Zeolite-encaged gold catalysts for the oxidative condensation of furfural
Weijie Li1,2, Mingyang Gao1, Bin Qin2(), Xin Deng2, Landong Li1,2,3()
1. School of Materials Science and Engineering, Nankai University, Tianjin 300350, China 2. College of Chemistry, Nankai University, Tianjin 300071, China 3. Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
The oxidative condensation between renewable furfural and fatty alcohols is a crucial avenue for producing high-quality liquid fuels and valuable furan derivatives. The selectivity control in this reaction process remains a significant challenge. Herein, we report the strategy of confining well dispersed gold species within ZSM-5 structure to construct highly active Au@ZSM-5 zeolite catalysts for the oxidative condensation of furfural. Characterization results and spectroscopy analyses demonstrate the efficient encapsulation of isolated and cationic Au clusters in zeolite structure. Au@ZSM-5(K) catalyst shows remarkable performance with 69.7% furfural conversion and 90.2% furan-2-acrolein selectivity as well as good recycle stability. It is revealed that the microstructure of ZSM-5 zeolite can significantly promote oxidative condensation activity through confinement effects. This work presents an explicit example of constructing zeolite encaged noble metal catalysts toward targeted chemical transformations.
J J Bozell , G R Petersen . Technology development for the production of biobased products from biorefinery carbohydrates—the US Department of Energy’s “top 10” revisited. Green Chemistry, 2010, 12(4): 539–554 https://doi.org/10.1039/b922014c
2
M Fatih Demirbas . Current technologies for biomass conversion into chemicals and fuels. Energy Sources. Part A, Recovery, Utilization, and Environmental Effects, 2006, 28(13): 1181–1188 https://doi.org/10.1080/00908310500434556
3
S Suttibak , K Sriprateep , A Pattiya . Production of bio-oil via fast pyrolysis of cassava rhizome in a fluidised-bed reactor. Energy Procedia, 2012, 14: 668–673 https://doi.org/10.1016/j.egypro.2011.12.993
4
D M Alonso , J Q Bond , J A Dumesic . Catalytic conversion of biomass to biofuels. Green Chemistry, 2010, 12(9): 1493–1513 https://doi.org/10.1039/c004654j
5
M J Taylor , L J Durndell , M A Isaacs , C M A Parlett , K Wilson , A F Lee , G Kyriakou . Highly selective hydrogenation of furfural over supported Pt nanoparticles under mild conditions. Applied Catalysis B: Environmental, 2016, 180: 580–585 https://doi.org/10.1016/j.apcatb.2015.07.006
6
F MenegazzoM SignorettoF PinnaM ManzoliV AinaG CerratoF Boccuzzi. Oxidative esterification of renewable furfural on gold-based catalysts: which is the best support? Journal of Catalysis, 2014, 309: 241–247
7
A Brandolese , D Ragno , G Di Carmine , T Bernardi , O Bortolini , P P Giovannini , O G Pandoli , A Altomare , A Massi . Aerobic oxidation of 5-hydroxymethylfurfural to 5-hydroxymethyl-2-furancarboxylic acid and its derivatives by heterogeneous NHC-catalysis. Organic & Biomolecular Chemistry, 2018, 16(46): 8955–8964 https://doi.org/10.1039/C8OB02425A
8
H Choudhary , S Nishimura , K Ebitani . Highly efficient aqueous oxidation of furfural to succinic acid using reusable heterogeneous acid catalyst with hydrogen peroxide. Chemistry Letters, 2012, 41(4): 409–411 https://doi.org/10.1246/cl.2012.409
9
Thanh D Nguyen , O Kikhtyanin , R Ramos , M Kothari , P Ulbrich , T Munshi , D Kubička . Nanosized TiO2—A promising catalyst for the aldol condensation of furfural with acetone in biomass upgrading. Catalysis Today, 2016, 277: 97–107 https://doi.org/10.1016/j.cattod.2015.11.027
10
E Taarning , I S Nielsen , K Egeblad , R Madsen , C H Christensen . Chemicals from renewables: aerobic oxidation of furfural and hydroxymethylfurfural over gold catalysts. ChemSusChem, 2008, 1(1): 75–78 https://doi.org/10.1002/cssc.200700033
11
H Li , A Riisager , S Saravanamurugan , A Pandey , R S Sangwan , S Yang , R Luque . Carbon-increasing catalytic strategies for upgrading biomass into energy-intensive fuels and chemicals. ACS Catalysis, 2018, 8(1): 148–187 https://doi.org/10.1021/acscatal.7b02577
12
X Zhang , S Xu , Q Li , G Zhou , H Xia . Recent advances in the conversion of furfural into bio-chemicals through chemo- and bio-catalysis. RSC Advances, 2021, 11(43): 27042–27058 https://doi.org/10.1039/D1RA04633K
13
X Li , P Jia , T Wang . Furfural: a promising platform compound for sustainable production of C4 and C5 chemicals. ACS Catalysis, 2016, 6(11): 7621–7640 https://doi.org/10.1021/acscatal.6b01838
14
Y Luo , Z Li , X Li , A Pandey , R S Sangwan , S Yang , R Luque . The production of furfural directly from hemicellulose in lignocellulosic biomass: a review. Catalysis Today, 2019, 319: 14–24 https://doi.org/10.1016/j.cattod.2018.06.042
15
H Xia , S Xu , H Hu , J An , C Li . Efficient conversion of 5-hydroxymethylfurfural to high-value chemicals by chemo- and bio-catalysis. RSC Advances, 2018, 8(54): 30875–30886 https://doi.org/10.1039/C8RA05308A
16
Q Fang , Z X Qin , Y Shi , F Liu , S Barkaoui , H Abroshan , G Li , Z Qin , Y Shi , F Liu . et al.. Au/NiO composite: a catalyst for one-pot cascade conversion of furfural. ACS Applied Energy Materials, 2019, 2(4): 2654–2661 https://doi.org/10.1021/acsaem.9b00001
17
X Tong , Z Liu , L Yu , Y Li . A tunable process: catalytic transformation of renewable furfural with aliphatic alcohols in the presence of molecular oxygen. Chemical Communications, 2015, 51(17): 3674–3677 https://doi.org/10.1039/C4CC09562F
18
X Tong , Z Liu , J Hu , S Liao . Au-catalyzed oxidative condensation of renewable furfural and ethanol to produce furan-2-acrolein in the presence of molecular oxygen. Applied Catalysis A, General, 2016, 510: 196–203 https://doi.org/10.1016/j.apcata.2015.11.025
19
Y Gao , X Tong , H Zhang . A selective oxidative valorization of biomass-derived furfural and ethanol with the supported gold catalysts. Catalysis Today, 2020, 355: 238–245 https://doi.org/10.1016/j.cattod.2019.05.002
20
E Monti , A Ventimiglia , C A G Soto , F Martelli , E Rodríguez-Aguado , J A Cecilia , P Maireles-Torres , F Ospitali , T Tabanelli , S Albonetti . et al.. Oxidative condensation/esterification of furfural with ethanol using preformed Au colloidal nanoparticles. Impact of stabilizer and heat treatment protocols on catalytic activity and stability. Molecular Catalysis, 2022, 528: 112438 https://doi.org/10.1016/j.mcat.2022.112438
21
M Sankar , Q He , R V Engel , M A Sainna , A J Logsdail , A Roldan , D J Willock , N Agarwal , C J Kiely , G J Hutchings . Role of the support in gold-containing nanoparticles as heterogeneous catalysts. Chemical Reviews, 2020, 120(8): 3890–3938 https://doi.org/10.1021/acs.chemrev.9b00662
22
Y Zhang , X Cui , F Shi , Y Deng . Nano-gold catalysis in fine chemical synthesis. Chemical Reviews, 2012, 112(4): 2467–2505 https://doi.org/10.1021/cr200260m
23
T Ishida , A Taketoshi , M Haruta . Gold nanoparticles for oxidation reactions: critical role of supports and Au particle size. Topics in Organometallic Chemistry, 2020, 66: 1–48 https://doi.org/10.1007/3418_2020_42
24
L Liu , A Corma . Confining isolated atoms and clusters in crystalline porous materials for catalysis. Nature Reviews. Materials, 2021, 6(3): 244–263 https://doi.org/10.1038/s41578-020-00250-3
25
S Schauermann , N Nilius , S Shaikhutdinov , H J Freund . Nanoparticles for heterogeneous catalysis: new mechanistic insights. Accounts of Chemical Research, 2013, 46(8): 1673–1681 https://doi.org/10.1021/ar300225s
J Majimel , M Lamirand-Majimel , I Moog , C Feral-Martin , M Tréguer-Delapierre . Size-dependent stability of supported gold nanostructures onto ceria: an HRTEM study. Journal of Physical Chemistry C, 2009, 113(21): 9275–9283 https://doi.org/10.1021/jp9001115
28
S Yusuf , F Jiao . Effect of the support on the photocatalytic water oxidation activity of cobalt oxide nanoclusters. ACS Catalysis, 2012, 2(12): 2753–2760 https://doi.org/10.1021/cs300581k
29
L Prati , A Villa . Gold colloids: from quasi-homogeneous to heterogeneous catalytic systems. Accounts of Chemical Research, 2014, 47(3): 855–863 https://doi.org/10.1021/ar400170j
30
Y Chai , S Liu , Z Zhao , J Gong , W Dai , G Wu , N Guan , L Li . Selectivity modulation of encapsulated palladium nanoparticles by zeolite microenvironment for biomass catalytic upgrading. ACS Catalysis, 2018, 8(9): 8578–8589 https://doi.org/10.1021/acscatal.8b02276
31
M Gao , Z Gong , X Weng , W Shang , Y Chai , W Dai , G Wu , N Guan , L Li . Methane combustion over palladium catalyst within the confined space of MFI zeolite. Chinese Journal of Catalysis, 2021, 42(10): 1689–1699 https://doi.org/10.1016/S1872-2067(20)63775-5
32
W Shang , M Gao , Y Chai , G Wu , N Guan , L Li . Stabilizing isolated rhodium cations by MFI zeolite for heterogeneous methanol carbonylation. ACS Catalysis, 2021, 11(12): 7249–7256 https://doi.org/10.1021/acscatal.1c00950
33
A Farshi , F Shaiyegh , S H Burogerdi , A Dehgan . FCC process role in propylene demands. Petroleum Science and Technology, 2011, 29(9): 875–885 https://doi.org/10.1080/10916460903451985
34
H T Yan , R Le Van Mao . Hybrid catalysts used in the catalytic steam cracking process (CSC): influence of the pore characteristics and the surface acidity properties of the ZSM-5 zeolite-based component on the overall catalytic performance. Applied Catalysis A, General, 2010, 375(1): 63–69 https://doi.org/10.1016/j.apcata.2009.12.018
35
A Farshi , H R Abri . The addition of ZSM-5 to a fluid catalytic cracking catalyst for increasing olefins in fluid catalytic cracking light gas. Petroleum Science and Technology, 2012, 30(12): 1285–1295 https://doi.org/10.1080/10916466.2010.497789
36
F Ying , S Wang , C T Au , S Y Lai . Effect of the oxidation state of gold on the complete oxidation of isobutane on Au/CeO2 catalysts. Gold Bulletin, 2010, 43(4): 241–251 https://doi.org/10.1007/BF03214994
37
M Zhang , Q Liu , H Long , L Sun , T Murayama , C Qi . Insights into Au nanoparticle size and chemical state of Au/ZSM-5 catalyst for catalytic cracking of n-octane to increase propylene production. Journal of Physical Chemistry C, 2021, 125(29): 16013–16023 https://doi.org/10.1021/acs.jpcc.1c04608
38
H Huang , W Ye , C Song , Y Liu , X Zhang , Y Shan , Y Ge , S Zhang , R Lu . Confinement of Au3+-rich clusters by using silicalite-1 for selective solvent-free oxidation of toluene. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2021, 9(26): 14710–14721 https://doi.org/10.1039/D1TA02347K
39
F Boccuzzi , A Chiorino . FTIR study of carbon monoxide oxidation and scrambling at room temperature over copper supported on ZnO and TiO2. Journal of Physical Chemistry, 1996, 100(9): 3617–3624 https://doi.org/10.1021/jp950542g
40
F Boccuzzi , A Chiorino , M Manzoli . FTIR study of the electronic effects of CO adsorbed on gold nanoparticles supported on titania. Surface Science, 2000, 454(1): 942–946 https://doi.org/10.1016/S0039-6028(00)00160-6
41
F Boccuzzi , A Chiorino . FTIR study of CO oxidation on Au/TiO2 at 90 K and room temperature. An insight into the nature of the reaction centers. Journal of Physical Chemistry B, 2000, 104(23): 5414–5416 https://doi.org/10.1021/jp000749w
42
S Minicò , S Scirè , C Crisafulli , A M Visco , S Galvagno . Galvagno S. FT-IR study of Au/Fe2O3 catalysts for CO oxidation at low temperature. Catalysis Letters, 1997, 47(3): 273–276 https://doi.org/10.1023/A:1019081727173
43
H Chen , Z Li , Z Qin , H J Kim , H Abroshan , G Li . Silica-encapsulated gold nanoclusters for efficient acetylene hydrogenation to ethylene. ACS Applied Nano Materials, 2019, 2(5): 2999–3006 https://doi.org/10.1021/acsanm.9b00384
44
A Simakov , I Tuzovskaya , A Pestryakov , N Bogdanchikova , V Gurin , M Avalos , M H Farías . On the nature of active gold species in zeolites in CO oxidation. Applied Catalysis A, General, 2007, 331(1): 121–128 https://doi.org/10.1016/j.apcata.2007.07.039
45
N Yang , S Pattisson , M Douthwaite , G Zeng , H Zhang , J Ma , G J Hutchings . Influence of stabilizers on the performance of Au/TiO2 catalysts for CO oxidation. ACS Catalysis, 2021, 11(18): 11607–11615 https://doi.org/10.1021/acscatal.1c02820