Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

邮发代号 80-969

2019 Impact Factor: 3.552

Frontiers of Chemical Science and Engineering  2024, Vol. 18 Issue (9): 107   https://doi.org/10.1007/s11705-024-2458-5
  本期目录
Inter-chromosomal insertions into wild-type chromosomes induced by SCRaMbLE
Sijie Zhou1,2, Junyanrui Li1,2, Xichen Cui1,2, Ying Wang1,2, Ying-Jin Yuan1,2()
1. Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
2. Frontiers Research Institute for Synthetic Biology, Tianjin University, Tianjin 300072, China
 全文: PDF(1663 KB)   HTML
Abstract

Genomic rearrangements play a crucial role in shaping biological phenotypic diversity and driving species evolution. Synthetic chromosome rearrangement and modification by LoxP-mediated evolution (SCRaMbLE) has been applied to explore large-scale genomic rearrangements, yet it has been observed that these rearrangements occur exclusively in genomic regions containing loxPsym sites. Here, we found that SCRaMbLE of synthetic yeast harboring synthetic chromosome V and X can generate a variety of synthetic segment insertions into wild-type chromosomes, ranging from 1 to 300 kb. Furthermore, it was revealed that the novel insertions impacted the transcriptional level of neighboring regions and affected the production of exemplar pathway of zeaxanthin. Collectively, our results improve the understanding of the ability of SCRaMbLE to generate complex structural variations in nonsynthetic regions and provide a potential model to explore genomic transposable events.

Key wordsgenomic rearrangements    synthetic yeast genome    SCRaMbLE    inter-chromosomal insertions    synthetic biology
收稿日期: 2024-03-14      出版日期: 2024-06-07
Corresponding Author(s): Ying-Jin Yuan   
 引用本文:   
. [J]. Frontiers of Chemical Science and Engineering, 2024, 18(9): 107.
Sijie Zhou, Junyanrui Li, Xichen Cui, Ying Wang, Ying-Jin Yuan. Inter-chromosomal insertions into wild-type chromosomes induced by SCRaMbLE. Front. Chem. Sci. Eng., 2024, 18(9): 107.
 链接本文:  
https://academic.hep.com.cn/fcse/CN/10.1007/s11705-024-2458-5
https://academic.hep.com.cn/fcse/CN/Y2024/V18/I9/107
Fig.1  
Fig.2  
Fig.3  
Fig.4  
Fig.5  
1 J O Korbel , A E Urban , J P Affourtit , B Godwin , F Grubert , J F Simons , P M Kim , D Palejev , N J Carriero , L Du . et al.. Paired-end mapping reveals extensive structural variation in the human genome. Science, 2007, 318(5849): 420–426
https://doi.org/10.1126/science.1149504
2 M Alonge , X Wang , M Benoit , S Soyk , L Pereira , L Zhang , H Suresh , S Ramakrishnan , F Maumus , D Ciren . et al.. Major impacts of widespread structural variation on gene expression and crop improvement in tomato. Cell, 2020, 182(1): 145–161
https://doi.org/10.1016/j.cell.2020.05.021
3 J Peter , Chiara M De , A Friedrich , J X Yue , D Pflieger , A Bergström , A Sigwalt , B Barre , K Freel , A Llored . et al.. Genome evolution across 1,011 Saccharomyces cerevisiae isolates. Nature, 2018, 556(7701): 339–344
https://doi.org/10.1038/s41586-018-0030-5
4 J X Yue , J Li , L Aigrain , J Hallin , K Persson , K Oliver , A Bergström , P Coupland , J Warringer , M C Lagomarsino . et al.. Contrasting evolutionary genome dynamics between domesticated and wild yeasts. Nature Genetics, 2017, 49(6): 913–924
https://doi.org/10.1038/ng.3847
5 J Kreplak , M A Madoui , P Cápal , P Novák , K Labadie , G Aubert , P E Bayer , K K Gali , R A Syme , D Main . et al.. A reference genome for pea provides insight into legume genome evolution. Nature Genetics, 2019, 51(9): 1411–1422
https://doi.org/10.1038/s41588-019-0480-1
6 H Chen , C Li , X Peng , Z Zhou , J N Weinstein , H Liang , S J Caesar-Johnson , J A Demchok , I Felau , M Kasapi . et al.. A pan-cancer analysis of enhancer expression in nearly 9000 patient samples. Cell, 2018, 173(2): 386–399
https://doi.org/10.1016/j.cell.2018.03.027
7 G Fudenberg , G Getz , M Meyerson , L A Mirny . High order chromatin architecture shapes the landscape of chromosomal alterations in cancer. Nature Biotechnology, 2011, 29(12): 1109–1113
https://doi.org/10.1038/nbt.2049
8 Y Wu , B Z Li , M Zhao , L A Mitchell , Z X Xie , Q H Lin , X Wang , W H Xiao , Y Wang , X Zhou . et al.. Bug mapping and fitness testing of chemically synthesized chromosome X. Science, 2017, 355(6329): eaaf4706
https://doi.org/10.1126/science.aaf4706
9 Z X Xie , B Z Li , L A Mitchell , Y Wu , X Qi , Z Jin , B Jia , X Wang , B X Zeng , H M Liu . et al.. “Perfect” designer chromosome V and behavior of a ring derivative. Science, 2017, 355(6329): eaaf4704
https://doi.org/10.1126/science.aaf4704
10 S Zhou , Y Wu , Y Zhao , Z Zhang , L Jiang , L Liu , Y Zhang , J Tang , Y J Yuan . Dynamics of synthetic yeast chromosome evolution shaped by hierarchical chromatin organization. National Science Review, 2023, 10(5): nwad073
https://doi.org/10.1093/nsr/nwad073
11 H Zhang , X Fu , X Gong , Y Wang , H Zhang , Y Zhao , Y Shen . Systematic dissection of key factors governing recombination outcomes by GCE-SCRaMbLE. Nature Communications, 2022, 13(1): 5836
https://doi.org/10.1038/s41467-022-33606-0
12 B A Blount , X Lu , M R M Driessen , D Jovicevic , M I Sanchez , K Ciurkot , Y Zhao , S Lauer , R M Mckiernan , G O F Gowers . et al.. Synthetic yeast chromosome XI design provides a testbed for the study of extrachromosomal circular DNA dynamics. Cell Genomics, 2023, 3(11): 100418
https://doi.org/10.1016/j.xgen.2023.100418
13 S Zhou , Y Wu , Z X Xie , B Jia , Y J Yuan . Directed genome evolution driven by structural rearrangement techniques. Chemical Society Reviews, 2021, 50(22): 12788–12807
https://doi.org/10.1039/D1CS00722J
14 Y Zhao , C Coelho , A L Hughes , L Lazar-Stefanita , S Yang , A N Brooks , R S K Walker , W Zhang , S Lauer , C Hernandez . et al.. Debugging and consolidating multiple synthetic chromosomes reveals combinatorial genetic interactions. Cell, 2023, 186(24): 5220–5236
https://doi.org/10.1016/j.cell.2023.09.025
15 Z Gvozdenov , Z Barcutean , K Struhl . Functional analysis of a random-sequence chromosome reveals a high level and the molecular nature of transcriptional noise in yeast cells. Molecular Cell, 2023, 83(11): 1786–1797
https://doi.org/10.1016/j.molcel.2023.04.010
16 Y Xiong , H Zhang , S Zhou , L Ma , W Xiao , Y Wu , Y J Yuan . Structural variations and adaptations of synthetic chromosome ends driven by SCRaMbLE in haploid and diploid yeasts. ACS Synthetic Biology, 2023, 12(3): 689–699
https://doi.org/10.1021/acssynbio.2c00424
17 J Steensels , A Gorkovskiy , K J Verstrepen . SCRaMbLEing to understand and exploit structural variation in genomes. Nature Communications, 2018, 9(1): 1937
https://doi.org/10.1038/s41467-018-04308-3
18 Y Shen , F Gao , Y Wang , Y Wang , J Zheng , J Gong , J Zhang , Z Luo , D Schindler , Y Deng . et al.. Dissecting aneuploidy phenotypes by constructing Sc2.0 chromosome VII and SCRaMbLEing synthetic disomic yeast. Cell Genomics, 2023, 3(11): 100364
https://doi.org/10.1016/j.xgen.2023.100364
19 J Wang , Z X Xie , Y Ma , X R Chen , Y Q Huang , B He , B Jia , B Z Li , Y J Yuan . Ring synthetic chromosome V SCRaMbLE. Nature Communications, 2018, 9(1): 3783
https://doi.org/10.1038/s41467-018-06216-y
20 Y Wu , R Y Zhu , L A Mitchell , L Ma , R Liu , M Zhao , B Jia , H Xu , Y X Li , Z M Yang . et al.. In vitro DNA SCRaMbLE. Nature Communications, 2018, 9(1): 1935
https://doi.org/10.1038/s41467-018-03743-6
21 Y Zhang , T Y Chiu , J T Zhang , S J Wang , S W Wang , L Y Liu , Z Ping , Y Wang , A Chen , W W Zhang . et al.. Systematical engineering of synthetic yeast for enhanced production of lycopene. Bioengineering, 2021, 8(1): 14
https://doi.org/10.3390/bioengineering8010014
22 B Jia , J Jin , M Han , B Li , Y Yuan . Directed yeast genome evolution by controlled introduction of trans-chromosomic structural variations. Science China: Life Sciences, 2022, 65(9): 1703–1717
https://doi.org/10.1007/s11427-021-2084-1
23 L Cheng , S Zhao , T Li , S Hou , Z Luo , J Xu , W Yu , S Jiang , M Monti , D Schindler . et al.. Large-scale genomic rearrangements boost SCRaMbLE in Saccharomyces cerevisiae. Nature Communications, 2024, 15(1): 770
https://doi.org/10.1038/s41467-023-44511-5
24 K Voigt , A Gogol-Döring , C Miskey , W Chen , T Cathomen , Z Izsvák , Z Ivics . Retargeting sleeping beauty transposon insertions by engineered zinc finger DNA-binding domains. Molecular Therapy, 2012, 20(10): 1852–1862
https://doi.org/10.1038/mt.2012.126
25 H Cao , A R Hastie , D Cao , E T Lam , Y Sun , H Huang , X Liu , L Lin , W Andrews , S Chan . et al.. Rapid detection of structural variation in a human genome using nanochannel-based genome mapping technology. GigaScience, 2014, 3(1): 34
https://doi.org/10.1186/2047-217X-3-34
26 Z X Xie , L A Mitchell , H M Liu , B Z Li , D Liu , N Agmon , Y Wu , X Li , X Zhou , B Li . et al.. Rapid and efficient CRISPR/Cas9-based mating-type switching of Saccharomyces cerevisiae. G3, 2018, 8(1): 173–183
https://doi.org/10.1534/g3.117.300347
27 G Liti , D M Carter , A M Moses , J Warringer , L Parts , S A James , R P Davey , I N Roberts , A Burt , V Koufopanou . et al.. Population genomics of domestic and wild yeasts. Nature, 2009, 458(7236): 337–341
https://doi.org/10.1038/nature07743
28 D Asker . Isolation and characterization of a novel, highly selective astaxanthin-producing marine bacterium. Journal of Agricultural and Food Chemistry, 2017, 65(41): 9101–9109
https://doi.org/10.1021/acs.jafc.7b03556
29 P Wang , H Xu , H Li , H Chen , S Zhou , F Tian , B Z Li , X Bo , Y Wu , Y J Yuan . SCRaMbLEing of a synthetic yeast chromosome with clustered essential genes reveals synthetic lethal interactions. ACS Synthetic Biology, 2020, 9(5): 1181–1189
https://doi.org/10.1021/acssynbio.0c00059
30 J S Dymond , S M Richardson , C E Coombes , T Babatz , H Muller , N Annaluru , W J Blake , J W Schwerzmann , J Dai , D L Lindstrom . et al.. Synthetic chromosome arms function in yeast and generate phenotypic diversity by design. Nature, 2011, 477(7365): 471–476
https://doi.org/10.1038/nature10403
31 L A Mitchell , A Wang , G Stracquadanio , Z Kuang , X Wang , K Yang , S Richardson , J A Martin , Y Zhao , R Walker . et al.. Synthesis, debugging, and effects of synthetic chromosome consolidation: synVI and beyond. Science, 2017, 355(6329): eaaf4831
https://doi.org/10.1126/science.aaf4831
32 J Carbon . Yeast centromeres: structure and function. Cell, 1984, 37(2): 351–353
https://doi.org/10.1016/0092-8674(84)90363-5
33 H Xu , M Han , S Zhou , B Z Li , Y Wu , Y J Yuan . Chromosome drives via CRISPR-Cas9 in yeast. Nature Communications, 2020, 11(1): 4344
https://doi.org/10.1038/s41467-020-18222-0
34 Y X Li , Y Wu , L Ma , Z Guo , W H Xiao , Y J Yuan . Loss of heterozygosity by SCRaMbLEing. Science China. Life Sciences, 2019, 62(3): 381–393
https://doi.org/10.1007/s11427-019-9504-5
35 N Ko , R Nishihama , J R Pringle . Control of 5-FOA and 5-FU resistance by Saccharomyces cerevisiae YJL055W. Yeast, 2008, 25(2): 155–160
https://doi.org/10.1002/yea.1554
36 A J Wood , T W Lo , B Zeitler , C S Pickle , E J Ralston , A H Lee , R Amora , J C Miller , E Leung , X Meng . et al.. Targeted genome editing across species using ZFNs and TALENs. Science, 2011, 333(6040): 307
https://doi.org/10.1126/science.1207773
37 T Gaj , C A Gersbach , C F Barbas . ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends in Biotechnology, 2013, 31(7): 397–405
https://doi.org/10.1016/j.tibtech.2013.04.004
38 A Fleiss , S O’donnell , T Fournier , W Lu , N Agier , S Delmas , J Schacherer , G Fischer . Reshuffling yeast chromosomes with CRISPR/Cas9. PLOS Genetics, 2019, 15(8): e1008332
https://doi.org/10.1371/journal.pgen.1008332
39 T Sultana , A Zamborlini , G Cristofari , P Lesage . Integration site selection by retroviruses and transposable elements in eukaryotes. Nature Reviews. Genetics, 2017, 18(5): 292–308
https://doi.org/10.1038/nrg.2017.7
40 M Domínguez , E Dugas , M Benchouaia , B Leduque , J M Jiménez-Gómez , V Colot , L Quadrana . The impact of transposable elements on tomato diversity. Nature Communications, 2020, 11(1): 4058
https://doi.org/10.1038/s41467-020-17874-2
41 A N Brooks , A L Hughes , S Clauder-Münster , L A Mitchell , J D Boeke , L M Steinmetz . Transcriptional neighborhoods regulate transcript isoform lengths and expression levels. Science, 2022, 375(6584): 1000–1005
https://doi.org/10.1126/science.abg0162
42 A Studer , Q Zhao , J Ross-Ibarra , J Doebley . Identification of a functional transposon insertion in the maize domestication gene tb1. Nature Genetics, 2011, 43(11): 1160–1163
https://doi.org/10.1038/ng.942
43 S Soyk , Z H Lemmon , M Oved , J Fisher , K L Liberatore , S J Park , A Goren , K Jiang , A Ramos , E Van Der Knaap . et al.. Bypassing negative epistasis on yield in tomato imposed by a domestication gene. Cell, 2017, 169(6): 1142–1155
https://doi.org/10.1016/j.cell.2017.04.032
44 R Fueyo , J Judd , C Feschotte , J Wysocka . Roles of transposable elements in the regulation of mammalian transcription. Nature Reviews: Molecular Cell Biology, 2022, 23(7): 481–497
https://doi.org/10.1038/s41580-022-00457-y
45 Y Wang , M Wang , M N Djekidel , H Chen , D Liu , F W Alt , Y Zhang . eccDNAs are apoptotic products with high innate immunostimulatory activity. Nature, 2021, 599(7884): 308–314
https://doi.org/10.1038/s41586-021-04009-w
46 F Yang , W Su , O W Chung , L Tracy , L Wang , D A Ramsden , Z Z Z Zhang . Retrotransposons hijack alt-EJ for DNA replication and eccDNA biogenesis. Nature, 2023, 620(7972): 218–225
https://doi.org/10.1038/s41586-023-06327-7
47 F Guo , D N Gopaul , G D Van Duyne . Structure of Cre recombinase complexed with DNA in a site-specific recombination synapse. Nature, 1997, 389(6646): 40–46
https://doi.org/10.1038/37925
48 J L Biedler , B A Spengler . Metaphase chromosome anomaly: association with drug resistance and cell-specific products. Science, 1976, 191(4223): 185–187
https://doi.org/10.1126/science.942798
49 C Rosswog , C Bartenhagen , A Welte , Y Kahlert , N Hemstedt , W Lorenz , M Cartolano , S Ackermann , S Perner , W Vogel . et al.. Chromothripsis followed by circular recombination drives oncogene amplification in human cancer. Nature Genetics, 2021, 53(12): 1673–1685
https://doi.org/10.1038/s41588-021-00951-7
[1] FCE-24012-OF-ZS_suppl_1 Download
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed