Improving the performance of paper-based separator for lithium-ion batteries application by cellulose fiber acetylation and metal-organic framework coating
1. Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials Science, Nanning Normal University, Nanning 530001, China 2. Huzhou Yongxing Lithium Battery Technology Co., Ltd., Huzhou 313000, China 3. College of Food Science and Engineering, Xinyang Agriculture and Forestry University, Xinyang 464000, China
Paper-based separator for lithium-ion battery application has attracted great attention due to its good electrolyte affinity and thermal stability. To avoid the short circuit by the micron-sized pores of paper and improve the electrochemical properties of paper-based separator, cellulose fibers were acetylated followed by wet papermaking and metal-organic framework coating. Due to the strong intermolecular interaction between acetylated cellulose fibers and N,N-dimethylformamide, the resulting separator exhibited compact microstructure. The zeolitic imidazolate framework-8 coating endowed the separator with enhanced electrolyte affinity (electrolyte contact angle of 0°), ionic conductivity (1.26 mS·cm–1), interfacial compatibility (284 Ω), lithium ion transfer number (0.61) and electrochemical stability window (4.96 V). The assembled LiFePO4/Li battery displayed an initial discharge capacity of 146.10 mAh·g–1 at 0.5 C with capacity retention of 99.71% after 100 cycles and good rate performance. Our proposed strategy would provide a novel perspective for the design of high-performance paper-based separators for battery applications.
Y Zhang , Z Wang . Review on cellulose paper-based electrodes for sustainable batteries with high energy densities. Frontiers of Chemical Science and Engineering, 2023, 17(8): 1010–1027 https://doi.org/10.1007/s11705-023-2307-y
2
J Sheng , S Tong , Z He , R Yang . Recent developments of cellulose materials for lithium-ion battery separators. Cellulose, 2017, 24(10): 4103–4122 https://doi.org/10.1007/s10570-017-1421-8
3
J Wang , J Yang , L Shen , Q Guo , H He , X Yao . Synergistic effects of plasticizer and 3D framework towards high-performance solid polymer electrolyte for room-temperature solid-state lithium batteries. ACS Applied Energy Materials, 2021, 4(4): 4129–4137 https://doi.org/10.1021/acsaem.1c00468
4
X Liu , M Qin , W Sun , D Zhang , B Jian , Z Sun , S Wang , X Li . Study on cellulose nanofibers/aramid fibers lithium-ion battery separators by the heterogeneous preparation method. International Journal of Biological Macromolecules, 2023, 225: 1476–1486 https://doi.org/10.1016/j.ijbiomac.2022.11.204
5
Z Wang , L Shen , S Deng , P Cui , X Yao . 10 μm-thick high-strength solid polymer electrolytes with excellent interface compatibility for flexible all-solid-state lithium metal batteries. Advanced Materials, 2021, 33(25): 2100353 https://doi.org/10.1002/adma.202100353
6
F Xu , S Deng , Q Guo , D Zhou , X Yao . Quasi-ionic liquid enabling single-phase poly(vinylidene fluoride)-based polymer electrolytes for solid-state LiNi0.6Co0.2Mn0.2O2||Li batteries with rigid-flexible coupling interphase. Small Methods, 2021, 5(7): 2100262 https://doi.org/10.1002/smtd.202100262
7
Z Wang , Q Guo , R Jiang , S Deng , J Ma , P Cui , X Yao . Porous poly(vinylidene fluoride) supported three-dimensional poly(ethylene glycol) thin solid polymer electrolyte for flexible high temperature all-solid-state lithium metal batteries. Chemical Engineering Journal, 2022, 435(3): 135106 https://doi.org/10.1016/j.cej.2022.135106
8
C Song , C Gao , Q Peng , M Gibril , X Wang , S Wang , F Kong . A novel high-performance electrospun of polyimide/lignin nanofibers with unique electrochemical properties and its application as lithium-ion batteries separators. International Journal of Biological Macromolecules, 2023, 246: 125668 https://doi.org/10.1016/j.ijbiomac.2023.125668
9
H Pei , J Chen , H Liu , L Zhang , H Hui , Z Li , J Li , X Li . Ionic conductivity enhanced by crown ether bridges for lithium-ion battery separators. Applied Surface Science, 2023, 608: 155030 https://doi.org/10.1016/j.apsusc.2022.155030
10
G Feng , Z Li , L Mi , J Zheng , X Feng , W Chen . Polypropylene/hydrophobic-silica-aerogel-composite separator induced enhanced safety and low polarization for lithium-ion batteries. Journal of Power Sources, 2018, 376: 177–183 https://doi.org/10.1016/j.jpowsour.2017.11.086
11
N Wang , W Liu , H Liao , Z Li , Y Chen , G Zeng . Pure cellulose nanofiber separator with high ionic conductivity and cycling stability for lithium-ion batteries. International Journal of Biological Macromolecules, 2023, 250: 126078 https://doi.org/10.1016/j.ijbiomac.2023.126078
12
L Zhang , X Sun , Z Hu , C Yuan , C Chen . Rice paper as a separator membrane in lithium-ion batteries. Journal of Power Sources, 2012, 204: 149–154 https://doi.org/10.1016/j.jpowsour.2011.12.028
13
S Leijonmarck , A Cornell , G Lindbergh , L Wagberg . Single-paper flexible Li-ion battery cells through a paper-making process based on nano-fibrillated cellulose. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2013, 1(15): 4671–4677 https://doi.org/10.1039/c3ta01532g
14
L Zolin , M Destro , D Chaussy , N Penazzi , C Gerbaldi , D Beneventi . Aqueous processing of paper separators by filtration dewatering: towards Li-ion paper batteries. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2015, 3(28): 14894–14901 https://doi.org/10.1039/C5TA03716F
15
Y Wang , J Luo , L Chen , J Long , J Hu , L Meng . Effect of fibrillated fiber morphology on properties of paper-based separators for lithium-ion battery applications. Journal of Power Sources, 2021, 482: 228899 https://doi.org/10.1016/j.jpowsour.2020.228899
16
Z Wang , H Xiang , L Wang , R Xia , S Nie , C Chen , H Wang . A paper-supported inorganic composite separator for high-safety lithium-ion batteries. Journal of Membrane Science, 2018, 553: 10–16 https://doi.org/10.1016/j.memsci.2018.02.040
17
Z Zhang , M Zhou , J Yu , J Cai , Z Yang . Poly(vinylidene fluoride) modified commercial paper as a separator with enhanced thermal stability and electrolyte affinity for lithium-ion battery. Energy & Environmental Materials, 2021, 4(4): 664–670 https://doi.org/10.1002/eem2.12153
18
Z Li , W Wang , X Liang , J Wang , Y Xu , W Li . Fiber swelling to improve cycle performance of paper-based separator for lithium-ion batteries application. Journal of Energy Chemistry, 2023, 79(4): 92–100 https://doi.org/10.1016/j.jechem.2022.08.030
19
L Joseph , B M Jun , M Jang , C M Park , J C Muñoz-Senmache , A J Hernández-Maldonado , A Heyden , M Yu , Y Yoon . Removal of contaminants of emerging concern by metal-organic framework nanoadsorbents: a review. Chemical Engineering Journal, 2019, 369: 928–946 https://doi.org/10.1016/j.cej.2019.03.173
20
R Riccò , W Liang , S Li , J Gassensmith , F Caruso , C Doonan , P Falcaro . Metal-organic frameworks for cell and virus biology: a perspective. ACS Nano, 2018, 12(1): 13–23 https://doi.org/10.1021/acsnano.7b08056
21
X Sun , W Xu , X Zhang , T Lei , S Lee , Q Wu . ZIF-67@cellulose nanofiber hybrid membrane with controlled porosity for use as Li-ion battery separator. Journal of Energy Chemistry, 2021, 52(1): 170–180 https://doi.org/10.1016/j.jechem.2020.04.057
22
Q Huang , C Zhao , X Li . Enhanced electrolyte retention capability of separator for lithium-ion battery constructed by decorating ZIF-67 on bacterial cellulose nanofiber. Cellulose, 2021, 28(5): 3097–3112 https://doi.org/10.1007/s10570-021-03720-1
23
S Zheng , X Zhu , Y Ouyang , K Chen , A Chen , X Fan , Y Miao , T Liu , Y Xie . Metal-organic framework decorated polymer nanofiber composite separator for physiochemically shielding polysulfides in stable lithium-sulfur batteries. Energy & Fuels, 2021, 35(23): 19154–19163 https://doi.org/10.1021/acs.energyfuels.1c02081
24
W Wang , Z Li , H Huang , W Li , J Wang . Facile design of novel nanocellulose-based gel polymer electrolyte for lithium-ion batteries application. Chemical Engineering Journal, 2022, 445: 136568 https://doi.org/10.1016/j.cej.2022.136568
25
E M Abd El-Monaem , A M Omer , R E Khalifa , A S Eltaweil . Floatable cellulose acetate beads embedded with flower-like zwitterionic binary MOF/PDA for efficient removal of tetracycline. Journal of Colloid and Interface Science, 2022, 620: 333–345 https://doi.org/10.1016/j.jcis.2022.04.010
26
Z Li. Preparation and performance studies of acylated paper-based separators for lithium-ion battery application. Dissertation for the Master’s Degree. Nanning: Guangxi University, 2023
27
Y Hu , H Kazemian , S Rohani , Y Huang , Y Song . In situ high pressure study of ZIF-8 by FTIR spectroscopy. Chemical Communications, 2011, 47(47): 12694–12696 https://doi.org/10.1039/c1cc15525c
28
Z Yang , W Wang , Z Shao , H Zhu , Y Li , F Wang . The transparency and mechanical properties of cellulose acetate nanocomposites using cellulose nanowhiskers as fillers. Cellulose, 2013, 20(1): 159–168 https://doi.org/10.1007/s10570-012-9796-z
29
P Ajkidkarn , H Manuspiya . Novel bacterial cellulose nanocrystals/polyether block amide microporous membranes as separators. International Journal of Biological Macromolecules, 2020, 164: 3580–3588 https://doi.org/10.1016/j.ijbiomac.2020.08.234
30
Y Zhu , S Xiao , M Li , Z Chang , F Wang , J Gao , Y Wu . Natural macromolecule based carboxymethyl cellulose as a gel polymer electrolyte with adjustable porosity for lithium ion batteries. Journal of Power Sources, 2015, 288: 368–375 https://doi.org/10.1016/j.jpowsour.2015.04.117
31
M Li , X Wang , Y Yang , Z Chang , Y Wu , R Holze . A dense cellulose-based membrane as a renewable host for gel polymer electrolyte of lithium ion batteries. Journal of Membrane Science, 2015, 476: 112–118 https://doi.org/10.1016/j.memsci.2014.10.056
32
J Yang , X Zhao , W Zhang , K Ren , X Luo , J Cao , S Zheng , W Li , X Wu . “Pore-hopping” ion transport in cellulose-based separator towards high-performance sodium-ion batteries. Angewandte Chemie International Edition, 2023, 62(15): e202300258 https://doi.org/10.1002/anie.202300258
33
J Xing , J Li , W Fan , T Zhao , X Chen , H Li , Y Cui , Z Wei , Y Zhao . A review on nanofibrous separators towards enhanced mechanical properties for lithium-ion batteries. Composites Part B: Engineering, 2022, 243: 110105 https://doi.org/10.1016/j.compositesb.2022.110105
34
L Tan , Z Li , R Shi , F Quan , B Wang , X Ma , Q Ji , X Tian , Y Xia . Preparation and properties of an alginate-based fiber separator for lithium-ion batteries. ACS Applied Materials & Interfaces, 2020, 12(34): 38175–38182 https://doi.org/10.1021/acsami.0c10630
35
X Zhan , J Zhang , M Liu , J Lu , Q Zhang , F Chen . Advanced polymer electrolyte with enhanced electrochemical performance for lithium-ion batteries: effect of nitrile-functionalized ionic liquid. ACS Applied Energy Materials, 2019, 2(3): 1685–1694 https://doi.org/10.1021/acsaem.8b01733
36
C Qin , W Wang , W Li , S Zhang . Reactive water vapor barrier coatings derived from cellulose undecenoyl esters for paper packaging. Coatings, 2020, 10(11): 1032 https://doi.org/10.3390/coatings10111032
37
M Kim , H Kim , K Lee , D Kim . Frosting characteristics on hydrophobic and superhydrophobic surfaces: a review. Energy Conversion and Management, 2017, 138: 1–11 https://doi.org/10.1016/j.enconman.2017.01.067
38
J Zhang , L Yue , Q Kong , Z Liu , X Zhou , C Zhang , Q Xu , B Zhang , G Ding , B Qin . et al.. Sustainable, heat-resistant and flame-retardant cellulose-based composite separator for high-performance lithium ion battery. Scientific Reports, 2014, 4(1): 3935 https://doi.org/10.1038/srep03935
39
P Minoofar , R Hernandez , S Chia , B Dunn , J Zink , A Franville . Placement and characterization of pairs of luminescent molecules in spatially separated regions of nanostructured thin films. Journal of the American Chemical Society, 2002, 124(48): 14388–14396 https://doi.org/10.1021/ja020817n
40
J Wang , C Wang , W Wang , W Li , J Lou . Carboxymethylated nanocellulose-based gel polymer electrolyte with a high lithium ion transfer number for flexible lithium-ion batteries application. Chemical Engineering Journal, 2022, 428(3): 132604 https://doi.org/10.1016/j.cej.2021.132604
41
J Zhang , Z Zhang , T Wu , X Luo . MOF particles (UiO-66 and UiO-66(Ce))/cellulose nanocomposite separators with regulating ion transport controllably for lithium battery. Journal of Electroanalytical Chemistry, 2023, 946: 117708 https://doi.org/10.1016/j.jelechem.2023.117708
42
X Song , X Xu , J Liu . Application of metal/covalent organic frameworks in separators for metal-ion batteries. ChemNanoMat: Chemistry of Nanomaterials for Energy, Biology and More, 2023, 9(10): e202300246 https://doi.org/10.1002/cnma.202300246
43
X Zhao , W Wang , C Huang , L Luo , Z Deng , W Guo , J Xu , Z Meng . A novel cellulose membrane from cattail fibers as separator for Li-ion batteries. Cellulose, 2021, 28(14): 9309–9321 https://doi.org/10.1007/s10570-021-04110-3
44
J Sheng , T Chen , R Wang , Z Zhang , F Hua , R Yang . Ultra-light cellulose nanofibril membrane for lithium-ion batteries. Journal of Membrane Science, 2020, 595: 117550 https://doi.org/10.1016/j.memsci.2019.117550
45
S Zhang , J Luo , M Du , H Hui , Z Sun . Safety and cycling stability enhancement of cellulose paper-based lithium-ion battery separator by aramid nanofibers. European Polymer Journal, 2022, 171: 111222 https://doi.org/10.1016/j.eurpolymj.2022.111222
46
X Zeng , Y Liu , R He , T Li , Y Hu , C Wang , J Xu , L Wang , H Wang . Tissue paper-based composite separator using nano-SiO2 hybrid crosslinked polymer electrolyte as coating layer for lithium ion battery with superior security and cycle stability. Cellulose, 2022, 29(7): 3985–4000 https://doi.org/10.1007/s10570-022-04499-5
47
C Zhua , J Zhang , J Xua , X Yin , J Wu , S Chen , Z Zhu , L Wang , H Wang . Facile fabrication of cellulose/polyphenylene sulfide composite separator for lithium-ion batteries. Carbohydrate Polymers, 2020, 248: 116753 https://doi.org/10.1016/j.carbpol.2020.116753
48
Y Wang , X Liu , J Sheng , H Zhu , R Yang . Nanoporous regenerated cellulose separator for high-performance lithium ion batteries prepared by nonsolvent-induced phase separation. ACS Sustainable Chemistry & Engineering, 2021, 9(44): 14756–14765 https://doi.org/10.1021/acssuschemeng.1c04350