Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

邮发代号 80-969

2019 Impact Factor: 3.552

Frontiers of Chemical Science and Engineering  2024, Vol. 18 Issue (9): 106   https://doi.org/10.1007/s11705-024-2457-6
  本期目录
Efficient oxidation of monosaccharides to sugar acids under neutral condition in flow reactors with gold-supported activated carbon catalysts
Ziqin Gong1, Zengyong Li2, Xu Zeng1, Fengxia Yue1, Wu Lan1(), Chuanfu Liu1()
1. State Key Laboratory of Pulp and Paper Engineering, School of Light Industry & Engineering, South China University of Technology, Guangzhou 510640, China
2. Anhui Provincial Engineering Center for High Performance Biobased Nylons, School of Materials and Chemistry, Anhui Agricultural University, Hefei 230036, China
 全文: PDF(1596 KB)   HTML
Abstract

A significant reaction in the synthesis of biomass-based chemicals is the catalyst-based and targeted oxidation of monosaccharides into valuable sugar acids. In this study, an activated carbon supported gold catalyst was used to oxidize glucose and xylose to gluconic acid and xylonic acid under neutral condition. Optimization of reaction conditions for the catalysts was performed using both a batch reactor and a flow-through reactor. In a batch reactor, the yields of gluconic and xylonic acid reached 93% and 92%, respectively, at 90 °C within 180 min. In a flow reactor, both reactions reached a similar yield at 80 °C with the weight hourly space velocity of 47.1 h–1. The reaction kinetics were explored in the flow reactor. The oxidation of glucose and xylose to gluconic and xylonic acid followed a first-order kinetics and the turnover frequency was 0.195 and 0.161 s–1, respectively. The activation energy was evaluated to be 60.58 and 59.30 kJ·mol–1, respectively. This study presents an environmentally friendly and feasible method for the selective oxidation of monosaccharides using an activated carbon supported gold catalyst, benefiting the high-value application of carbohydrates.

Key wordsmonosaccharides oxidation    gluconic acid    xylonic acid    flow reactor    kinetics
收稿日期: 2024-01-17      出版日期: 2024-06-17
Corresponding Author(s): Wu Lan,Chuanfu Liu   
 引用本文:   
. [J]. Frontiers of Chemical Science and Engineering, 2024, 18(9): 106.
Ziqin Gong, Zengyong Li, Xu Zeng, Fengxia Yue, Wu Lan, Chuanfu Liu. Efficient oxidation of monosaccharides to sugar acids under neutral condition in flow reactors with gold-supported activated carbon catalysts. Front. Chem. Sci. Eng., 2024, 18(9): 106.
 链接本文:  
https://academic.hep.com.cn/fcse/CN/10.1007/s11705-024-2457-6
https://academic.hep.com.cn/fcse/CN/Y2024/V18/I9/106
  
Fig.1  
Fig.2  
Fig.3  
Fig.4  
  
Fig.5  
Catalystnactive site/molCXa)/%CGb)/%X-TOFc)/s–1G-TOFd)/s–1
Au/AC2.28 × 10?610.515.70.1610.195
Tab.1  
T/KCxylosea)/%Cglucosea)/%kXb)/min–1kGb)/min–1EaXc)/(kJ·mol–1)EaGc)/(kJ·mol–1)
303.154.24.20.02860.028959.3060.58
313.159.29.30.06400.0651
323.1517.918.40.13130.1351
333.1529.630.70.23580.2506
Tab.2  
Fig.6  
Fig.7  
1 R Qiang , S Feng , Y Chen , Q Ma , B W Chen . Recent progress in biomass-derived carbonaceous composites for enhanced microwave absorption. Journal of Colloid and Interface Science, 2022, 606: 406–423
https://doi.org/10.1016/j.jcis.2021.07.144
2 Y Wan , J M Lee . Toward value-added dicarboxylic acids from biomass derivatives via thermo-catalytic conversion. ACS Catalysis, 2021, 11(5): 2524–2560
https://doi.org/10.1021/acscatal.0c05419
3 J P Yan , O Oyedeji , J H Leal , B S Donohoe , T A Semelsberger , C L Li , A N Hoover , E Webb , E A Bose , Y N Zeng . et al.. Characterizing variability in lignocellulosic biomass: a review. ACS Sustainable Chemistry & Engineering, 2020, 8(22): 8059–8085
https://doi.org/10.1021/acssuschemeng.9b06263
4 Q Z Zhang , Z H Wan , I K M Yu , D C W Tsang . Sustainable production of high-value gluconic acid and glucaric acid through oxidation of biomass-derived glucose: a critical review. Journal of Cleaner Production, 2021, 312: 127745–127762
https://doi.org/10.1016/j.jclepro.2021.127745
5 L Hu , Z Wu , Y T Jiang , X Y Wang , A Y He , J Song , J M Xu , S Y Zhou , Y J Zhao , J X Xu . Recent advances in catalytic and autocatalytic production of biomass-derived 5-hydroxymethylfurfural. Renewable & Sustainable Energy Reviews, 2020, 134: 110317–110375
https://doi.org/10.1016/j.rser.2020.110317
6 S M Kang , J X Fu , G Zhang . From lignocellulosic biomass to levulinic acid: a review on acid-catalyzed hydrolysis. Renewable & Sustainable Energy Reviews, 2018, 94: 340–362
https://doi.org/10.1016/j.rser.2018.06.016
7 W Niu , M N Molefe , J W Frost . Microbial synthesis of the energetic material precursor 1,2,4-butanetriol. Journal of the American Chemical Society, 2003, 125(43): 12998–12999
https://doi.org/10.1021/ja036391+
8 B W Chun , B Dair , P J Macuch , D Wiebe , C Porteneuve , A Jeknavorian . The development of cement and concrete additive: based on xylonic acid derived via bioconversion of xylose. Applied Biochemistry and Biotechnology, 2006, 129(1-3): 645–658
9 X Jin , M Liu , G Zhang , J Wang , Q Xia , Y Sun , Z Zhou , W Zhang , S Wang , C H Lam . et al.. Chemical synthesis of adipic acid from glucose and derivatives: challenges for nanocatalyst design. ACS Sustainable Chemistry & Engineering, 2020, 8(51): 18732–18754
https://doi.org/10.1021/acssuschemeng.0c04411
10 J L Ma , L X Zhong , X W Peng , R C Sun . D-Xylonic acid: a solvent and an effective biocatalyst for a three-component reaction. Green Chemistry, 2016, 18(6): 1738–1750
https://doi.org/10.1039/C5GC01727K
11 Q Q Ye , Y F Han , T Liu , Y Bai , Y J Chen , J Z Li , S Q Shi . Magnesium oxychloride cement reinforced via D-gluconic acid sodium salt for slow-curing, with enhanced compressive strength and water resistance. Construction & Building Materials, 2021, 280: 122487–122496
https://doi.org/10.1016/j.conbuildmat.2021.122487
12 I Choi , Q X Zhong . Gluconic acid as a chelator to improve clarity of skim milk powder dispersions at pH 3.0. Food Chemistry, 2021, 344: 128639–128646
https://doi.org/10.1016/j.foodchem.2020.128639
13 Q Chu , L H Liao , B Liu , G R Han , X Li . Sulfite-inserted Mg-Al layered double hydroxides loaded with glucose oxidase to enable SO2-mediated synergistic tumor therapy. Advanced Functional Materials, 2021, 31(33): 2103262–2103273
https://doi.org/10.1002/adfm.202103262
14 L Chen , Y M Huang , R Zou , J L Ma , T Z Li , M S Li , Q Hao , H B Xie , X W Peng . Regulating TiO2/mxenes catalysts to promote photocatalytic performance of highly selective oxidation of D-xylose. Green Chemistry, 2021, 23(3): 1382–1388
https://doi.org/10.1039/D0GC03628E
15 S Sadula , B Saha . Aerobic oxidation of xylose to xylaric acid in water over Pt catalysts. ChemSusChem, 2018, 11(13): 2124–2129
https://doi.org/10.1002/cssc.201800494
16 Y Önal , S Schimpf , P Claus . Structure sensitivity and kinetics of D-glucose oxidation to D-gluconic acid over carbon-supported gold catalysts. Journal of Catalysis, 2004, 223(1): 122–133
https://doi.org/10.1016/j.jcat.2004.01.010
17 S Solmi , C Morreale , F Ospitali , S Agnoli , F Cavani . Oxidation of D-glucose to glucaric acid using Au/C catalysts. ChemCatChem, 2017, 9(14): 2797–2806
https://doi.org/10.1002/cctc.201700089
18 C Megías-Sayago , J L Santos , F Ammari , M Chenouf , S Ivanova , M A Centeno , J A Odriozola . Influence of gold particle size in Au/C catalysts for base-free oxidation of glucose. Catalysis Today, 2018, 306: 183–190
https://doi.org/10.1016/j.cattod.2017.01.007
19 V Cappello , C Plais , C Vial , F Augier . Bubble size and liquid-side mass transfer coefficient measurements in aerated stirred tank reactors with non-Newtonian liquids. Chemical Engineering Science, 2020, 211: 115280–115293
https://doi.org/10.1016/j.ces.2019.115280
20 A E Koklin , T A Klimenko , A V Kondratyuk , V V Lunin , V I Bogdan . Transformation of aqueous solutions of glucose over the Pt/C catalyst. Kinetics and Catalysis, 2015, 56(1): 84–88
https://doi.org/10.1134/S0023158415010073
21 Z Y Li , D Li , W Lan , X H Li , X F Wan , R C Sun , C F Liu , X W Peng . Highly selective oxidation of monosaccharides to sugar acids at room temperature over palladium supported on surface functionalized carbon nanotubes. Green Chemistry, 2021, 23(18): 7084–7092
https://doi.org/10.1039/D1GC02419A
22 P Y Qi , S S Chen , J Chen , J W Zheng , X L Zheng , Y Z Yuan . Catalysis and reactivation of ordered mesoporous carbon-supported gold nanoparticles for the base-free oxidation of glucose to gluconic acid. ACS Catalysis, 2015, 5(4): 2659–2670
https://doi.org/10.1021/cs502093b
23 Y Wan , L N Zhang , Y Y Chen , J H Lin , W D Hu , S Wang , J D Lin , S L Wan , Y Wang . One-pot synthesis of gluconic acid from biomass-derived levoglucosan using an Au/Cs2.5H0.5PW12O40 catalyst. Green Chemistry, 2019, 21(23): 6318–6325
https://doi.org/10.1039/C9GC03066B
24 S Cattaneo , M Stucchi , A Villa , L Prati . Gold catalysts for the selective oxidation of biomass-derived products. ChemCatChem, 2018, 11(1): 309–323
https://doi.org/10.1002/cctc.201801243
25 C Megías-Sayago , K Chakarova , A Penkova , A Lolli , S Ivanova , S Albonetti , F Cavani , J A Odriozola . Understanding the role of the acid sites in 5-hydroxymethylfurfural oxidation to 2,5-furandicarboxylic acid reaction over gold catalysts: surface investigation on CexZr1–xO2 compounds. ACS Catalysis, 2018, 8(12): 11154–11164
https://doi.org/10.1021/acscatal.8b02522
26 X T Meng , Z Y Li , D Li , Y M Huang , J J Ma , C F Liu , X W Peng . Efficient base-free oxidation of monosaccharide into sugar acid under mild conditions using hierarchical porous carbon supported gold catalysts. Green Chemistry, 2020, 22(8): 2588–2597
https://doi.org/10.1039/C9GC04333K
27 H Jiang , J X Gu , X S Zheng , M Liu , X Q Qiu , L B Wang , W Z Li , Z F Chen , X B Ji , J Li . Defect-rich and ultrathin N doped carbon nanosheets as advanced trifunctional metal-free electrocatalysts for the ORR, OER and HER. Energy & Environmental Science, 2019, 12(1): 322–333
https://doi.org/10.1039/C8EE03276A
28 Y Y Qiu , S Ali , G J Lan , H Q Tong , J T Fan , H Y Liu , B Li , W F Han , H D Tang , H Z Liu . et al.. Defect-rich activated carbons as active and stable metal-free catalyst for acetylene hydrochlorination. Carbon, 2019, 146: 406–412
https://doi.org/10.1016/j.carbon.2019.01.102
29 C Tang , Q Zhang . Nanocarbon for oxygen reduction electrocatalysis: dopants, edges, and defects. Advanced Materials, 2017, 29(13): 1604103–1604111
https://doi.org/10.1002/adma.201604103
30 G L Bezemer , P B Radstake , V Koot , A J van Dillen , J W Geus , K P de Jong . Preparation of fischer-tropsch cobalt catalysts supported on carbon nanofibers and silica using homogeneous deposition-precipitation. Journal of Catalysis, 2006, 237(2): 291–302
https://doi.org/10.1016/j.jcat.2005.11.015
31 C G Hu , L M Dai . Multifunctional carbon-based metal-free electrocatalysts for simultaneous oxygen reduction, oxygen evolution, and hydrogen evolution. Advanced Materials, 2017, 29(9): 1604942–1604950
https://doi.org/10.1002/adma.201604942
32 J Zhang , Y Jin , C Y Li , Y N Shen , L Han , Z X Hu , X W Di , Z L Liu . Creation of three-dimensionally ordered macroporous Au/CeO2 catalysts with controlled pore sizes and their enhanced catalytic performance for formaldehyde oxidation. Applied Catalysis B: Environmental, 2009, 91(1-2): 11–20
https://doi.org/10.1016/j.apcatb.2009.05.001
33 Z H Zhang , G W Huber . Catalytic oxidation of carbohydrates into organic acids and furan chemicals. Chemical Society Reviews, 2018, 47(4): 1351–1390
https://doi.org/10.1039/C7CS00213K
34 L Y Lai , M Y Liu , J Y Liu , W H Li , W Miao , Z L Sun , Z Y Wang , Y A Wang , H B Shi , C Chen . et al.. Kinetic modeling of glucose oxidation to tartaric acid over monometallic Pt/TiO2 and bimetallic AuPt/TiO2 catalysts: role of bimetals on C−H and C−C cleavages. ACS Sustainable Chemistry & Engineering, 2023, 11(44): 15851–15864
https://doi.org/10.1021/acssuschemeng.3c03807
35 A Abad , A Corma , H García . Catalyst parameters determining activity and selectivity of supported gold nanoparticles for the aerobic oxidation of alcohols: the molecular reaction mechanism. Chemistry, 2008, 14(1): 212–222
https://doi.org/10.1002/chem.200701263
36 J Y Zhang , Z M Li , J H Huang , C Liu , F Hong , K Zheng , G Li . Size dependence of gold clusters with precise numbers of atoms in aerobic oxidation of D-glucose. Nanoscale, 2017, 9(43): 16879–16886
https://doi.org/10.1039/C7NR06566C
37 Z Y Li , D Li , L X Zhong , X H Li , C F Liu , X W Peng . Base-free selective oxidation of monosaccharide into sugar acid by surface-functionalized carbon nanotube composites. Chinese Chemical Letters, 2023, 34(11): 108370–108378
https://doi.org/10.1016/j.cclet.2023.108370
38 X Y Qi , Y L He , Y Yao , Y R Li , L Zhang , M Geng , H Wei , H B Chu , H Chu . Effect of CeO2 morphology on the catalytic properties of Au/CeO2 for base-free glucose oxidation. Catalysis Science & Technology, 2022, 12(4): 1313–1323
https://doi.org/10.1039/D1CY02078A
39 C C M Pereira , E R Lachter . Alkylation of toluene and anisole with 1-octen-3-ol over niobium catalysts. Applied Catalysis A, General, 2004, 266(1): 67–72
https://doi.org/10.1016/j.apcata.2004.01.027
40 M H C de la Cruz , J F C da Silva , E R Lachter . Catalytic activity of niobium phosphate in the Friedel-Crafts reaction of anisole with alcohols. Catalysis Today, 2006, 118(3-4): 379–384
https://doi.org/10.1016/j.cattod.2006.07.058
41 P Carniti , A Gervasini , F Bossola , V Dal Santo . Cooperative action of Bronsted and Lewis acid sites of niobium phosphate catalysts for cellobiose conversion in water. Applied Catalysis B: Environmental, 2016, 193: 93–102
https://doi.org/10.1016/j.apcatb.2016.04.012
[1] FCE-24011-OF-GZ_suppl_1 Download
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed