016/j.jpowsour.2023.232647
7 P K Nayak , L T Yang , W Brehm , P Adelhelm . From lithium-ion to sodium-ion batteries: advantages, challenges, and surprises. Angewandte Chemie International Edition, 2018, 57(1): 102–120
https://doi.org/10.1002/anie.201703772
8 L P Zhang , X L Li , M R Yang , W H Chen . High-safety separators for lithium-ion batteries and sodium-ion batteries: advances and perspective. Energy Storage Materials, 2021, 41: 522–545
https://doi.org/10.1016/j.ensm.2021.06.033
9 K M Abraham. How comparable are sodium-ion batteries to lithium-ion counterparts? ACS Energy Letters, 2020, 5(11): 3544–3547
10 Z H Tian , Y Zhang , J X Zhu , Q Y Li , T X Liu , M Antonietti . A reanalysis of the diverse sodium species in carbon anodes for sodium ion batteries: a thermodynamic view. Advanced Energy Materials, 2021, 11(47): 2102489
https://doi.org/10.1002/aenm.202102489
11 H Yao , H Y Li , B Y Ke , S Y Chu , S H Guo , H S Zhou . Recent progress on honeycomb layered oxides as a durable cathode material for sodium-ion batteries. Small Methods, 2023, 7(6): 2201555
https://doi.org/10.1002/smtd.202201555
12 K Yadav , N Ray . Aluminene as a low-cost anode material for Li- and Na-ion batteries. ACS Applied Materials & Interfaces, 2023, 15(31): 37337–37343
https://doi.org/10.1021/acsami.3c05169
13 S Y Qiao , Q W Zhou , M Ma , H K Liu , S X Dou , S K Chong . Advanced anode materials for rechargeable sodium-ion batteries. ACS Nano, 2023, 17(12): 11220–11252
https://doi.org/10.1021/acsnano.3c02892
14 B Thangaraj , P R Solomon , J Hassan . Nanocarbon in sodium-ion batteries—a review. Part 1: Zero-dimensional carbon dots. ChemBioEng Reviews, 2023, 10(5): 628–646
https://doi.org/10.1002/cben.202200038
15 J X Ding , X Z Zhou , J Gao , Z Q Lei . Activating graphite with defects and oxygenic functional groups to boost sodium-ion storage. Nanoscale, 2023, 15(33): 13760–13769
https://doi.org/10.1039/D3NR03019A
16 C L Dai , G Q Sun , L Y Hu , Y K Xiao , Z P Zhang , L T Qu . Recent progress in graphene-based electrodes for flexible batteries. InfoMat, 2020, 2(3): 509–526
https://doi.org/10.1002/inf2.12039
17 R Li , B R Yang , A J Hu , B Zhou , M J Liu , L Yang , Z F Yan , Y N Fan , Y Pan , J H Chen , T Li , K Li , J Liu , J Long . Heteroatom screening and microcrystal regulation of coal-derived hard carbon promises high-performance sodium-ion batteries. Carbon, 2023, 215: 118489
https://doi.org/10.1016/j.carbon.2023.118489
18 H Y Wei , H K Cheng , N Yao , G Li , Z Q Du , R X Luo , Z Zheng . Invasive alien plant biomass-derived hard carbon anode for sodium-ion batteries. Chemosphere, 2023, 343: 140220
https://doi.org/10.1016/j.chemosphere.2023.140220
19 C W Tai , W Y Jao , L Tseng , P Wang , A P Tu , C C Hu . Lithium-ion storage mechanism in closed pore-rich hard carbon with ultrahigh extra plateau capacity. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2023, 11(36): 19669–19684
https://doi.org/10.1039/D3TA03855F
20 R F Liu , Y L Li , C L Wang , N Xiao , L He , H Y Guo , P Wan , Y Zhou , J S Qiu . Enhanced electrochemical performances of coal liquefaction residue derived hard carbon coated by graphene as anode materials for sodium-ion batteries. Fuel Processing Technology, 2018, 178: 35–40
https://doi.org/10.1016/j.fuproc.2018.04.033
21 B Saha , S Vedachalam , A K Paul , A K Dalai , S Saxena , W L Roberts , F L Dryer . Microwave-assisted solvent deasphalting of heavy fuel oil and process parameters optimization. Fuel, 2023, 351: 128818
https://doi.org/10.1016/j.fuel.2023.128818
22 S Saad , A S Zeraati , S Roy , Rahman Saadi M A Shahriar , J R Radović , A Rajeev , K A Miller , S Bhattacharyya , S R Larter , G Natale , U Sundararaj , P M Ajayan , M M Rahman , M G Kibria . Transformation of petroleum asphaltenes to carbon fibers. Carbon, 2022, 190: 92–103
https://doi.org/10.1016/j.carbon.2022.01.011
23 S Tazikeh , J Sayyad Amin , S Zendehboudi , M Dejam , I Chatzis . Bi-fractal and bi-Gaussian theories to evaluate impact of polythiophene-coated Fe3O4 nanoparticles on asphaltene precipitation and surface topography. Fuel, 2020, 272: 117535
https://doi.org/10.1016/j.fuel.2020.117535
24 M Kamkar , G Natale . A review on novel applications of asphaltenes: a valuable waste. Fuel, 2021, 285: 119272
https://doi.org/10.1016/j.fuel.2020.119272
25 A M Hung , E H Fini . Absorption spectroscopy to determine the extent and mechanisms of aging in bitumen and asphaltenes. Fuel, 2019, 242: 408–415
https://doi.org/10.1016/j.fuel.2019.01.085
26 J W Kim , D W Kim , S Y Lee , S J Park . A study on pre-oxidation of petroleum pitch-based activated carbons for electric double-layer capacitors. Molecules, 2022, 27(10): 3241
https://doi.org/10.3390/molecules27103241
27 A Scherschel , T Harrell , A Sushchenko , X D Li . Exploration of fibers produced from petroleum based-mesophase pitch and pet blends for carbon fiber production. Journal of Polymer Research, 2023, 30(9): 351
https://doi.org/10.1007/s10965-023-03731-5
28 W Ma , W L Li , S Ran , G F Yang , T M Wang . A superior microwave absorption material of porous carbon nanosheet/Fe3O4 composites from petroleum asphalt as carbon source. Journal of Materials Science, 2023, 58(33): 13279–13294
https://doi.org/10.1007/s10853-023-08873-x
29 W Yang , B J Deng , L Q Hou , T H Wang , J B Tian , S Wang , R Li , F Yang , Y F Li . Sulfur-fixation strategy toward controllable synthesis of molybdenum-based/carbon nanosheets derived from petroleum asphalt. Chemical Engineering Journal, 2020, 380: 122552
https://doi.org/10.1016/j.cej.2019.122552
30 H Ning , X S Wang , W H Wang , Q H Mao , Z X Yang , Q S Zhao , Y Song , M B Wu . Cubic Cu2O on nitrogen-doped carbon shells for electrocatalytic CO2 reduction to C2H4. Carbon, 2019, 146: 218–223
https://doi.org/10.1016/j.carbon.2019.02.010
31 Y X Lu , C L Zhao , X G Qi , Y R Qi , H Li , X J Huang , L Q Chen , Y S Hu . Pre-oxidation-tuned microstructures of carbon anodes derived from pitch for enhancing Na storage performance. Advanced Energy Materials, 2018, 8(27): 1800108
https://doi.org/10.1002/aenm.201800108
32 B Cao , H Liu , B Xu , Y F Lei , X H Chen , H H Song . Mesoporous soft carbon as an anode material for sodium ion batteries with superior rate and cycling performance. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2016, 4(17): 6472–6478
https://doi.org/10.1039/C6TA00950F
33 A Kamiyama , K Kubota , D Igarashi , Y Youn , Y Tateyama , H Ando , K Gotoh , S Komaba . MgO-template synthesis of extremely high capacity hard carbon for Na-ion battery. Angewandte Chemie International Edition, 2021, 60(10): 5114–5120
https://doi.org/10.1002/anie.202013951
34 Y Q Li , Y X Lu , Q S Meng , A C S Jensen , Q Q Zhang , Q H Zhang , Y X Tong , Y Qi , L Gu , M M Titirici . et al.. Regulating pore structure of hierarchical porous waste cork-derived hard carbon anode for enhanced Na storage performance. Advanced Energy Materials, 2019, 9(48): 1902852
https://doi.org/10.1002/aenm.201902852
35 B Üstün , H Aydın , S N Koç , A Uluslu , Ü Kurtan . Electrospun polyethylenimine (PEI)-derived nitrogen enriched carbon nanofiber for supercapacitors with artificial neural network modeling. Journal of Energy Storage, 2023, 73: 108970
https://doi.org/10.1016/j.est.2023.108970
36 J F Wang , Y F Yuan , Z C Lin , J J Lin , S B Li , Y Z Huang , S Y Guo , W W Yan . Boosting lithium storage performance of Co-Sn double hydroxide nanocubes in-situ grown in mesoporous hollow carbon nanospheres. Electrochimica Acta, 2023, 465: 142971
https://doi.org/10.1016/j.electacta.2023.142971
37 Z Tang , R Zhang , H Y Wang , S Y Zhou , Z Y Pan , Y C Huang , D Sun , Y G Tang , X B Ji , K Amine , M Shao . Revealing the closed pore formation of waste wood-derived hard carbon for advanced sodium-ion battery. Nature Communications, 2023, 14(1): 6024
https://doi.org/10.1038/s41467-023-39637-5
38 B J Long , R Zhao , J Zhang , L Wang , X Q Chen , Y X Du , G M Yuan , Z J Dong , X K Li . Stabilization residual oxygen reduces sulfur activity in hard carbon anode for sodium-ion batteries. Journal of Materials Science, 2022, 57(37): 17711–17721
https://doi.org/10.1007/s10853-022-07764-x
39 W B Li , X N Guo , K M Song , J C Chen , J Y Zhang , G C Tang , C T Liu , W H Chen , C Y Shen . Binder-induced ultrathin SEI for defect-passivated hard carbon enables highly reversible sodium-ion storage. Advanced Energy Materials, 2023, 13(22): 2300648
https://doi.org/10.1002/aenm.202300648
40 L A Ma , A Buckel , A Hofmann , L Nyholm , R Younesi . Fundamental understanding and quantification of capacity losses involving the negative electrode in sodium-ion batteries. Advancement of Science, 2023, 20: 2306771
41 C Glatthaar , M Wang , L Q Wagner , F Breckwoldt , Z Y Guo , K T Zheng , M Kriechbaum , H Amenitsch , M M Titirici , B M Smarsly . Lignin-derived mesoporous carbon for sodium-ion batteries: block copolymer soft templating and carbon microstructure analysis. Chemistry of Materials, 2023, 35(24): 10416–10433
https://doi.org/10.1021/acs.chemmater.3c01520
42 H Chen , N Sun , Y X Wang , R A Soomro , B Xu . One stone two birds: pitch assisted microcrystalline regulation and defect engineering in coal-based carbon anodes for sodium-ion batteries. Energy Storage Materials, 2023, 56: 532–541
https://doi.org/10.1016/j.ensm.2023.01.042
43 F Xie , Z Xu , A C S Jensen , H Au , Y X Lu , V Araullo-Peters , A J Drew , Y S Hu , M M Titirici . Hard-soft carbon composite anodes with synergistic sodium storage performance. Advanced Functional Materials, 2019, 29(24): 1901072
https://doi.org/10.1002/adfm.201901072
44 M H Wang , S Ji , H Wang , V Linkov , X Y Wang , R F Wang . Electrocatalytic performance of Ni-promoted Co nanoclusters supported by N-doped carbon foams for rechargeable Zn-air batteries. Journal of Power Sources, 2023, 571: 233069
https://doi.org/10.1016/j.jpowsour.2023.233069
45 P Zhang , Y R Shu , Y Wang , J H Ye , L Yang . Simple and efficient synthesis methods for fabricating anode materials of sodium-ion batteries and their sodium-ion storage mechanism study. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2023, 11(6): 2920–2932
https://doi.org/10.1039/D2TA09051A
46 Z H Zhang , G X Huang , X X Qu , Y H Liu , Z Y Liu , J B Jia , B L Xing , C X Zhang . An effective strategy to prepare non-graphitic carbon with increased pseudo-graphitic content for sodium-ion battery anode with enhanced plateau capacity. Chemical Engineering Journal, 2023, 477: 147188
https://doi.org/10.1016/j.cej.2023.147188
47 A Siebert , X W Dou , R Garcia-Diez , D Buchholz , R Félix , E Handick , R G Wilks , S Passerini , M Bär . Solid electrolyte interphase formation on anatase TiO2 nanoparticle-based electrodes for sodium-ion batteries. ACS Applied Energy Materials, 2024, 7(1): 125–132
https://doi.org/10.1021/acsaem.3c02304
48 Y Z Liang , N Song , M Z Zhang , X G An , K P Song , W H Chen , J K Feng , S L Xiong , B J Xi . Robust interfacial chemistry induced by B-doping enables rapid, stable sodium storage. Advanced Energy Materials, 2023, 13(47): 2302825
https://doi.org/10.1002/aenm.202302825
49 B Han , Y C Zou , Z Zhang , X M Yang , X B Shi , H Meng , H Wang , K Xu , Y H Deng , M Gu . Probing the Na metal solid electrolyte interphase via cryo-transmission electron microscopy. Nature Communications, 2021, 12(1): 3066
https://doi.org/10.1038/s41467-021-23368-6
[1] FCE-23109-OF-WB_suppl_1 Download
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed