Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

邮发代号 80-969

2019 Impact Factor: 3.552

Frontiers of Chemical Science and Engineering  2019, Vol. 13 Issue (4): 727-735   https://doi.org/10.1007/s11705-019-1823-2
  本期目录
Fabrication of form stable NaCl-Al2O3 composite for thermal energy storage by cold sintering process
Bilyaminu Suleiman, Qinghua Yu, Yulong Ding, Yongliang Li()
Birmingham Centre for Energy Storage, School of Chemical Engineering, University of Birmingham, Birmingham, B15 2TT, UK
 全文: PDF(8851 KB)   HTML
Abstract

A form stable NaCl-Al2O3 (50-50 wt-%) composite material for high temperature thermal energy storage was fabricated by cold sintering process, a process recently applied to the densification of ceramics at low temperature ˂ 300°C under uniaxial pressure in the presence of small amount of transient liquid. The fabricated composite achieved as high as 98.65% of the theoretical density. The NaCl-Al2O3 composite also retained the chloride salt without leakage after 30 heating-cooling cycles between 750°C–850°C together with a holding period of 24 h at 850°C. X-ray diffraction measurements indicated congruent solubility of the alumina in chloride salt, excellent compatibility of NaCl with Al2O3, and chemical stability at high temperature. Structural analysis by scanning electron microscope also showed limited grain growth, high density, uniform NaCl distribution and clear faceted composite structure without inter-diffusion. The latent heat storage density of 252.5 J/g was obtained from simultaneous thermal analysis. Fracture strength test showed high sintered strength around 5 GPa after 50 min. The composite was found to have fair mass losses due to volatilization. Overall, cold sintering process has the potential to be an efficient, safe and cost-effective strategy for the fabrication of high temperature thermal energy storage materials.

Key wordscold sintering process    composite fabrication    thermal energy storage    phase change materials
收稿日期: 2018-11-05      出版日期: 2019-12-04
Corresponding Author(s): Yongliang Li   
 引用本文:   
. [J]. Frontiers of Chemical Science and Engineering, 2019, 13(4): 727-735.
Bilyaminu Suleiman, Qinghua Yu, Yulong Ding, Yongliang Li. Fabrication of form stable NaCl-Al2O3 composite for thermal energy storage by cold sintering process. Front. Chem. Sci. Eng., 2019, 13(4): 727-735.
 链接本文:  
https://academic.hep.com.cn/fcse/CN/10.1007/s11705-019-1823-2
https://academic.hep.com.cn/fcse/CN/Y2019/V13/I4/727
Fig.1  
Fig.2  
Fig.3  
Fig.4  
Fig.5  
Fig.6  
Fig.7  
Fig.8  
Fig.9  
Fig.10  
Fig.11  
1 T Xu, Y Li, J Chen, J Liu. Preparation and thermal energy storage properties of LiNO3-KCl-NaNO3/expanded graphite composite phase change material. Solar Energy Materials and Solar Cells, 2017, 169: 215–221
https://doi.org/10.1016/j.solmat.2017.05.035
2 J Zhu, R Li, W Zhou, H Zhang, X Cheng. Fabrication of Al2O3-NaCl composite heat storage materials by one-step synthesis method. Journal of Wuhan University of Technology-Materials Science Edition, 2016, 31(5): 950–954
https://doi.org/10.1007/s11595-016-1473-x
3 H Zhang, J Baeyens, G Cáceres, J Degrève, Y Lv. Thermal energy storage: Recent developments and practical aspects. Progress in Energy and Combustion Science, 2016, 53: 1–40
https://doi.org/10.1016/j.pecs.2015.10.003
4 M S Guney, Y Tepe. Classification and assessment of energy storage systems. Renewable & Sustainable Energy Reviews, 2017, 75: 1187–1197
https://doi.org/10.1016/j.rser.2016.11.102
5 H Chen, T N Cong, W Yang, C Tan, Y Li, Y Ding. Progress in electrical energy storage system: A critical review. Progress in Natural Science, 2009, 19(3): 291–312
https://doi.org/10.1016/j.pnsc.2008.07.014
6 A Dinker, M Agarwal, G D Agarwal. Heat storage materials, geometry and applications: A review. Journal of the Energy Institute, 2017, 90(1): 1–11
https://doi.org/10.1016/j.joei.2015.10.002
7 G Alva, Y Lin, G Fang. An overview of thermal energy storage systems. Energy, 2018, 144: 341–378
https://doi.org/10.1016/j.energy.2017.12.037
8 P D Myers Jr, D Y Goswami. Thermal energy storage using chloride salts and their eutectics. Applied Thermal Engineering, 2016, 109: 889–900
https://doi.org/10.1016/j.applthermaleng.2016.07.046
9 N Arconada, L Arribas, B Lucio, J González-Aguilar, M Romero. Macro encapsulation of sodium chloride as phase change materials for thermal energy storage. Solar Energy, 2018, 167: 1–9
https://doi.org/10.1016/j.solener.2018.02.045
10 Y Jiang, Y Sun, M Liu, F Bruno, S Li. Eutectic Na2CO3-NaCl salt: A new phase change material for high temperature thermal storage. Solar Energy Materials and Solar Cells, 2016, 152: 155–160
https://doi.org/10.1016/j.solmat.2016.04.002
11 L Du, H Tian, W Wang, J Ding, X Wei, M Song. Thermal stability of the eutectic composition in NaCl-CaCl2-MgCl2 ternary system used for thermal energy storage applications. Energy Procedia, 2017, 105: 4185–4191
https://doi.org/10.1016/j.egypro.2017.03.892
12 L F Cabeza, H Nguan, T Steven. High Temperature Thermal Storage Systems Using Phase Change Materials. Cambridge: Academic Press, 2018, 195–230
13 H Guo, A Baker, J Guo, C A Randall. Cold sintering process: A novel technique for low-temperature ceramic processing of ferroelectrics. Journal of the American Ceramic Society, 2016, 99(11): 3489–3507
https://doi.org/10.1111/jace.14554
14 J P Maria, X Kang, R D Floyd, E C Dickey, H Guo, J Guo, C A Randall. Cold sintering: Current status and prospects. Journal of Materials Research, 2017, 32(17): 3205–3218
https://doi.org/10.1557/jmr.2017.262
15 F Bouville, A R Studart. Geologically-inspired strong bulk ceramics made with water at room temperature. Nature Communications, 2017, 8(1): 14655
https://doi.org/10.1038/ncomms14655
16 G Wei, G Wang, C Xu, X Ju, L Xing, X Du, Y Yang. Selection principles and thermophysical properties of high temperature phase change materials for thermal energy storage: A review. Renewable & Sustainable Energy Reviews, 2018, 81: 1771–1786
https://doi.org/10.1016/j.rser.2017.05.271
17 I J Induja, M T Sebastian. Microwave dielectric properties of cold sintered Al2O3-NaCl composite. Materials Letters, 2018, 211: 55–57
https://doi.org/10.1016/j.matlet.2017.09.083
18 M G Randall. Sintering: From Empirical Observations to Scientific Principles. London: Butterworth-Heinemann, 2014, 71–130
19 J Guo, H Guo, A L Baker, M T Lanagan, E R Kupp, G L Messing, C A Randall. Cold sintering: A paradigm shift for processing and integration of ceramics. Angewandte Chemie International Edition, 2016, 55(38): 11457–11461
https://doi.org/10.1002/anie.201605443
20 C J Boxley, J J Watkins, H S White. Al2O3 film dissolution in aqueous chloride solutions. Electrochemical and Solid-State Letters, 2003, 6(10): 38–41
https://doi.org/10.1149/1.1603013
21 M Dadkhah, A Saboori, M. Jafari Investigating the physical properties of sintered alumina in the presence of MgO nanopowder. Journal of Materials, 2014, 496146, 1–7
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed