Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

邮发代号 80-969

2019 Impact Factor: 3.552

Frontiers of Chemical Science and Engineering  2024, Vol. 18 Issue (10): 115   https://doi.org/10.1007/s11705-024-2466-5
  本期目录
Experimental study on microwave pyrolysis of eucalyptus camaldulensis leaves: a promising approach for bio-oil recovery
Muhammad Kashif1, Faizan Ahmad1, Weitao Cao1, Wenke Zhao1, Ehab Mostafa2, Yaning Zhang1()
1. School of Energy Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
2. Faculty of Agriculture, Cairo University, Giza 12613, Egypt
 全文: PDF(941 KB)   HTML
Abstract

Eucalyptus species are extensively cultivated trees commonly used for timber production, firewood, paper manufacturing, and essential nutrient extraction, while lacking consumption of the leaves increases soil acidity. The objective of this study was to recover bio-oil through microwave pyrolysis of eucalyptus camaldulensis leaves. The effects of microwave power (450, 550, 650, 750, and 850 W), pyrolysis temperature (500, 550, 600, 650, and 700 °C), and silicon carbide amount (10, 25, 40, 55, and 70 g) on the products yields and bio-oil constituents were investigated. The yields of bio-oil, gas, and residue varied within the ranges of 19.8–39.25, 33.75–46.7, and 26.0–33.5 wt %, respectively. The optimal bio-oil yield of 39.25 wt % was achieved at 650 W, 600 °C, and 40 g. The oxygenated derivatives, aromatic compounds, aliphatic hydrocarbons, and phenols constituted 40.24–74.25, 3.25–23.19, 0.3–9.77, and 1.58–7.75 area % of the bio-oils, respectively. Acetic acid (8.17–38.18 area %) was identified as a major bio-oil constituent, and hydrocarbons with carbon numbers C1 and C2 were found to be abundant. The experimental results demonstrate the potential of microwave pyrolysis as an eco-friendly and efficient way for converting eucalyptus waste into valuable bio-oil, contributing to the sustainable utilization of biomass resources.

Key wordsbio-oil recovery    eucalyptus leaves    microwave pyrolysis
收稿日期: 2024-02-28      出版日期: 2024-06-19
Corresponding Author(s): Yaning Zhang   
 引用本文:   
. [J]. Frontiers of Chemical Science and Engineering, 2024, 18(10): 115.
Muhammad Kashif, Faizan Ahmad, Weitao Cao, Wenke Zhao, Ehab Mostafa, Yaning Zhang. Experimental study on microwave pyrolysis of eucalyptus camaldulensis leaves: a promising approach for bio-oil recovery. Front. Chem. Sci. Eng., 2024, 18(10): 115.
 链接本文:  
https://academic.hep.com.cn/fcse/CN/10.1007/s11705-024-2466-5
https://academic.hep.com.cn/fcse/CN/Y2024/V18/I10/115
Fig.1  
Proximate analysis/wt %Ultimate analysis/wt %
MadAadVadFCa)COa)HNS
3.324.6277.2114.8546.5644.996.431.860.16
Tab.1  
Fig.2  
Fig.3  
Fig.4  
Oil constituentsFormulaProportion/area %
450 W650 W850 W
Oxygenated derivatives of hydrocarbons40.2464.4468.2
Acetic acidC2H4O210.5127.3238.18
AcetoneC3H6O10.1912.517.47
Propanoic acidC3H6O21.262.901.54
ButyrolactoneC4H6O200.340.55
2-FuranmethanolC5H6O21.062.973.06
Butanoic acid, 3-methyl-C5H10O20.854.473.17
β-D-Glucopyranose,1,6-anhydroC6H10O51.173.483.33
EucalyptolC10H18O0.370.400.74
Aromatic compounds7.425.584.4
PyridineC5H5N3.3600.59
3-PyridinolC5H5NO05.273.45
4-PyridinolC5H5NO3.5300
Pyridine, 2-methylC6H7N0.4400
Aliphatic hydrocarbons0.159.772.4
PropaneC3H809.190
3-HeptyneC7H120.1500
Phenols7.754.313.6
PhenolC6H6O5.922.692.94
Phenol, 4-methylC7H8O1.520.840
Phenol, 2,6-dimethoxyC8H10O300.230.58
Others44.4215.9121.4
FluoroethyneC2HF13.800
5-MethylhydantoinC4H6N2O211.472.961.54
Water contenta)H2O75.467.269.3
Tab.2  
Fig.5  
Fig.6  
Fig.7  
Oil constituentsFormulaProportion/area %
500 °C600 °C700 °C
Oxygenated derivatives of hydrocarbons74.2564.4471.99
Acetic acidC2H4O215.7927.328.17
AcetoneC3H6O8.6612.518.17
2-Propanone, 1-hydroxyC3H6O22.11029.25
Propanoic acidC3H6O202.902.86
FurfuralC5H4O26.2100
2-FuranmethanolC5H6O21.892.973.96
1,4:3,6-Dianhydro-α-d-glucopyranoseC6H8O41.472.802.80
EucalyptolC10H18O0.480.400.34
Aromatic compounds14.895.587.45
PyridineC5H5N4.2200
3-PyridinolC5H5NO6.865.276.51
Pyridine, 2-methylC6H7N2.0300
1,1-Biphenyl, 2-methylC13H120.07400.20
Aliphatic hydrocarbons1.169.770.3
3-HeptyneC7H120.1500
CyclopenteneC10H180.2700
Phenols6.874.313.79
PhenolC6H6O3.212.691.05
Phenol, 2-methoxyC7H8O21.6401.08
Phenol, 2,6-dimethoxyC8H10O31.30.230.9
Others2.8315.9116.47
2-PropenenitrileC3H3N01.271.49
HydrazineH4N20011.05
Water contenta)H2O7167.275.5
Tab.3  
Fig.8  
Fig.9  
Oil constituentsFormulaProportion/area %
10 g40 g70 g
Oxygenated derivatives of hydrocarbons49.7864.4469.33
Acetic acidC2H4O216.4327.3228.03
AcetoneC3H6O3.7812.512.76
Propanoic acidC3H6O21.712.903.00
ButyrolactoneC4H6O200.340.12
Butanoic acid, 3-methyl-C5H10O21.154.472.25
2-FuranmethanolC5H6O21.272.9782.66
Beta-D-glucopyranose,1,6-anhydroC6H10O51.173.483.33
EucalyptolC10H18O4.130.400.58
Aromatic compounds23.195.583.25
PyridineC5H5N2.3201.55
3-PyridinolC5H5NO3.655.271.38
Pyridine, 3-methylC6H7N4.7800
StyreneC8H81.3700
Aliphatic hydrocarbons4.689.770.93
PropaneC3H809.190
EicosaneC20H420.2300.15
Phenols1.584.316.01
PhenolC6H6O0.222.694.13
Phenol, 4-methylC7H8O0.580.841.29
Phenol, 2-methylC7H8O0.580.150
Others20.7715.920.48
5-MethylhydantoinC4H6N2O21.1802.79
FluoroethyneC2HF0.881.270
Water contentsa)H2O73.867.276.8
Tab.4  
1 T Ferdan , M Pavlas , V Nevrlý , R Šomplák , P Stehlík . Greenhouse gas emissions from thermal treatment of non-recyclable municipal waste. Frontiers of Chemical Science and Engineering, 2018, 12(4): 815–831
https://doi.org/10.1007/s11705-018-1761-4
2 J Wu , G Tang , R Wang , S Yanwei . Multi-objective optimization for China’s power carbon emission reduction by 2035. Journal of Thermal Science, 2019, 28(2): 184–194
https://doi.org/10.1007/s11630-019-1108-6
3 L Fang , T Huang , H Lu , X L Wu , Z Chen , H Yang , S Wang , Z Tang , Z Li , B Hu , X Wang . Biochar-based materials in environmental pollutant elimination, H2 production and CO2 capture applications. Biochar, 2023, 5(1): 42
https://doi.org/10.1007/s42773-023-00237-7
4 J Chen , L Dai , D Mataya , K Cobb , P Chen , R Ruan . Enhanced sustainable integration of CO2 utilization and wastewater treatment using microalgae in circular economy concept. Bioresource Technology, 2022, 366: 128188
https://doi.org/10.1016/j.biortech.2022.128188
5 S Pye , F G Li , J Price , B Fais . Achieving net-zero emissions through the reframing of UK national targets in the post-Paris Agreement era. Nature Energy, 2017, 2(3): 1–7
https://doi.org/10.1038/nenergy.2017.24
6 IEA. Energy Statistics Data Browser, IEA, Paris. Available at IEA website (2022)
7 Y Zhang , X Wang . Geographical spatial distribution and productivity dynamic change of eucalyptus plantations in China. Scientific Reports, 2021, 11(1): 19764
https://doi.org/10.1038/s41598-021-97089-7
8 E F Elli , P C Sentelhas , F D Bender . Impacts and uncertainties of climate change projections on eucalyptus plantations productivity across Brazil. Forest Ecology and Management, 2020, 474: 118365
https://doi.org/10.1016/j.foreco.2020.118365
9 M J Nasir , W Akhtar , V K Oad . Spatial distribution of eucalyptus plantation and its impact on the depletion of groundwater resources of tehsil Swat Ranizai, District Malakand. Arabian Journal of Geosciences, 2023, 16(4): 245
https://doi.org/10.1007/s12517-023-11322-3
10 A Sharma , A A Kumar , B Mohanty , A N Sawarkar . Critical insights into pyrolysis and co-pyrolysis of poplar and eucalyptus wood sawdust: physico-chemical characterization, kinetic triplets, reaction mechanism, and thermodynamic analysis. Renewable Energy, 2023, 210: 321–334
https://doi.org/10.1016/j.renene.2023.04.066
11 M S de Souza Kulmann , H de Jesus Eufrade-Junior , G Dick , M V Schumacher , G B de Azevedo , G T D O S Azevedo , S P S Guerra . Belowground biomass harvest influences biomass production, stock, export and nutrient use efficiency of second rotation Eucalyptus plantations. Biomass and Bioenergy, 2022, 161: 106476
https://doi.org/10.1016/j.biombioe.2022.106476
12 M G Kabir , Y Wang , M Abuhena , M F Azim , J Al-Rashid , N M Rasul , P Mandal , P Maitra . Maitra P. A bio-sustainable approach for reducing eucalyptus tree-caused agricultural ecosystem hazards employing Trichoderma bio-sustained spores and mycorrhizal networks. Frontiers in Microbiology, 2023, 13: 1071392
https://doi.org/10.3389/fmicb.2022.1071392
13 M Li , Z Yu , Y Bin , Z Huang , H He , A Zheng , X Ma . Microwave-assisted pyrolysis of eucalyptus wood with MoO3 and different nitrogen sources for coproducing nitrogen-rich bio-oil and char. Journal of Analytical and Applied Pyrolysis, 2022, 167: 105666
https://doi.org/10.1016/j.jaap.2022.105666
14 D Yu , G Jin , Y Pang , Y Chen , S Guo , S Shen . Gas characteristics of pine sawdust catalyzed pyrolysis by additives. Journal of Thermal Science, 2021, 30(1): 333–342
https://doi.org/10.1007/s11630-020-1244-z
15 T R Kosanić , M B Ćeranić , S N Đurić , V R Grković , M M Milotić , S D Brankov . Experimental investigation of pyrolysis process of woody biomass mixture. Journal of Thermal Science, 2014, 23(3): 290–296
https://doi.org/10.1007/s11630-014-0709-3
16 L Leng , L Yang , X Lei , W Zhang , Z Ai , Z Yang , H Zhan , J Yang , X Yuan , H Peng . et al.. Machine learning predicting and engineering the yield, N content, and specific surface area of biochar derived from pyrolysis of biomass. Biochar, 2022, 4(1): 63
https://doi.org/10.1007/s42773-022-00183-w
17 X Zhang , X Yang , X Yuan , S Tian , X Wang , H Zhang , L Han . Effect of pyrolysis temperature on composition, carbon fraction and abiotic stability of straw biochars: correlation and quantitative analysis. Carbon Research, 2022, 1(1): 17
https://doi.org/10.1007/s44246-022-00017-1
18 Y Shiferaw , A Tedla , C Mellese , A Mengistu , B Debay , Y Selamawi , E Merene , N Awol . Conversion of coffee residue waste and Eucalyptus globulus leaf extract into an alternative solid fuel. Energy Sources. Part A, Recovery, Utilization, and Environmental Effects, 2018, 40(7): 780–786
https://doi.org/10.1080/15567036.2018.1463309
19 L Dai , Y Wang , Y Liu , C He , R Ruan , Z Yu , L Jiang , Z Zeng , Q Wu . A review on selective production of value-added chemicals via catalytic pyrolysis of lignocellulosic biomass. Science of the Total Environment, 2020, 749: 142386
https://doi.org/10.1016/j.scitotenv.2020.142386
20 D Kundu , P Sharma , S Bhattacharya , K Gupta , S Sengupta , J Shang . Study of methylene blue dye removal using biochar derived from leaf and stem of Lantana camara L. Carbon Research, 2024, 3(1): 1–14
https://doi.org/10.1007/s44246-024-00108-1
21 Z Zhuang , Y Liu , W Wei , J Shi , H Jin . Preparation of biochar adsorption material from walnut shell by supercritical CO2 pretreatment. Biochar, 2024, 6(1): 1–18
https://doi.org/10.1007/s42773-024-00302-9
22 S P Iglesias , M R Miyazaki , A P Mariano , T T Franco . Techno-economic assessment of bio-oil produced from Eucalyptus forestry residues. Industrial Crops and Products, 2021, 171: 113936
https://doi.org/10.1016/j.indcrop.2021.113936
23 Y Zhang , P Chen , S Liu , P Peng , M Min , Y Cheng , E Anderson , N Zhou , L Fan , C Liu . et al.. Effects of feedstock characteristics on microwave-assisted pyrolysis—a review. Bioresource Technology, 2017, 230: 143–151
https://doi.org/10.1016/j.biortech.2017.01.046
24 S Allende , G Brodie , M V Jacob . Breakdown of biomass for energy applications using microwave pyrolysis: a technological review. Environmental Research, 2023, 226: 115619
https://doi.org/10.1016/j.envres.2023.115619
25 H Shang , P Ye , Y Yue , T Wang , W Zhang , S Omar , J Wang . Experimental and theoretical study of microwave enhanced catalytic hydrodesulfurization of thiophene in a continuous-flow reactor. Frontiers of Chemical Science and Engineering, 2019, 13(4): 744–758
https://doi.org/10.1007/s11705-019-1839-7
26 A Zheng , S Xia , F Cao , S Liu , X Yang , Z Zhao , Y Tian , H Li . Directional valorization of eucalyptus waste into value-added chemicals by a novel two-staged controllable pyrolysis process. Chemical Engineering Journal, 2021, 404: 127045
https://doi.org/10.1016/j.cej.2020.127045
27 S Omar , Y Yang , J Wang . A review on catalytic & non-catalytic bio-oil upgrading in supercritical fluids. Frontiers of Chemical Science and Engineering, 2021, 15(1): 4–17
https://doi.org/10.1007/s11705-020-1933-x
28 S Omar , S Alsamaq , Y Yang , J Wang . Production of renewable fuels by blending bio-oil with alcohols and upgrading under supercritical conditions. Frontiers of Chemical Science and Engineering, 2019, 13(4): 702–717
https://doi.org/10.1007/s11705-019-1861-9
29 R Singh , S Singh , M Kumar . Impact of n-butanol as an additive with eucalyptus biodiesel-diesel blends on the performance and emission parameters of the diesel engine. Fuel, 2022, 277: 118178
https://doi.org/10.1016/j.fuel.2020.118178
30 C Mendoza-Martinez , E Sermyagina , J Saari , V F Ramos , E Vakkilainen , M Cardoso , E P A Rocha . Fast oxidative pyrolysis of eucalyptus wood residues to replace fossil oil in pulp industry. Energy, 2023, 263: 126076
https://doi.org/10.1016/j.energy.2022.126076
31 J Xu , A Tahmasebi , J Yu . An experimental study on the formation of methoxyaromatics during pyrolysis of eucalyptus pulverulenta: yields and mechanisms. Bioresource Technology, 2016, 218: 743–750
https://doi.org/10.1016/j.biortech.2016.07.020
32 R K Singh , D K Shrivastava , A Sarkar , J P Chakraborty . Co-pyrolysis of eucalyptus and sodium polyacrylate: optimization and synergistic effect. Fuel, 2020, 277: 118115
https://doi.org/10.1016/j.fuel.2020.118115
33 M L Ramadhan , S Zarate , J Carrascal , A F Osorio , J P Hidalgo . Effect of fuel bed size and moisture on the flammability of eucalyptus saligna leaves in cone calorimeter testing. Fire Safety Journal, 2021, 120: 103016
https://doi.org/10.1016/j.firesaf.2020.103016
34 M Amutio , G Lopez , J Alvarez , M Olazar , J Bilbao . Fast pyrolysis of eucalyptus waste in a conical spouted bed reactor. Bioresource Technology, 2015, 194: 225–232
https://doi.org/10.1016/j.biortech.2015.07.030
35 J E Joubert , M Carrier , N Dahmen , R Stahl , J H Knoetze . Inherent process variations between fast pyrolysis technologies: a case study on eucalyptus grandis. Fuel Processing Technology, 2015, 131: 389–395
https://doi.org/10.1016/j.fuproc.2014.12.012
36 K H Kim , T S Kim , S M Lee , D Choi , H Yeo , I G Choi , J W Choi . Comparison of physicochemical features of biooils and biochars produced from various woody biomasses by fast pyrolysis. Renewable Energy, 2013, 50: 188–195
https://doi.org/10.1016/j.renene.2012.06.030
37 P Prakash , L Kamble , K N Sheeba . Experimental studies on biomass pyrolysis using microwave radiation. Energy Sources. Part A, Recovery, Utilization, and Environmental Effects, 2015, 37(24): 2675–2683
https://doi.org/10.1080/15567036.2012.713079
38 F Mushtaq , T A T Abdullah , R Mat , F N Ani . Optimization and characterization of bio-oil produced by microwave assisted pyrolysis of oil palm shell waste biomass with microwave absorber. Bioresource Technology, 2015, 190: 442–450
https://doi.org/10.1016/j.biortech.2015.02.055
39 D Venegas-Vásconez , L E Arteaga-Pérez , M G Aguayo , R Romero-Carrillo , V H Guerrero , L Tipanluisa-Sarchi , S Alejandro-Martín . Analytical pyrolysis of pinus radiata and eucalyptus globulus: effects of microwave pretreatment on pyrolytic vapours composition. Polymers, 2023, 15(18): 3790
https://doi.org/10.3390/polym15183790
40 T Qu , W Guo , L Shen , J Xiao , K Zhao . Experimental study of biomass pyrolysis based on three major components: hemicellulose, cellulose, and lignin. Industrial & Engineering Chemistry Research, 2011, 50(18): 10424–10433
https://doi.org/10.1021/ie1025453
41 A Heidari , R Stahl , H Younesi , A Rashidi , N Troeger , A A Ghoreyshi . Effect of process conditions on product yield and composition of fast pyrolysis of eucalyptus grandis in fluidized bed reactor. Journal of Industrial and Engineering Chemistry, 2014, 20(4): 2594–2602
https://doi.org/10.1016/j.jiec.2013.10.046
42 D Mourant , C Lievens , R Gunawan , Y Wang , X Hu , L Wu , S S A Syed-Hassan , C Z Li . Effects of temperature on the yields and properties of bio-oil from the fast pyrolysis of mallee bark. Fuel, 2013, 108: 400–408
https://doi.org/10.1016/j.fuel.2012.12.018
43 E L Schultz , C A Mullen , A A Boateng . Aromatic hydrocarbon production from eucalyptus urophylla pyrolysis over several metal-modified ZSM-5 catalysts. Energy Technology, 2017, 5(1): 196–204
https://doi.org/10.1002/ente.201600206
44 J Xu , Y Liao , Y Lin , X Ma , Z Yu . Study on catalytic pyrolysis of eucalyptus to produce aromatic hydrocarbons by Zn-Fe co-modified HZSM-5 catalysts. Journal of Analytical and Applied Pyrolysis, 2019, 139: 96–103
https://doi.org/10.1016/j.jaap.2019.01.014
45 B Gullón , P Gullón , T A Lú-Chau , M T Moreira , J M Lema , G Eibes . Optimization of solvent extraction of antioxidants from eucalyptus globulus leaves by response surface methodology: characterization and assessment of their bioactive properties. Industrial Crops and Products, 2017, 108: 649–659
https://doi.org/10.1016/j.indcrop.2017.07.014
46 Z Yu , L Jiang , Y Wang , Y Li , L Ke , Q Yang , Y Peng , J Xu , L Dai , Q Wu . et al.. Catalytic pyrolysis of woody oil over SiC foam-MCM41 catalyst for aromatic-rich bio-oil production in a dual microwave system. Journal of Cleaner Production, 2020, 255: 120179
https://doi.org/10.1016/j.jclepro.2020.120179
47 C Chen , J Tang , C Guo , H Huang . Effect of composite additives on microwave-assisted pyrolysis of microalgae. Energy Sources. Part A, Recovery, Utilization, and Environmental Effects, 2022, 44(1): 2261–2271
https://doi.org/10.1080/15567036.2019.1649328
48 S Fan , Y Zhang , T Liu , W Fu , B Li . Microwave-assisted pyrolysis of polystyrene for aviation oil production. Journal of Analytical and Applied Pyrolysis, 2022, 162: 105425
https://doi.org/10.1016/j.jaap.2021.105425
49 X Hu , R Gunawan , D Mourant , Y Wang , C Lievens , W Chaiwat , L Wu , C Z Li . Esterification of bio-oil from Mallee (Eucalyptus loxophleba ssp. gratiae) leaves with a solid acid catalyst: conversion of the cyclic ether and terpenoids into hydrocarbons. Bioresource Technology, 2012, 123: 249–255
https://doi.org/10.1016/j.biortech.2012.07.073
50 G T Le , P Mala , S Ratchahat , T Charinpanitkul . Bio-based production of carbon nanotubes via co-pyrolysis of eucalyptus oil and ferrocene. Journal of Analytical and Applied Pyrolysis, 2021, 158: 105257
https://doi.org/10.1016/j.jaap.2021.105257
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed