Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

邮发代号 80-969

2019 Impact Factor: 3.552

Frontiers of Chemical Science and Engineering  2024, Vol. 18 Issue (8): 93   https://doi.org/10.1007/s11705-024-2446-9
  本期目录
Solid-conversion synthesis of three-dimensionally ordered mesoporous ZSM-5 catalysts for the methanol-to-propylene reaction
Weilong Chun1, Chenbiao Yang1, Xu Wang1, Xin Yang1, Huiyong Chen1,2()
1. School of Chemical Engineering, Northwest University, Xi’an 710069, China
2. International Science & Technology Cooperation Base for Clean Utilization of Hydrocarbon Resources, Chemical Engineering Research Center of the Ministry of Education for Advanced Use Technology of Shanbei Energy, Collaborative Innovation Center for Development of Energy and Chemical Industry in Northern Shaanxi, Northwest University, Xi’an 710069, China
 全文: PDF(1294 KB)   HTML
Abstract

A facile synthesis of hierarchical ZSM-5 with the three-dimensionally ordered mesoporosity (3DOm ZSM-5) was achieved by solid conversion (SC) of SiO2 colloidal crystals to high-crystalline ZSM-5. The products of 3DZ5_S/C and 3DZ5_S, which were severally transformed from the carbon-padded SiO2 colloidal crystals and the initial SiO2 colloidal crystals, exhibited not only a similar ordered structure and acidity but also higher crystallinity and more balanced meso-/micropore combination in comparison with 3DZ5_C obtained by the conventional confined space crystallization approach. All three synthesized 3DZ5 catalysts showed improved methanol-to-propylene performance than the commercially microporous ZSM-5 (CZ5), embodied in five times longer lifetime, higher propylene selectivity and Spropylene/Sethylene ratio (P/E), and superior coke toleration with lower formation rate of coke (Rcoke). Moreover, the 3DZ5_S catalyst in situ converted from SiO2 colloidal crystals presented the highest selectivities of propylene (42.51%) and light olefins (74.6%) among all three 3DZ5 catalysts. The high efficiency in synthesis and in situ utilization of SiO2 colloidal crystals demonstrate the proposed SC strategy to be more efficiently and eco-friendly for the high-yield production of not only 3DOm ZSM-5 but also other types of hierarchical zeolites.

Key wordshierarchical zeolite    three-dimensionally ordered mesoporosity    ZSM-5    solid conversion    methanol-to-propylene
收稿日期: 2024-01-12      出版日期: 2024-05-27
Corresponding Author(s): Huiyong Chen   
 引用本文:   
. [J]. Frontiers of Chemical Science and Engineering, 2024, 18(8): 93.
Weilong Chun, Chenbiao Yang, Xu Wang, Xin Yang, Huiyong Chen. Solid-conversion synthesis of three-dimensionally ordered mesoporous ZSM-5 catalysts for the methanol-to-propylene reaction. Front. Chem. Sci. Eng., 2024, 18(8): 93.
 链接本文:  
https://academic.hep.com.cn/fcse/CN/10.1007/s11705-024-2446-9
https://academic.hep.com.cn/fcse/CN/Y2024/V18/I8/93
Fig.1  
Fig.2  
Fig.3  
Fig.4  
SampleTextural propertya)Sext/SBETb)Vmic/Vtotalb)HFc)
SBET/(m2·g–1)Smic/(m2·g–1)Sext/(m2·g–1)Vmic/(m3·g–1)Vmeso/(m3·g–1)Vtotal/(m3·g–1)
CZ5447426210.210.010.220.050.950.05
3DZ5_C4692291600.100.370.470.340.210.07
3DZ5_S/C4272881390.130.290.420.330.310.10
3DZ5_S4563211350.150.270.430.300.350.11
Tab.1  
SampleAl contenta)/(μmmol·g–1)Number of acid siteb)/(μmol·g–1)
WeakStrongTotal
CZ520879103182
3DZ5_C1737090160
3DZ5_S/C1857191162
3DZ5_S1716691157
Tab.2  
Fig.5  
Fig.6  
Fig.7  
SampleLifetimea)/hSelectivityb)/%P/ERcoke/(mg·gcat–1·h–1)
C1?C4c)C2=C3=C4=C5+d)C2=?C4=
CZ59.50.477.4839.1224.0028.4570.615.232.02
3DZ5_C53.00.276.7140.3925.1126.8272.216.021.49
3DZ5_S/C50.50.266.9341.3525.1026.0773.385.971.61
3DZ5_S50.00.286.7942.5125.0725.4974.606.261.73
Tab.3  
  
Fig.8  
1 M E Davis . Ordered porous materials for emerging applications. Nature, 2002, 417(6891): 813–821
https://doi.org/10.1038/nature00785
2 M Shamzhy , M Opanasenko , P Concepción , A Martínez . New trends in tailoring active sites in zeolite-based catalysts. Chemical Society Reviews, 2019, 48(4): 1095–1149
https://doi.org/10.1039/C8CS00887F
3 Q M Sun , N Wang , J H Yu . Advances in catalytic applications of zeolite-supported metal catalysts. Advanced Materials, 2021, 33(51): 2104442
https://doi.org/10.1002/adma.202104442
4 X L Liu , C M Wang , J Zhou , C Liu , Z C Liu , J Shi , Y D Wang , J W Teng , Z K Xie . Molecular transport in zeolite catalysts: depicting an integrated picture from macroscopic to microscopic scales. Chemical Society Reviews, 2022, 51(19): 8174–8200
https://doi.org/10.1039/D2CS00079B
5 A J Mallette , S Seo , J D Rimer . Synthesis strategies and design principles for nanosized and hierarchical zeolites. Nature Synthesis, 2022, 1(7): 521–534
https://doi.org/10.1038/s44160-022-00091-8
6 J Pérez-Ramírez , C H Christensen , K Egeblad , C H Christensen , J C Groen . Hierarchical zeolites: enhanced utilisation of microporous crystals in catalysis by advances in materials design. Chemical Society Reviews, 2008, 37(11): 2530–2542
https://doi.org/10.1039/b809030k
7 S Xu , X Zhang , D G Cheng , F Chen , X Ren . Effect of hierarchical ZSM-5 zeolite crystal size on diffusion and catalytic performance of n-heptane cracking. Frontiers of Chemical Science and Engineering, 2018, 12(4): 780–789
https://doi.org/10.1007/s11705-018-1733-8
8 S Mintova , M Jaber , V Valtchev . Nanosized microporous crystals: emerging applications. Chemical Society Reviews, 2015, 44(20): 7207–7233
https://doi.org/10.1039/C5CS00210A
9 L H Chen , M H Sun , Z Wang , W Yang , B L Su . Hierarchically structured zeolites: from design to application. Chemical Reviews, 2020, 120(20): 11194–11294
https://doi.org/10.1021/acs.chemrev.0c00016
10 H Y Chen , M F Yang , W J Shang , Y Tong , B Y Liu , X L Han , J B Zhang , Q Q Hao , M Sun , X X Ma . Organosilane surfactant-directed synthesis of hierarchical ZSM-5 zeolites with improved catalytic performance in methanol-to-propylene reaction. Industrial & Engineering Chemistry Research, 2018, 57(32): 10956–10966
https://doi.org/10.1021/acs.iecr.8b00849
11 M J Mendoza-castro , E D O Jardim , C A Trujillo , N Linares , J Garciamartinez . Hierarchical catalysts prepared by interzeolite transformation. Journal of the American Chemical Society, 2022, 144(11): 5163–5171
https://doi.org/10.1021/jacs.2c00665
12 C T Wang , W Fang , Z Q Liu , L Wang , Z W Liao , Y R Yang , H J Li , L Liu , H Zhou , X D Qin . et al.. Fischer-tropsch synthesis to olefins boosted by MFI zeolite nanosheets. Nature Nanotechnology, 2022, 17(7): 714–720
https://doi.org/10.1038/s41565-022-01154-9
13 D Verboekend , M Milina , S Mitchell , J Pérez-Ramírez . Hierarchical zeolites by desilication: occurrence and catalytic impact of recrystallization and restructuring. Crystal Growth & Design, 2013, 13(11): 5025–5035
https://doi.org/10.1021/cg4010483
14 J J Li , M Liu , X W Guo , S T Xu , Y X Wei , Z M Liu , C S Song . Interconnected hierarchical ZSM-5 with tunable acidity prepared by a dealumination-realumination process: a superior MTP catalyst. ACS Applied Materials & Interfaces, 2017, 9(31): 26096–26106
https://doi.org/10.1021/acsami.7b07806
15 I I Ivanova , E E Knyazeva . Micro-mesoporous materials obtained by zeolite recrystallization: synthesis, characterization and catalytic applications. Chemical Society Reviews, 2013, 42(9): 3671–3688
https://doi.org/10.1039/C2CS35341E
16 Z P Wang , C Li , H J Cho , S C Kung , M A Snyder , W Fan . Direct, single-step synthesis of hierarchical zeolites without secondary templating. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2015, 3(3): 1298–1305
https://doi.org/10.1039/C4TA05031B
17 M Choi , H S Cho , R Srivastava , C Venkatesan , D H Choi , R Ryoo . Amphiphilic organosilane-directed synthesis of crystalline zeolite with tunable mesoporosity. Nature Materials, 2006, 5(9): 718–723
https://doi.org/10.1038/nmat1705
18 M Choi , K Na , J Kim , Y Sakamoto , R Ryoo . Stable single-unit-cell nanosheets of zeolite MFI as active and long-lived catalysts. Nature, 2009, 461(7261): 246–249
https://doi.org/10.1038/nature08288
19 M Hartmann . Hierarchical zeolites: a proven strategy to combine shape selectivity with efficient mass transport. Angewandte Chemie International Edition, 2004, 43(44): 5880–5882
https://doi.org/10.1002/anie.200460644
20 H Dai , Y F Shen , T M Yang , C S Lee , D L Fu , A Agarwal , T T Le , M Tsapatsis , J C Palmer , B M Weckhuysen . et al.. Finned zeolite catalysts. Nature Materials, 2020, 19(10): 1074–1080
https://doi.org/10.1038/s41563-020-0753-1
21 X Y Zhang , D X Liu , D D Xu , S Asahina , K A Cychosz , K V Agrawal , Y Al Wahedi , A Bhan , S Al Hashimi , O Terasaki . et al.. Synthesis of self-pillared zeolite nanosheets by repetitive branching. Science, 2012, 336(6089): 1684–1687
https://doi.org/10.1126/science.1221111
22 W Fan , M A Snyder , S Kumar , P S Lee , W C Yoo , A V Mccormick , R L Penn , A Stein , M Tsapatsis . Hierarchical nanofabrication of microporous crystals with ordered mesoporosity. Nature Materials, 2008, 7(12): 984–991
https://doi.org/10.1038/nmat2302
23 V Valtchev , G Majano , S Mintova , J Pérez-Ramírez . Tailored crystalline microporous materials by post-synthesis modification. Chemical Society Reviews, 2013, 42(1): 263–290
https://doi.org/10.1039/C2CS35196J
24 H Y Chen , W J Shang , C B Yang , B Y Liu , C Y Dai , J B Zhang , Q Q Hao , M Sun , X X Ma . Epitaxial growth of layered-bulky ZSM-5 hybrid catalysts for the methanol-to-propylene process. Industrial & Engineering Chemistry Research, 2019, 58(4): 1580–1589
https://doi.org/10.1021/acs.iecr.8b05472
25 S Kim , G Park , M H Woo , G Kwak , S K Kim . Control of hierarchical structure and framework-Al distribution of ZSM-5 via adjusting crystallization temperature and their effects on methanol conversion. ACS Catalysis, 2019, 9(4): 2880–2892
https://doi.org/10.1021/acscatal.8b04493
26 H O Mohamed , R K Parsapur , I Hita , A Ramírez , K W Huang , J Gascon , P Castaño . Stable and reusable hierarchical ZSM-5 zeolite with superior performance for olefin oligomerization when partially coked. Applied Catalysis B: Environmental, 2022, 316: 121582
https://doi.org/10.1016/j.apcatb.2022.121582
27 H Y Chen , J Wydra , X Y Zhang , P S Lee , Z P Wang , W Fan , M Tsapatsis . Hydrothermal synthesis of zeolites with three-dimensionally ordered mesoporous-imprinted structure. Journal of the American Chemical Society, 2011, 133(32): 12390–12393
https://doi.org/10.1021/ja2046815
28 J Wang , M F Yang , W J Shang , X P Su , Q Q Hao , H Y Chen , X X Ma . Synthesis, characterization, and catalytic application of hierarchical SAPO-34 zeolite with three-dimensionally ordered mesoporous-imprinted structure. Microporous and Mesoporous Materials, 2017, 252: 10–16
https://doi.org/10.1016/j.micromeso.2017.06.012
29 H J Cho , P Dornath , W Fan . Synthesis of hierarchical Sn-MFI as lewis acid catalysts for isomerization of cellulosic sugars. ACS Catalysis, 2014, 4(6): 2029–2037
https://doi.org/10.1021/cs500295u
30 Q You , X Wang , Y S Wu , C Y Bi , X Yang , M Sun , J B Zhang , Q Q Hao , H Y Chen , X X Ma . Hierarchical Ti-beta with a three-dimensional ordered mesoporosity for catalytic epoxidation of bulky cyclic olefins. New Journal of Chemistry, 2021, 45(23): 10303–10314
https://doi.org/10.1039/D1NJ00736J
31 H Y Chen , P S Lee , X Y Zhang , D Lu . Structure replication and growth development of three-dimensionally ordered mesoporous-imprinted zeolites during confined growth. Journal of Materials Research, 2013, 28(10): 1356–1364
https://doi.org/10.1557/jmr.2013.106
32 Z P Wang , P Dornath , C C Chang , H Y Chen , W Fan . Confined synthesis of three-dimensionally ordered mesoporous-imprinted zeolites with tunable morphology and Si/Al ratio. Microporous and Mesoporous Materials, 2013, 181: 8–16
https://doi.org/10.1016/j.micromeso.2013.07.010
33 R Khare , A Bhan . Mechanistic studies of methanol-to-hydrocarbons conversion on diffusion-free MFI samples. Journal of Catalysis, 2015, 329: 218–228
https://doi.org/10.1016/j.jcat.2015.05.012
34 B Fernández-Reyes , S Morales-Jiménez , G Sánchez-Marrero , J C Muñoz-Senmache , A J Hernández-Maldonado . Hierarchical three-dimensionally ordered mesoporous carbon (3DOm) zeolite composites for the adsorption of contaminants of emerging concern. Journal of Hazardous Materials Letters, 2021, 2: 100017
https://doi.org/10.1016/j.hazl.2021.100017
35 P S Lee , X Y Zhang , J A Stoeger , A Malek , W Fan , S Kumar , W C Yoo , S Al Hashimi , R L Penn , A Stein . et al.. Sub-40 nm zeolite suspensions via disassembly of three-dimensionally ordered mesoporous-imprinted silicalite-1. Journal of the American Chemical Society, 2011, 133(3): 493–502
https://doi.org/10.1021/ja107942n
36 S Mintova , M Hölzl , V Valtchev , B Mihailova , Y Bouizi , T Bein . Closely packed zeolite nanocrystals obtained via transformation of porous amorphous silica. Chemistry of Materials, 2004, 16(25): 5452–5459
https://doi.org/10.1021/cm030640b
37 D Z Han , D Y Yang , C Y Bi , G Q Zhang , F Yang , Q Q Hao , J B Zhang , H Y Chen , X X Ma . Dry-gel conversion synthesis of SAPO-14 zeolites for the selective conversion of methanol to propylene. Inorganic Chemistry Frontiers, 2023, 10(21): 6193–6203
https://doi.org/10.1039/D3QI00990D
38 T M Davis , M A Snyder , J E Krohn , M Tsapatsis . Nanoparticles in lysine-silica sols. Chemistry of Materials, 2006, 18(25): 5814–5816
https://doi.org/10.1021/cm061982v
39 J Pérez-Ramírez , D Verboekend , A Bonilla , S Abelló . Zeolite catalysts with tunable hierarchy factor by pore-growth moderators. Advanced Functional Materials, 2009, 19(24): 3972–3979
https://doi.org/10.1002/adfm.200901394
40 X B Zhao , Y Hong , L Y Wang , D Fan , N N Yan , X N Liu , P Tian , X W Guo , Z M Liu . External surface modification of as-made ZSM-5 and their catalytic performance in the methanol to propylene reaction. Chinese Journal of Catalysis, 2018, 39(8): 1418–1426
https://doi.org/10.1016/S1872-2067(18)63117-1
41 K Ramesh , C Jie , Y F Han , A Borgna . Synthesis, characterization, and catalytic activity of phosphorus modified H-ZSM-5 catalysts in selective ethanol dehydration. Industrial & Engineering Chemistry Research, 2010, 49(9): 4080–4090
https://doi.org/10.1021/ie901666f
42 J X Zhang , A Zhou , K Gawande , G X Li , S J Shang , C Y Dai , W Fan , Y Han , C S Song , L M Ren . et al.. B-axis-oriented ZSM-5 nanosheets for efficient alkylation of benzene with methanol: synergy of acid sites and diffusion. ACS Catalysis, 2023, 13(6): 3794–3805
https://doi.org/10.1021/acscatal.2c06384
43 J H Li , Y N Wang , W Z Jia , Z W Xi , H H Chen , Z R Zhu , Z H Hu . Effect of external surface of HZSM-5 zeolite on product distribution in the conversion of methanol to hydrocarbons. Journal of Energy Chemistry, 2014, 23(6): 771–780
https://doi.org/10.1016/S2095-4956(14)60211-4
44 C C Chang , A R Teixeira , C Li , P J Dauenhauer , W Fan . Enhanced molecular transport in hierarchical silicalite-1. Langmuir, 2013, 29(45): 13943–13950
https://doi.org/10.1021/la403706r
45 M H Sun , J Zhou , Z Y Hu , L H Chen , L Y Li , Y D Wang , Z K Xie , S Turner , G Van Tendeloo , T Hasan . et al.. Hierarchical zeolite single-crystal reactor for excellent catalytic efficiency. Matter, 2020, 3(4): 1226–1245
https://doi.org/10.1016/j.matt.2020.07.016
46 M S Beheshti , M Behzad , J Ahmadpour , H Arabi . Modification of H-[B]-ZSM-5 zeolite for methanol to propylene (MTP) conversion: investigation of extrusion and steaming treatments on physicochemical characteristics and catalytic performance. Microporous and Mesoporous Materials, 2020, 291: 109699
https://doi.org/10.1016/j.micromeso.2019.109699
47 Y P Zhang , M G Li , E H Xing , Y B Luo , X T Shu . Protective desilication of highly siliceous H-ZSM-5 by sole tetraethylammonium hydroxide for the methanol to propylene (MTP) reaction. RSC Advances, 2018, 8(66): 37842–37854
https://doi.org/10.1039/C8RA06786D
48 X Q Wu , Y X Wei , Z M Liu . Dynamic catalytic mechanism of the methanol-to-hydrocarbons reaction over zeolites. Accounts of Chemical Research, 2023, 56(14): 2001–2014
https://doi.org/10.1021/acs.accounts.3c00187
49 M Z Zhang , S T Xu , Y X Wei , J Z Li , J B Wang , W N Zhang , S S Gao , Z M Liu . Changing the balance of the MTO reaction dual-cycle mechanism: reactions over ZSM-5 with varying contact times. Chinese Journal of Catalysis, 2016, 37(8): 1413–1422
https://doi.org/10.1016/S1872-2067(16)62466-X
[1] FCE-24004-OF-CW_suppl_1 Download
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed