Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

邮发代号 80-969

2019 Impact Factor: 3.552

Frontiers of Chemical Science and Engineering  2022, Vol. 16 Issue (1): 72-80   https://doi.org/10.1007/s11705-021-2037-y
  本期目录
A minimized fluorescent chemosensor array utilizing carboxylate-attached polythiophenes on a chip for metal ions detection
Yui Sasaki, Xiaojun Lyu, Zhoujie Zhang, Tsuyoshi Minami()
Institute of Industrial Science, The University of Tokyo, Tokyo 153-8505, Japan
 全文: PDF(1478 KB)   HTML
Abstract

Chemosensor arrays have a great potential for on-site applications in real-world scenarios. However, to fabricate on chemosensor array a number of chemosensors are required to obtain various optical patterns for multi-analyte detection. Herein, we propose a minimized chemosensor array composed of only two types of carboxylate-functionalized polythiophene derivatives for the detection of eight types of metal ions. Upon recognition of the metal ions, the polythiophenes exhibited changes in their fluorescence intensity and various spectral shifts. Although both chemosensors have the same polymer backbone and recognition moiety, only the difference in the number of methylene groups contributed to the difference in the fluorescence response patterns. Consequently, the metal ions in aqueous media were successfully discriminated qualitatively and quantitatively by the chemosensor microarray on the glass chip. This study offers an approach for achieving a minimized chemosensor array just by changing the alkyl chain lengths without the necessity for many receptors and reporters.

Key wordsmetal ions    polythiophene    chemosensor array    fluorescence    pattern recognition
收稿日期: 2020-10-13      出版日期: 2021-12-27
Corresponding Author(s): Tsuyoshi Minami   
 引用本文:   
. [J]. Frontiers of Chemical Science and Engineering, 2022, 16(1): 72-80.
Yui Sasaki, Xiaojun Lyu, Zhoujie Zhang, Tsuyoshi Minami. A minimized fluorescent chemosensor array utilizing carboxylate-attached polythiophenes on a chip for metal ions detection. Front. Chem. Sci. Eng., 2022, 16(1): 72-80.
 链接本文:  
https://academic.hep.com.cn/fcse/CN/10.1007/s11705-021-2037-y
https://academic.hep.com.cn/fcse/CN/Y2022/V16/I1/72
Fig.1  
Fig.2  
Fig.3  
Fig.4  
Fig.5  
Metal ions 1 2
Cu2+ 2.0 × 108 2.1 × 108
Al3+ 7.1 × 107 2.6 × 108
Ca2+ 1.6 × 107 2.7 × 107
Cd2+ N.D.a) 2.3 × 107
Co2+ 3.7 × 107 7.8 × 107
Ni2+ 1.3 × 108 1.3 × 108
Pb2+ 4.0 × 107 2.4 × 107
Zn2+ <103 1.1 × 108
Tab.1  
Fig.6  
Fig.7  
Fig.8  
Fig.9  
1 P Anzenbacher Jr, P Lubal, P Buček, M A Palacios, M E Kozelkova. A practical approach to optical cross-reactive sensor arrays. Chemical Society Reviews, 2010, 39(10): 3954–3979
https://doi.org/10.1039/b926220m
2 Z Li, J R Askim, K S Suslick. The optoelectronic nose: colorimetric and fluorometric sensor arrays. Chemical Reviews, 2019, 119(1): 231–292
https://doi.org/10.1021/acs.chemrev.8b00226
3 K L Diehl, E V Anslyn. Array sensing using optical methods for detection of chemical and biological hazards. Chemical Society Reviews, 2013, 42(22): 8596–8611
https://doi.org/10.1039/c3cs60136f
4 Y Sasaki, R Kubota, T Minami. Molecular self-assembled chemosensors and their arrays. Coordination Chemistry Reviews, 2021, 429: 213607
https://doi.org/10.1016/j.ccr.2020.213607
5 D G Smith, I L Topolnicki, V E Zwicker, K A Jolliffe, E J New. Fluorescent sensing arrays for cations and anions. Analyst, 2017, 142(19): 3549–3563
https://doi.org/10.1039/C7AN01200D
6 J J Lavigne, E V Anslyn. Sensing a paradigm shift in the field of molecular recognition: from selective to differential receptors. Angewandte Chemie International Edition, 2001, 40(17): 3118–3130
https://doi.org/10.1002/1521-3773(20010903)40:17<3118::AID-ANIE3118>3.0.CO;2-Y
7 Y Geng, W J Peveler, V M Rotello. Array-based “chemical nose” sensing in diagnostics and drug discovery. Angewandte Chemie International Edition, 2019, 58(16): 5190–5200
https://doi.org/10.1002/anie.201809607
8 K D Shimizu, C J Stephenson. Molecularly imprinted polymer sensor arrays. Current Opinion in Chemical Biology, 2010, 14(6): 743–750
https://doi.org/10.1016/j.cbpa.2010.07.007
9 M Ikeda, R Ochi, I Hamachi. Supramolecular hydrogel-based protein and chemosensor array. Lab on a Chip, 2010, 10(24): 3325–3334
https://doi.org/10.1039/c004908e
10 É J Lemieux, M Leclerc. Conjugated Polyelectrolytes: Fundamentals and Applications. New Jersey: Wiley-VCH Weinheim, 2013, 231–261
11 D T McQuade, A E Pullen, T M Swager. Conjugated polymer-based chemical sensors. Chemical Reviews, 2000, 100(7): 2537–2574
https://doi.org/10.1021/cr9801014
12 U H F Bunz. Poly(p-phenyleneethynylene)s by alkyne metathesis. Accounts of Chemical Research, 2001, 34(12): 998–1010
https://doi.org/10.1021/ar010092c
13 O R Miranda, C C You, R Phillips, I B Kim, P S Ghosh, U H F Bunz, V M Rotello. Array-based sensing of proteins using conjugated polymers. Journal of the American Chemical Society, 2007, 129(32): 9856–9857
https://doi.org/10.1021/ja0737927
14 H W Rhee, S W Lee, J S Lee, Y T Chang, J I Hong. Focused fluorescent probe library for metal cations and biological anions. ACS Combinatorial Science, 2013, 15(9): 483–490
https://doi.org/10.1021/co400034x
15 M H Ihde, C F Pridmore, M Bonizzoni. Pattern-based recognition systems: overcoming the problem of mixtures. Analytical Chemistry, 2020, 92(24): 16213–16220
https://doi.org/10.1021/acs.analchem.0c04062
16 J Han, B Wang, M Bender, K Seehafer, U H F Bunz. Water-soluble poly(p-aryleneethynylene)s: a sensor array discriminates aromatic carboxylic acids. ACS Applied Materials & Interfaces, 2016, 8(31): 20415–20421
https://doi.org/10.1021/acsami.6b06462
17 Y Sasaki, S Kojima, V Hamedpour, R Kubota, S Takizawa, I Yoshikawa, H Houjou, Y Kubo, T Minami. Accurate chiral pattern recognition for amines from just a single chemosensor. Chemical Science, 2020, 11(15): 3790–3796
https://doi.org/10.1039/D0SC00194E
18 Z Cao, Y Cao, R Kubota, Y Sasaki, K Asano, X Lyu, Z Zhang, Q Zhou, X Zhao, X Xu, S Wu, T Minami, Y Liu. Fluorescence anion chemosensor array based on pyrenylboronic acid. Frontiers in Chemistry, 2020, 8: 414
https://doi.org/10.3389/fchem.2020.00414
19 Y Cao, L Zhang, X Huang, Y Xin, L Ding. Discrimination of metalloproteins by a mini sensor array based on bispyrene fluorophore/surfactant aggregate ensembles. ACS Applied Materials & Interfaces, 2016, 8(51): 35650–35659
https://doi.org/10.1021/acsami.6b12646
20 P Anzenbacher Jr, Y Liu, M A Palacios, T Minami, Z Wang, R Nishiyabu. Leveraging material properties in fluorescence anion sensor arrays: a general approach. Chemistry—A European Journal, 2013, 19(26): 8497–8506
https://doi.org/10.1002/chem.201204188
21 Y Sasaki, É Leclerc, V Hamedpour, R Kubota, S Takizawa, Y Sakai, T Minami. Simplest chemosensor array for phosphorylated saccharides. Analytical Chemistry, 2019, 91(24): 15570–15576
https://doi.org/10.1021/acs.analchem.9b03578
22 F Zaubitzer, A Buryak, K Severin. Cp*Rh-based indicator-displacement assays for the identification of amino sugars and aminoglycosides. Chemistry—A European Journal, 2006, 12(14): 3928–3934
https://doi.org/10.1002/chem.200501410
23 M A Palacios, Z Wang, V A Montes, G V Zyryanov, P Anzenbacher Jr. Rational design of a minimal size sensor array for metal ion detection. Journal of the American Chemical Society, 2008, 130(31): 10307–10314
https://doi.org/10.1021/ja802377k
24 X Liang, M Bonizzoni. Boronic acid-modified poly(amidoamine) dendrimers as sugar-sensing materials in water. Journal of Materials Chemistry. B, Materials for Biology and Medicine, 2016, 4(18): 3094–3103
https://doi.org/10.1039/C5TB02530C
25 C Liu, P Wang, X Liu, X Yi, Z Zhou, D Liu. Supramolecular fluorescent sensor array for simultaneous qualitative and quantitative analysis of quaternary ammonium herbicides. New Journal of Chemistry, 2018, 42(21): 17317–17322
https://doi.org/10.1039/C8NJ02954G
26 Z Yao, X Feng, W Hong, C Li, G Shi. A simple approach for the discrimination of nucleotides based on a water-soluble polythiophene derivative. Chemical Communications, 2009, 31(31): 4696–4698
https://doi.org/10.1039/b904975d
27 M S Maynor, T K Deason, T L Nelson, J J Lavigne. Multidimensional response analysis towards the detection and identification of soft divalent metal ions. Supramolecular Chemistry, 2009, 21(3-4): 310–315
https://doi.org/10.1080/10610270802516658
28 C Li, G Shi. Polythiophene-based optical sensors for small molecules. ACS Applied Materials & Interfaces, 2013, 5(11): 4503–4510
https://doi.org/10.1021/am400009d
29 K Doré, S Dubus, H A Ho, I Lévesque, M Brunette, G Corbeil, M Boissinot, G Boivin, M G Bergeron, D Boudreau, M Leclerc. Fluorescent polymeric transducer for the rapid, simple, and specific detection of nucleic acids at the zeptomole Level. Journal of the American Chemical Society, 2004, 126(13): 4240–4244
https://doi.org/10.1021/ja038900d
30 R D McCullough, P C Ewbank, R S Loewe. Self-assembly and disassembly of regioregular, water soluble polythiophenes: chemoselective ionchromatic sensing in water. Journal of the American Chemical Society, 1997, 119(3): 633–634
https://doi.org/10.1021/ja963713j
31 C Li, M Numata, M Takeuchi, S Shinkai. A sensitive colorimetric and fluorescent probe based on a polythiophene derivative for the detection of ATP. Angewandte Chemie International Edition, 2005, 44(39): 6371–6374
https://doi.org/10.1002/anie.200501823
32 H A Ho, M Leclerc. New colorimetric and fluorometric chemosensor based on a cationic polythiophene derivative for iodide-specific detection. Journal of the American Chemical Society, 2003, 125(15): 4412–4413
https://doi.org/10.1021/ja028765p
33 Y Sasaki, S Ito, Z Zhang, X Lyu, S Takizawa, R Kubota, T Minami. Supramolecular sensor for astringent procyanidin C1: fluorescent artificial tongue for wine components. Chemistry—A European Journal, 2020, 26(69): 16236–16240
https://doi.org/10.1002/chem.202002262
34 S E Domínguez, M Meriläinen, T Ääritalo, P Damlin, C Kvarnström. Effect of alkoxy-spacer length and solvent on diluted solutions of cationic isothiouronium polythiophenes. RSC Advances, 2017, 7(13): 7648–7657
https://doi.org/10.1039/C6RA21451G
35 T Minami, Y Kubo. Fluorescence sensing of phytate in water using an isothiouronium-attached polythiophene. Chemistry—A Asian Journal, 2010, 5(3): 605–611
https://doi.org/10.1002/asia.200900444
36 Y An, K Xiao, Z Yao, C Li. Conjugated polyelectrolyte based colorimetric array for the discrimination of primary amino acids. ChemistrySelect, 2020, 5(18): 5400–5403
https://doi.org/10.1002/slct.202000362
37 L Liu, L Zhao, D Cheng, X Yao, Y Lu. Highly selective fluorescence sensing and imaging of ATP using a boronic acid groups-bearing polythiophene derivate. Polymers, 2019, 11(7): 1139
https://doi.org/10.3390/polym11071139
38 S Pal, N Chatterjee, P K Bharadwaj. Selectively sensing first-row transition metal ions through fluorescence enhancement. RSC Advances, 2014, 4(51): 26585–26620
https://doi.org/10.1039/C4RA02054E
39 Z Wang, M A Palacios, P Anzenbacher Jr. Fluorescence sensor array for metal ion detection based on various coordination chemistries: general performance and potential application. Analytical Chemistry, 2008, 80(19): 7451–7459
https://doi.org/10.1021/ac801165v
40 W Xu, C Ren, C L Teoh, J Peng, S H Gadre, H W Rhee, C L K Lee, Y T Chang. An artificial tongue fluorescent sensor array for identification and quantitation of various heavy metal ions. Analytical Chemistry, 2014, 86(17): 8763–8769
https://doi.org/10.1021/ac501953z
41 D G Smith, N Sajid, S Rehn, R Chandramohan, I J Carney, M A Khan, E J New. A library-screening approach for developing a fluorescence sensing array for the detection of metal ions. Analyst, 2016, 141(15): 4608–4613
https://doi.org/10.1039/C6AN00510A
42 I H Hwang, K I Hong, K S Jeong, W D Jang. Carbazole-based molecular tweezers as platforms for the discrimination of heavy metal ions. RSC Advances, 2015, 5(2): 1097–1102
https://doi.org/10.1039/C4RA13221A
43 Y Sasaki, T Minamiki, S Tokito, T Minami. A molecular self-assembled colourimetric chemosensor array for simultaneous detection of metal ions in water. Chemical Communications, 2017, 53(49): 6561–6564
https://doi.org/10.1039/C7CC03218H
44 M B Inoue, E F Velazquez, M Inoue. One-step chemical synthesis of doped polythiophene by use of copper(II) perchlorate as an oxidant. Synthetic Metals, 1988, 24(3): 223–229
https://doi.org/10.1016/0379-6779(88)90260-3
45 T Minami, Y Kubo. Selective anion-induced helical aggregation of chiral amphiphilic polythiophenes with isothiouronium-appended pendants. Supramolecular Chemistry, 2011, 23(1-2): 13–18
https://doi.org/10.1080/10610278.2010.506546
46 M Derakhshesh, M R Gray, G P Dechaine. Dispersion of asphaltene nanoaggregates and the role of rayleigh scattering in the absorption of visible electromagnetic radiation by these nanoaggregates. Energy & Fuels, 2013, 27(2): 680–693
https://doi.org/10.1021/ef3015958
47 S C Rasmussen, S J Evenson, C B McCausland. Fluorescent thiophene-based materials and their outlook for emissive applications. Chemical Communications, 2015, 51(22): 4528–4543
https://doi.org/10.1039/C4CC09206F
48 X Wang, J Zhao, C Guo, M Pei, G Zhang. Simple hydrazide-based fluorescent sensors for highly sensitive and selective optical signaling of Cu2+ and Hg2+ in aqueous solution. Sensors and Actuators. B, Chemical, 2014, 193: 157–165
https://doi.org/10.1016/j.snb.2013.11.111
49 J Keizer. Nonlinear fluorescence quenching and the origin of positive curvature in stern-volmer plots. Journal of the American Chemical Society, 1983, 105(6): 1494–1498
https://doi.org/10.1021/ja00344a013
50 J You, J Kim, T Park, B Kim, E Kim. Highly fluorescent conjugated polyelectrolyte nanostructures: synthesis, self-assembly, and Al3+ ion sensing. Advanced Functional Materials, 2012, 22(7): 1417–1424
https://doi.org/10.1002/adfm.201102309
51 Y Chen, K Y Pu, Q L Fan, X Y Qi, Y Q Huang, X M Lu, W Huang. Water-soluble anionic conjugated polymers for metal ion sensing: effect of interchain aggregation. Journal of Polymer Science. Part A, Polymer Chemistry, 2009, 47(19): 5057–5067
https://doi.org/10.1002/pola.23558
52 T Bala, B L V Prasad, M Sastry, M U Kahaly, U V Waghmare. Interaction of different metal ions with carboxylic acid group: a quantitative study. Journal of Physical Chemistry A, 2007, 111(28): 6183–6190
https://doi.org/10.1021/jp067906x
53 J N Miller, J C Miller. Statistics and Chemometrics for Analytical Chemistry. 7th ed. Essex: Pearson Higher Education, 2018
54 O S Wolfbeis. Materials for fluorescence-based optical chemical sensors. Journal of Materials Chemistry, 2005, 15(27-28): 2657–2669
https://doi.org/10.1039/b501536g
55 P Anzenbacher Jr, Y L Liu, M E Kozelkova. Hydrophilic polymer matrices in optical array sensing. Current Opinion in Chemical Biology, 2010, 14(6): 693–704
https://doi.org/10.1016/j.cbpa.2010.08.011
56 T R Guo, G P Zhang, Y H Zhang. Physiological changes in barley plants under combined toxicity of aluminum, copper and cadmium. Colloids and Surfaces. B, Biointerfaces, 2007, 57(2): 182–188
https://doi.org/10.1016/j.colsurfb.2007.01.013
[1] Electronic Supplementary Material Download
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed