Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

邮发代号 80-969

2019 Impact Factor: 3.552

Frontiers of Chemical Science and Engineering  2024, Vol. 18 Issue (7): 82   https://doi.org/10.1007/s11705-024-2437-x
  本期目录
Methane cracking in molten tin for hydrogen and carbon production—a comparison with homogeneous gas phase process
Emmanuel Busillo1, Benedetta de Caprariis1(), Maria Paola Bracciale1, Vittoria Cosentino2, Martina Damizia1, Gaetano Iaquaniello2, Emma Palo2, Paolo De Filippis1
1. Chemical Engineering Department, Sapienza University of Rome, Rome 00184, Italy
2. NextChem S.p.A., Rome 00156, Italy
 全文: PDF(8283 KB)   HTML
Abstract

Methane cracking is considered a bridge technology between gray and green hydrogen production processes. In this work an experimental study of methane cracking in molten tin is performed. The tests were conducted in a quartz reactor (i.d. = 1.5 cm, L = 20 cm) with capillary injection, varying temperature (950–1070 °C), inlet methane flow rate (30–60 mL·min–1) and tin height (0–20 cm). The influence of the residence time in the tin and in the headspace on methane conversion and on carbon morphology was investigated. The conversions obtained in tin and in the empty reactor were measured and compared with results of detailed kinetic simulations (CRECK). Furthermore, an expression of a global kinetic constant for methane conversion in tin was also derived. The highest conversion (65% at Q0 = 30 mL·min–1 and t = 1070 °C) is obtained for homogeneous gas phase reaction due to the long residence time (70 s), the presence of tin leads to a sharp decrease of residence time (1 s), obtaining a conversion of 35% at 1070 °C, thus meaning that tin owns a role in the reaction. Carbon characterization (scanning electron microscopy, Raman) reported a change in carbon toward sheet-like structures and an increase of the carbon structural order in the presence of molten tin media.

Key wordsmethane cracking    molten media    H2 production    carbon morphology
收稿日期: 2024-01-10      出版日期: 2024-04-22
Corresponding Author(s): Benedetta de Caprariis   
 引用本文:   
. [J]. Frontiers of Chemical Science and Engineering, 2024, 18(7): 82.
Emmanuel Busillo, Benedetta de Caprariis, Maria Paola Bracciale, Vittoria Cosentino, Martina Damizia, Gaetano Iaquaniello, Emma Palo, Paolo De Filippis. Methane cracking in molten tin for hydrogen and carbon production—a comparison with homogeneous gas phase process. Front. Chem. Sci. Eng., 2024, 18(7): 82.
 链接本文:  
https://academic.hep.com.cn/fcse/CN/10.1007/s11705-024-2437-x
https://academic.hep.com.cn/fcse/CN/Y2024/V18/I7/82
Fig.1  
Fig.2  
Fig.3  
Fig.4  
Fig.5  
Molten mediaRef.Residence time/sH/cmT/°CXCH4/%k/s–1Eaa)/(kJ·mol–1)
Tin[23]0.831213006412.83301.6
0.4248
[42]1.0913.5120053
Our study1.120107025–300.29223.5
[21]3.2–4.911100030
[20]1.7–2.76–1090018
[39]10950–10503–120.06–0.28204.6
AlloysCu0.45Bi0.55 (in mol)[17]0.7151100601.33222
Ni0.27Bi0.73 (in mol)[17]0.71201065951.33208
Ni0.5Te0.5 (in mol)[25]0.57980100.02223
Ni0.27Te0.73 (in mol)[25]0.77980170.16193
Sn0.95Сu0.05 (in wt)[39]101050170.43207
Sn70Сu0.3 (in wt)[39]101050150.40250
Sn0.95Ni0.05 (in wt)[39]101050190.49235
Tab.1  
Fig.6  
Fig.7  
SampleC/HTin/%
Empty15.190
HTin = 7 cm17.967.9
HTin = 15 cm21.3519.5
HTin = 20 cm18.0030.7
Tab.2  
1 D D T Ferraren-De Cagalitan , M L S Abundo . A review of biohydrogen production technology for application towards hydrogen fuel cells. Renewable & Sustainable Energy Reviews, 2021, 151: 111413
2 R Soltani , M A Rosen , I Dincer . Assessment of CO2 capture options from various points in steam methane reforming for hydrogen production. International Journal of Hydrogen Energy, 2014, 39(35): 20266–20275
3 S R Patlolla , K Katsu , A Sharafian , K Wei , O E Herrera , W Mérida . A review of methane pyrolysis technologies for hydrogen production. Renewable & Sustainable Energy Reviews, 2023, 181: 113323
4 H Song , S Luo , H Huang , B Deng , J Ye . Solar-driven hydrogen production: recent advances, challenges, and future perspectives. ACS Energy Letters, 2022, 7(3): 1043–1065
5 M Damizia , M P Bracciale , F Anania , L Tai , P De Filippis , B de Caprariis . Efficient utilization of Al2O3 as structural promoter of Fe into 2 and 3 steps chemical looping hydrogen process: pure H2 production from ethanol. International Journal of Hydrogen Energy, 2023, 48(99): 39112–39123
6 V Arutyunov , V Savchenko , I Sedov , A Nikitin . Non-catalytic gas phase oxidation of hydrocarbons. Eurasian Chemico-Technological Journal, 2022, 24(1): 13
7 P De Filippis , M Scarsella , B de Caprariis , R Uccellari . Biomass gasification plant and syngas clean-up system. Energy Procedia, 2015, 75: 240–245
8 F Fabry , C Rehmet , V Rohani , L Fulcheri . Waste gasification by thermal plasma: a review. Waste and Biomass Valorization, 2013, 4(3): 421–439
9 Commission European. Directorate-General for Climate Action. Going climate-neutral by 2050—a strategic long-term vision for a prosperous, modern, competitive and climate-neutral EU economy. 2019. Available at the website of Publication Office of the European Union
10 L Weger , A Abánades , T Butler . Methane cracking as a bridge technology to the hydrogen economy. International Journal of Hydrogen Energy, 2017, 42(1): 720–731
11 M Serban , M A Lewis , C L Marshall , R D Doctor . Hydrogen production by direct contact pyrolysis of natural gas. Energy & Fuels, 2003, 17(3): 705–713
12 N Muradov , T Vezirolu . From hydrocarbon to hydrogen? carbon to hydrogen economy. International Journal of Hydrogen Energy, 2005, 30(3): 225–237
13 B de Caprariis , M Damizia , E Busillo , P De Filippis . Advances in molten media technologies for methane pyrolysis. Advances in Chemical Engineering, 2023, 61: 319–356
14 V S Arutyunov , L N Strekova . The interplay of catalytic and gas-phase stages at oxidative conversion of methane: a review. Journal of Molecular Catalysis A Chemical, 2017, 426: 326–342
15 R Horn , R Schlögl . Methane activation by heterogeneous catalysis. Catalysis Letters, 2015, 145(1): 23–39
16 V E Parfenov , N V Nikitchenko , A A Pimenov , A E Kuz’min , M V Kulikova , O B Chupichev , A L Maksimov . Methane pyrolysis for hydrogen production: specific features of using molten metals. Russian Journal of Applied Chemistry, 2020, 93(5): 625–632
17 D Kang , C Palmer , D Mannini , N Rahimi , M J Gordon , H Metiu , E W McFarland . Catalytic methane pyrolysis in molten alkali chloride salts containing iron. ACS Catalysis, 2020, 10(13): 7032–7042
18 N Rahimi , D Kang , J Gelinas , A Menon , M J Gordon , H Metiu , E W McFarland . Solid carbon production and recovery from high temperature methane pyrolysis in bubble columns containing molten metals and molten salts. Carbon, 2019, 151: 181–191
19 I V Kudinov , A A Pimenov , Y A Kryukov , G V Mikheeva . A theoretical and experimental study on hydrodynamics, heat exchange and diffusion during methane pyrolysis in a layer of molten tin. International Journal of Hydrogen Energy, 2021, 46(17): 10183–10190
20 M Plevan , T Geißler , A Abánades , K Mehravaran , R K Rathnam , C Rubbia , D Salmieri , L Stoppel , S Stückrad , T Wetzel . Thermal cracking of methane in a liquid metal bubble column reactor: experiments and kinetic analysis. International Journal of Hydrogen Energy, 2015, 40(25): 8020–8033
21 T Geißler , M Plevan , A Abánades , A Heinzel , K Mehravaran , R K Rathnam , C Rubbia , D Salmieri , L Stoppel , S Stückrad . et al.. Experimental investigation and thermo-chemical modeling of methane pyrolysis in a liquid metal bubble column reactor with a packed bed. International Journal of Hydrogen Energy, 2015, 40(41): 14134–14146
22 M J Assael , A E Kalyva , K D Antoniadis , R Michael Banish , I Egry , J Wu , E Kaschnitz , W A Wakeham . Reference data for the density and viscosity of liquid copper and liquid tin. Journal of Physical and Chemical Reference Data, 2010, 39(3): 033105
23 M Msheik , S Rodat , S Abanades . Experimental comparison of solar methane pyrolysis in gas-phase and molten-tin bubbling tubular reactors. Energy, 2022, 260: 124943
24 A Cuoci , A Frassoldati , T Faravelli , E Ranzi . OpenSMOKE++: an object-oriented framework for the numerical modeling of reactive systems with detailed kinetic mechanisms. Computer Physics Communications, 2015, 192: 237–264
25 J Zeng , M Tarazkar , T Pennebaker , M J Gordon , H Metiu , E W McFarland . Catalytic methane pyrolysis with liquid and vapor phase tellurium. ACS Catalysis, 2020, 10(15): 8223–8230
26 Pérez B J Leal , Jiménez J A Medrano , R Bhardwaj , E Goetheer , Sint Annaland M van , F Gallucci . Methane pyrolysis in a molten gallium bubble column reactor for sustainable hydrogen production: proof of concept & techno-economic assessment. International Journal of Hydrogen Energy, 2021, 46(7): 4917–4935
27 C B Alcock , V P Itkin , M K Horrigan . Vapour pressure equations for the metallic elements: 298–2500 K. Canadian Metallurgical Quarterly, 1984, 23(3): 309–313
28 V Thapliyal , M E Alabdulkarim , D R Whelan , B Mainali , J L Maxwell . A concise review of the Raman spectra of carbon allotropes. Diamond and Related Materials, 2022, 127: 1–16
29 J Kim , C Oh , H Oh , Y Lee , H Seo , Y K Kim . Catalytic methane pyrolysis for simultaneous production of hydrogen and graphitic carbon using a ceramic sparger in a molten NiSn alloy. Carbon, 2023, 207: 1–12
30 B Parkinson , C F Patzschke , D Nikolis , S Raman , K Hellgardt . Molten salt bubble columns for low-carbon hydrogen from CH4 pyrolysis: mass transfer and carbon formation mechanisms. Chemical Engineering Journal, 2021, 417: 127407
31 R J Andreini , J S Foster , R W Callen . Characterization of gas bubbles injected into molten metals under laminar flow conditions. Metallurgical Transactions. B, Process Metallurgy, 1977, 8(4): 625–631
32 Z Sun , B Parkinson , O O Agbede , K Hellgardt . Noninvasive differential pressure technique for bubble characterization in high-temperature opaque systems. Industrial & Engineering Chemistry Research, 2020, 59(13): 6236–6246
33 I B von MorgensternA Mersmann. Bildung fluider Partikeln in ruhenden und strömenden Flüssigkeiten. Chemieingenieurtechnik (Weinheim), 1983, 55(7): 580-581 (in German)
34 J Lee , W Shimoda , T Tanaka . Surface tension and its temperature coefficient of liquid Sn-X (X = Ag, Cu) alloys. Materials Transactions, 2004, 45(9): 2864–2870
35 L Davidson , E H Jr Amick . Formation of gas bubbles at horizontal orifices. AIChE Journal. American Institute of Chemical Engineers, 1956, 2(3): 337–342
36 A Cuoci , A Frassoldati , T Faravelli , E Ranzi . Numerical modeling of laminar flames with detailed kinetics based on the operator-splitting method. Energy & Fuels, 2013, 27(12): 7730–7753
37 E Ranzi , C Cavallotti , A Cuoci , A Frassoldati , M Pelucchi , T Faravelli . New reaction classes in the kinetic modeling of low temperature oxidation of n-alkanes. Combustion and Flame, 2015, 162(5): 1679–1691
38 E Ranzi , A Frassoldati , R Grana , A Cuoci , T Faravelli , A P Kelley , C K Law . Hierarchical and comparative kinetic modeling of laminar flame speeds of hydrocarbon and oxygenated fuels. Progress in Energy and Combustion Science, 2012, 38(4): 468–501
39 N Zaghloul , S Kodama , H Sekiguchi . Hydrogen production by methane pyrolysis in a molten hyphen metal bubble column. Chemical Engineering & Technology, 2021, 44(11): 1986–1993
40 V S Arutyunov , V I Vedeneev . Pyrolysis of methane in the temperature range 1000–1700 K. Russian Chemical Reviews, 1991, 60(12): 1384–1397
41 V Kevorkian , C E Heath , M Boudart . The decomposition of methane in shock waves 1. Journal of Physical Chemistry, 1960, 64(8): 964–968
42 M Msheik , S Rodat , S Abanades . Enhancing molten tin methane pyrolysis performance for hydrogen and carbon production in a hybrid solar/electric bubbling reactor. International Journal of Hydrogen Energy, 2024, 49: 962–980
43 S Santangelo , G Messina , G Faggio , M Lanza , C Milone . Evaluation of crystalline perfection degree of multi-walled carbon nanotubes: correlations between thermal kinetic analysis and micro-Raman spectroscopy. Journal of Raman Spectroscopy: JRS, 2011, 42(4): 593–602
44 L Bokobza , J L Bruneel , M Couzi . Raman spectra of carbon-based materials (from graphite to carbon black) and of some silicone composites. Journal of Carbon Research, C, 2015, 1: 77–94
45 A C Ferrari , J Robertson . Interpretation of Raman spectra of disordered and amorphous carbon. Physical Review B: Condensed Matter, 2000, 61(20): 14095–14107
46 A Abánades , E Ruiz , E M Ferruelo , F Hernández , A Cabanillas , J M Martínez-Val , J A Rubio , C López , R Gavela , G Barrera . et al.. Experimental analysis of direct thermal methane cracking. International Journal of Hydrogen Energy, 2011, 36(20): 12877–12886
47 C Qiao , J Che , J Wang , X Wang , S Qiu , W Wu , Y Chen , X Zu , Y Tang . Cost effective production of high quality multilayer graphene in molten Sn bubble column by using CH4 as carbon source. Journal of Alloys and Compounds, 2023, 930: 167495
48 K O Johansson , F El Gabaly , P E Schrader , M F Campbell , H A Michelsen . Evolution of maturity levels of the particle surface and bulk during soot growth and oxidation in a flame. 7Aerosol Science and Technology, 2017, 51(12): 1333–1344
49 M Msheik , S Rodat , S Abanades . Methane cracking for hydrogen production: a review of catalytic and molten media pyrolysis. Energies, 2021, 14(11): 3107
[1] FCE-24001-OF-IG_suppl_1 Download
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed