Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

邮发代号 80-969

2019 Impact Factor: 3.552

Frontiers of Chemical Science and Engineering  2025, Vol. 19 Issue (1): 5   https://doi.org/10.1007/s11705-024-2506-1
  本期目录
Probing the dynamics of methanol in copper-loaded zeolites via quasi-elastic and inelastic neutron scattering
Vainius Skukauskas1,2, Nicolas De Souza3, Emma K. Gibson1,2, Ian P. Silverwood1,4()
. UK Catalysis Hub, Research Complex at Harwell, Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, OX11 0FA, UK
. School of Chemistry, University of Glasgow, Glasgow, G12 8QQ, UK
. Australian Nuclear Science and Technology Organisation (ANSTO), NSW 2232, Australia
. ISIS Neutron and Muon Facility, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, OX11 0QX, UK
 全文: PDF(645 KB)   HTML
Abstract

The dynamics of methanol within prototype methanol synthesis catalysts were studied using quasi-elastic neutron scattering. Three Cu-exchanged zeolites (mordenite, SSZ-13 and ZSM-5) were studied after methanol loading and showed jump diffusion coefficients between 1.04 × 10−10 and 2.59 × 10−10 m2·s–1. Non-Arrhenius behavior was observed with varying temperature due to methoxy formation at Brønsted acid sites and methanol clustering around copper cations.

Key wordsquasielastic neutron scattering    inelastic neutron scattering    methanol    diffusion    zeolites
收稿日期: 2024-01-12      出版日期: 2024-11-28
Corresponding Author(s): Ian P. Silverwood   
 引用本文:   
. [J]. Frontiers of Chemical Science and Engineering, 2025, 19(1): 5.
Vainius Skukauskas, Nicolas De Souza, Emma K. Gibson, Ian P. Silverwood. Probing the dynamics of methanol in copper-loaded zeolites via quasi-elastic and inelastic neutron scattering. Front. Chem. Sci. Eng., 2025, 19(1): 5.
 链接本文:  
https://academic.hep.com.cn/fcse/CN/10.1007/s11705-024-2506-1
https://academic.hep.com.cn/fcse/CN/Y2025/V19/I1/5
Fig.1  
Fig.2  
SampleT/K?l2?/?τ0/psDs/( × 10?10 m2·s–1)
CuMOR3002.0 ± 0.347.8 ± 11.01.3 ± 0.5
CuMOR3252.9 ± 0.477.2 ± 13.21.8 ± 0.6
CuMOR3502.9 ± 0.476.4 ± 12.21.8 ± 0.6
CuMOR3751.8 ± 0.251.3 ± 10.31.0 ± 0.4
CuSSZ133003.7 ± 0.390.2 ± 8.92.6 ± 0.5
CuSSZ133253.3 ± 0.380.8 ± 7.22.2 ± 0.4
CuSSZ133503.3 ± 0.272.8 ± 6.22.5 ± 0.4
CuSSZ133752.7 ± 0.253.2 ± 5.02.3 ± 0.4
CuZSM53002.4 ± 0.277.5 ± 10.31.2 ± 0.3
CuZSM53252.7 ± 0.281.5 ± 9.11.5 ± 0.3
CuZSM53503.1 ± 0.383.8 ± 8.41.9 ± 0.4
CuZSM53752.4 ± 0.259.6 ± 6.31.6 ± 0.4
Tab.1  
Fig.3  
1 V Van Speybroeck , K Hemelsoet , L Joos , M Waroquier , R G Bell , C R A Catlow . Advances in theory and their application within the field of zeolite chemistry. Chemical Society Reviews, 2015, 44(20): 7044–7111
https://doi.org/10.1039/C5CS00029G
2 S Mitra , V K Sharma , R Mukhopadhyay . Diffusion of confined fluids in microporous zeolites and clay materials. Reports on Progress in Physics, 2021, 84(6): 066501
https://doi.org/10.1088/1361-6633/abf085
3 P Vanelderen , J Vancauwenbergh , B F Sels , R A Schoonheydt . Coordination chemistry and reactivity of copper in zeolites. Coordination Chemistry Reviews, 2013, 257(2): 483–494
https://doi.org/10.1016/j.ccr.2012.07.008
4 B E R Snyder , M L Bols , R A Schoonheydt , B F Sels , E I Solomon . Iron and copper active sites in zeolites and their correlation to metalloenzymes. Chemical Reviews, 2018, 118(5): 2718–2768
https://doi.org/10.1021/acs.chemrev.7b00344
5 J Colby , D I Stirling , H Dalton . The soluble methane mono oxygenase of Methylococcus capsulatus (Bath). Its ability to oxygenate n alkanes, n alkenes, ethers, and alicyclic, aromatic and heterocyclic compounds. Biochemical Journal, 1977, 165(2): 395–402
https://doi.org/10.1042/bj1650395
6 M B Park , E D Park , W S Ahn . Recent progress in direct conversion of methane to methanol over copper-exchanged zeolites. Frontiers in Chemistry, 2019, 7: 514
https://doi.org/10.3389/fchem.2019.00514
7 A J O’Malley , C R A Catlow . Sorbate dynamics in zeolite catalysts. Experimental Methods in the Physical Sciences, 2017, 49: 349–401
https://doi.org/10.1016/B978-0-12-805324-9.00006-6
8 D H Lin , V Ducarme , G Coudurier , J C Vedrine . Adsorption and diffusion of different hydrocarbons in MFI zeolite of varying crystallite sizes. Studies in Surface Science and Catalysis, 1989, 46: 615–623
https://doi.org/10.1016/S0167-2991(08)61016-2
9 B Millot , A Méthivier , H Jobic , H Moueddeb , J A Dalmon . Permeation of linear and branched alkanes in ZSM-5 supported membranes. Microporous and Mesoporous Materials, 2000, 38(1): 85–95
https://doi.org/10.1016/S1387-1811(99)00302-9
10 W Heink , J Kärger , H Pfeifer , K P Datema , A K Nowak . High-temperature pulsed field gradient nuclear magnetic resonance self-diffusion measurements of n-alkanes in MFI-type zeolites. Journal of the Chemical Society, Faraday Transactions, 1992, 88(23): 3505–3509
https://doi.org/10.1039/FT9928803505
11 M Bée. Quasielastic Neutron Scattering: Principles and Applications in Solid State Chemistry, Biology and Materials Science. Bristol: Adam Hilger, 1988
12 R Mukhopadhyay , S Mitra . Molecular diffusion and confinement effect: neutron scattering study. Indian Journal of Pure and Applied Physics, 2006, 44: 732–740
13 S K Matam , C R A Catlow , I P Silverwood , A J O’Malley . Methanol dynamics in H-ZSM-5 with Si/Al ratio of 25: a quasi-elastic neutron scattering (QENS) study. Topics in Catalysis, 2021, 64(9-12): 699–706
https://doi.org/10.1007/s11244-021-01450-z
14 I P Silverwood , N G Hamilton , A McFarlane , R M Ormerod , T Guidi , J Bones , M P Dudman , C M Goodway , M Kibble , S F Parker . et al.. Experimental arrangements suitable for the acquisition of inelastic neutron scattering spectra of heterogeneous catalysts. Review of Scientific Instruments, 2011, 82(3): 034101
https://doi.org/10.1063/1.3553295
15 N R de Souza , A Klapproth , G N Iles . EMU: high-resolution backscattering spectrometer at ANSTO. Neutron News, 2016, 27(2): 20–21
https://doi.org/10.1080/10448632.2016.1163985
16 O Arnold , J C Bilheux , J M Borreguero , A Buts , S I Campbell , L Chapon , M Doucet , N Draper , R Ferraz Leal , M A Gigg . et al.. Mantid—Data analysis and visualization package for neutron scattering and μSR experiments. Nuclear Instruments & Methods in Physics Research. Section A, Accelerators, Spectrometers, Detectors and Associated Equipment, 2014, 764: 156–166
https://doi.org/10.1016/j.nima.2014.07.029
17 R T Azuah , L R Kneller , Y Qiu , P L W Tregenna-Piggott , C M Brown , J R D Copley , R M Dimeo . DAVE: a comprehensive software suite for the reduction, visualization, and analysis of low energy neutron spectroscopic data. Journal of Research of the National Institute of Standards and Technology, 2009, 114(6): 341–358
https://doi.org/10.6028/jres.114.025
18 S F Parker , F Fernandez-Alonso , A J Ramirez-Cuesta , J Tomkinson , S Rudic , R S Pinna , G Gorini , Castañon J Fernández . Recent and future developments on TOSCA at ISIS. Journal of Physics: Conference Series, 2014, 554: 012003
https://doi.org/10.1088/1742-6596/554/1/012003
19 K S Singwi , A Sjölander . Resonance absorption of nuclear gamma rays and the dynamics of atomic motions. Physical Review, 1960, 120(4): 1093–1102
https://doi.org/10.1103/PhysRev.120.1093
20 A J O’Malley , S F Parker , A Chutia , M R Farrow , I P Silverwood , V García-Sakai , C R A Catlow . Room temperature methoxylation in zeolites: insight into a key step of the methanol-to-hydrocarbons process. Chemical Communications, 2016, 52(14): 2897–2900
https://doi.org/10.1039/C5CC08956E
21 A Zachariou , A Hawkins , S F Parker , D Lennon , R F Howe . Neutron spectroscopy studies of methanol to hydrocarbons catalysis over ZSM-5. Catalysis Today, 2021, 368: 20–27
https://doi.org/10.1016/j.cattod.2020.05.030
22 R Schenkel , A Jentys , S F Parker , J A Lercher . Investigation of the adsorption of methanol on alkali metal cation exchanged zeolite X by inelastic neutron scattering. Journal of Physical Chemistry B, 2004, 108(23): 7902–7910
https://doi.org/10.1021/jp049819f
23 D F Plant , G Maurin , R G Bell . Molecular dynamics simulation of methanol in zeolite NaY. Studies in Surface Science and Catalysis, 2005, 158: 963–970
https://doi.org/10.1016/S0167-2991(05)80436-7
24 C L M Woodward , A J Porter , K S C Morton , A J O’Malley . Methanol diffusion in H-ZSM-5 catalysts as a function of loading and Si/Al ratio: a classical molecular dynamics study. Catalysis Communications, 2022, 164: 106415
https://doi.org/10.1016/j.catcom.2022.106415
25 C H Botchway , R Tia , E Adei , A J O’Malley , N Y Dzade , C Hernandez-Tamargo , Leeuw N H De . Influence of topology and brønsted acid site presence on methanol diffusion in zeolites beta and MFI. Catalysts, 2020, 10(11): 1342
https://doi.org/10.3390/catal10111342
26 E GibsonV SkukasukasI P Silverwood. INS vibrational spectroscopy of surface species relevant to the partial oxidation of methane. STFC ISIS Neutron and Muon Source, 2022
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed