Membrane bioreactors for hospital wastewater treatment: recent advancements in membranes and processes
Yan Zhao1, Yangbo Qiu2, Natalie Mamrol3, Longfei Ren2, Xin Li1, Jiahui Shao2(), Xing Yang1(), Bart van der Bruggen1()
1. Department of Chemical Engineering, KU Leuven, B-3001 Leuven, Belgium 2. School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China 3. Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
Discharged hospital wastewater contains various pathogenic microorganisms, antibiotic groups, toxic organic compounds, radioactive elements, and ionic pollutants. These contaminants harm the environment and human health causing the spread of disease. Thus, effective treatment of hospital wastewater is an urgent task for sustainable development. Membranes, with controllable porous and nonporous structures, have been rapidly developed for molecular separations. In particular, membrane bioreactor (MBR) technology demonstrated high removal efficiency toward organic compounds and low waste sludge production. To further enhance the separation efficiency and achieve material recovery from hospital waste streams, novel concepts of MBRs and their applications are rapidly evolved through hybridizing novel membranes (non hydrophilic ultrafiltration/microfiltration) into the MBR units (hybrid MBRs) or the MBR as a pretreatment step and integrating other membrane processes as subsequent secondary purification step (integrated MBR-membrane systems). However, there is a lack of reviews on the latest advancement in MBR technologies for hospital wastewater treatment, and analysis on its major challenges and future trends. This review started with an overview of main pollutants in common hospital wastewater, followed by an understanding on the key performance indicators/criteria in MBR membranes (i.e., solute selectivity) and processes (e.g., fouling). Then, an in-depth analysis was provided into the recent development of hybrid MBR and integrated MBR-membrane system concepts, and applications correlated with wastewater sources, with a particular focus on hospital wastewaters. It is anticipated that this review will shed light on the knowledge gaps in the field, highlighting the potential contribution of hybrid MBRs and integrated MBR-membrane systems toward global epidemic prevention.
R Wolfel, V M Corman, W Guggemos, M Seilmaier, S Zange, M A Muller, D Niemeyer, T C Jones, P Vollmar, C Rothe, et al.. Virological assessment of hospitalized patients with COVID-2019. Nature, 2020, 581(7809): 465–469 https://doi.org/10.1038/s41586-020-2196-x
2
F Wu, S Zhao, B Yu, Y M Chen, W Wang, Z G Song, Y Hu, Z W Tao, J H Tian, Y Y Pei, et al.. A new coronavirus associated with human respiratory disease in China. Nature, 2020, 579(7798): 265–269 https://doi.org/10.1038/s41586-020-2008-3
3
J T Wu, K Leung, M Bushman, N Kishore, R Niehus, P M de Salazar, B J Cowling, M Lipsitch, G M Leung. Estimating clinical severity of COVID-19 from the transmission dynamics in Wuhan, China. Nature Medicine, 2020, 26(4): 506–510 https://doi.org/10.1038/s41591-020-0822-7
4
G Qu, X Li, L Hu, G Jiang. An imperative need for research on the role of environmental factors in transmission of novel coronavirus (COVID-19). Environmental Science & Technology, 2020, 54(7): 3730–3732 https://doi.org/10.1021/acs.est.0c01102
5
Y Liu, P Gu, Y Yang, L Jia, M Zhang, G Zhang. Removal of radioactive iodide from simulated liquid waste in an integrated precipitation reactor and membrane separator (PR-MS) system. Separation and Purification Technology, 2016, 171: 221–228 https://doi.org/10.1016/j.seppur.2016.07.034
6
X Feng, Z Zong, S K Elsaidi, J B Jasinski, R Krishna, P K Thallapally, M A Carreon. Kr/Xe separation over a chabazite zeolite membrane. Journal of the American Chemical Society, 2016, 138(31): 9791–9794 https://doi.org/10.1021/jacs.6b06515
7
Y J Liu, S L Lo, Y H Liou, C Y Hu. Removal of nonsteroidal anti-inflammatory drugs (NSAIDs) by electrocoagulation-flotation with a cationic surfactant. Separation and Purification Technology, 2015, 152: 148–154 https://doi.org/10.1016/j.seppur.2015.08.015
8
Y Xu, X Li, B Zhu, H Liang, C Fang, Y Gong, Q Guo, X Sun, D Zhao, J Shen, et al. Characteristics of pediatric SARS-CoV-2 infection and potential evidence for persistent fecal viral shedding. Nature Medicine, 2020, 26(4): 502–505 https://doi.org/10.1038/s41591-020-0817-4
9
Y Luo, L Feng, Y Liu, L Zhang. Disinfection by-products formation and acute toxicity variation of hospital wastewater under different disinfection processes. Separation and Purification Technology, 2020, 238: 116405 https://doi.org/10.1016/j.seppur.2019.116405
10
Q Liu, Y Zhou, L Chen, X Zheng. Application of MBR for hospital wastewater treatment in China. Desalination, 2010, 250(2): 605–608 https://doi.org/10.1016/j.desal.2009.09.033
11
A K Gautam, S Kumar, P C Sabumon. Preliminary study of physico-chemical treatment options for hospital wastewater. Journal of Environmental Management, 2007, 83(3): 298–306 https://doi.org/10.1016/j.jenvman.2006.03.009
12
K Watson, G Shaw, F D Leusch, N L Knight. Chlorine disinfection by-products in wastewater effluent: bioassay-based assessment of toxicological impact. Water Research, 2012, 46(18): 6069–6083 https://doi.org/10.1016/j.watres.2012.08.026
13
W Chen, Y Su, J Peng, X Zhao, Z Jiang, Y Dong, Y Zhang, Y Liang, J Liu. Efficient wastewater treatment by membranes through constructing tunable antifouling membrane surfaces. Environmental Science & Technology, 2011, 45(15): 6545–6552 https://doi.org/10.1021/es200994n
14
Y Zhao, Y Liu, C Wang, E Ortega, X Wang, Y F Xie, J Shen, C Gao, B Van der Bruggen. Electric field-based ionic control of selective separation layers. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2020, 8(8): 4244–4251 https://doi.org/10.1039/C9TA13247C
15
Y P Tang, L Luo, Z Thong, T S Chung. Recent advances in membrane materials and technologies for boron removal. Journal of Membrane Science, 2017, 541: 434–446 https://doi.org/10.1016/j.memsci.2017.07.015
16
S P Nunes, P Z Culfaz-Emecen, G Z Ramon, T Visser, G H Koops, W Jin, M Ulbricht. Thinking the future of membranes: perspectives for advanced and new membrane materials and manufacturing processes. Journal of Membrane Science, 2020, 598: 117761 https://doi.org/10.1016/j.memsci.2019.117761
17
X Li, Y Mo, W Qing, S Shao, C Y Tang, J Li. Membrane-based technologies for lithium recovery from water lithium resources: a review. Journal of Membrane Science, 2019, 591: 117317 https://doi.org/10.1016/j.memsci.2019.117317
18
P Li, Z Wang, Z Qiao, Y Liu, X Cao, W Li, J Wang, S Wang. Recent developments in membranes for efficient hydrogen purification. Journal of Membrane Science, 2015, 495: 130–168 https://doi.org/10.1016/j.memsci.2015.08.010
19
A A Uliana, N T Bui, J Kamcev, M K Taylor, J J Urban, J R Long. Ion-capture electrodialysis using multifunctional adsorptive membranes. Science, 2021, 372(6539): 296–299 https://doi.org/10.1126/science.abf5991
20
R M Chaudhry, K L Nelson, J E Drewes. Mechanisms of pathogenic virus removal in a full-scale membrane bioreactor. Environmental Science & Technology, 2015, 49(5): 2815–2822 https://doi.org/10.1021/es505332n
21
M Bodzek, K Konieczny, M Rajca. Membranes in water and wastewater disinfection—review. Archives of Environmental Protection, 2019, 45: 3–18
22
W T Vieira, M B de Farias, M P Spaolonzi, M G Carlos da Silva, M G Adeodato Vieira. Removal of endocrine disruptors in waters by adsorption, membrane filtration and biodegradation. A review. Environmental Chemistry Letters, 2020, 18(4): 1113–1143 https://doi.org/10.1007/s10311-020-01000-1
23
J L Bradshaw, N Ashoori, M Osorio, R G Luthy. Modelingcost, energy, and total organic carbon trade-offs for stormwater spreading basin systems receiving recycled water produced using membrane-based, ozone-based, and hybrid advanced treatment trains. Environmental Science & Technology, 2019, 53(6): 3128–3139 https://doi.org/10.1021/acs.est.9b00184
24
C F Carolin, P S Kumar, G J Joshiba, V V Kumar. Analysis and removal of pharmaceutical residues from wastewater using membrane bioreactors: a review. Environmental Chemistry Letters, 2021, 19(1): 329–343 https://doi.org/10.1007/s10311-020-01068-9
25
X Yin, J Li, X Li, Z Hua, X Wang, Y Ren. Self-generated electric field to suppress sludge production and fouling development in a membrane bioreactor for wastewater treatment. Chemosphere, 2020, 261: 128046 https://doi.org/10.1016/j.chemosphere.2020.128046
26
Y Hu, H Cheng, J Ji, Y Y Li. A review of anaerobic membrane bioreactors for municipal wastewater treatment with a focus on multicomponent biogas and membrane fouling control. Environmental Science. Water Research & Technology, 2020, 6(10): 2641–2663 https://doi.org/10.1039/D0EW00528B
27
B Tiwari, B Sellamuthu, S Piche-Choquette, P Drogui, R D Tyagi, M A Vaudreuil, S Sauve, G Buelna, R Dube. Acclimatization of microbial community of submerged membrane bioreactor treating hospital wastewater. Bioresource Technology, 2021, 319: 124223 https://doi.org/10.1016/j.biortech.2020.124223
28
N Taoufik, W Boumya, F Z Janani, A Elhalil, F Z Mahjoubi, N Barka. Removal of emerging pharmaceutical pollutants: a systematic mapping study review. Journal of Environmental Chemical Engineering, 2020, 8(5): 104251 https://doi.org/10.1016/j.jece.2020.104251
29
L Qin, M Gao, M Zhang, L Feng, Q Liu, G Zhang. Application of encapsulated algae into MBR for high-ammonia nitrogen wastewater treatment and biofouling control. Water Research, 2020, 187: 116430 https://doi.org/10.1016/j.watres.2020.116430
30
Z Xu, X Song, M Xie, Y Wang, N Huda, G Li, W Luo. Effects of surfactant addition to draw solution on the performance of osmotic membrane bioreactor. Journal of Membrane Science, 2021, 618: 118634 https://doi.org/10.1016/j.memsci.2020.118634
31
S Wang, J W Chew, Y Liu. Development of an integrated aerobic granular sludge MBR and reverse osmosis process for municipal wastewater reclamation. Science of the Total Environment, 2020, 748: 141309 https://doi.org/10.1016/j.scitotenv.2020.141309
32
W Song, D Xu, X Bi, H Y Ng, X Shi. Intertidal wetland sediment as a novel inoculation source for developing aerobic granular sludge in membrane bioreactor treating high-salinity antibiotic manufacturing wastewater. Bioresource Technology, 2020, 314: 123715 https://doi.org/10.1016/j.biortech.2020.123715
33
M N Pervez, M Balakrishnan, S W Hasan, K H Choo, Y Zhao, Y Cai, T Zarra, V Belgiorno, V. Naddeo A critical review on nanomaterials membrane bioreactor (NMs-MBR) for wastewater treatment. npj Clean Water, 2020, 3: 43
34
P Verlicchi, A Galletti, M Petrovic, D Barceló. Hospital effluents as a source of emerging pollutants: an overview of micropollutants and sustainable treatment options. Journal of Hydrology, 2010, 389(3-4): 416–428 https://doi.org/10.1016/j.jhydrol.2010.06.005
35
B Wiedenheft, S H Sternberg, J A Doudna. RNA-guided genetic silencing systems in bacteria and archaea. Nature, 2012, 482(7385): 331–338 https://doi.org/10.1038/nature10886
36
D Paez-Espino, E A Eloe-Fadrosh, G A Pavlopoulos, A D Thomas, M Huntemann, N Mikhailova, E Rubin, N N Ivanova, N C Kyrpides. Uncovering Earth’s virome. Nature, 2016, 536(7617): 425–430 https://doi.org/10.1038/nature19094
37
F Schulz, S Roux, D Paez-Espino, S Jungbluth, D A Walsh, V J Denef, K D McMahon, K T Konstantinidis, E A Eloe-Fadrosh, N C Kyrpides, et al.. Giant virus diversity and host interactions through global metagenomics. Nature, 2020, 578(7795): 432–436 https://doi.org/10.1038/s41586-020-1957-x
38
L Casanova, W A Rutala, D J Weber, M D Sobsey. Survival of surrogate coronaviruses in water. Water Research, 2009, 43(7): 1893–1898 https://doi.org/10.1016/j.watres.2009.02.002
39
E Carraro, S Bonetta, C Bertino, E Lorenzi, S Bonetta, G Gilli. Hospital effluents management: chemical, physical, microbiological risks and legislation in different countries. Journal of Environmental Management, 2016, 168: 185–199 https://doi.org/10.1016/j.jenvman.2015.11.021
40
F Hai, T Riley, S Shawkat, S Magram, K Yamamoto. Removal of pathogens by membrane bioreactors: a review of the mechanisms, influencing factors and reduction in chemical disinfectant dosing. Water, 2014, 6(12): 3603–3630 https://doi.org/10.3390/w6123603
41
M V Yates. Adenovirus. In: Microbiology of Waterborne Diseases. 2nd ed. Amsterdam: Elsevier, 2014, 471–477
42
E M Elmahdy, N I Ahmed, M N F Shaheen, E C B Mohamed, S A Loutfy. Molecular detection of human adenovirus in urban wastewater in Egypt and among children suffering from acute gastroenteritis. Journal of Water and Health, 2019, 17(2): 287–294 https://doi.org/10.2166/wh.2019.303
43
M V Yates. Astroviruses. In: Microbiology of Waterborne Diseases. 2nd ed. Amsterdam: Elsevier, 2014, 479–491
44
X Q He, L Cheng, D Y Zhang, X M Xie, D H Wang, Z Wang. One-year monthly survey of rotavirus, astrovirus and norovirus in three sewage treatment plants in Beijing, China and associated health risk assessment. Water Science and Technology, 2011, 63(1): 191–198 https://doi.org/10.2166/wst.2011.032
45
R Wathore, A Gupta, H Bherwani, N Labhasetwar. Understanding air and water borne transmission and survival of coronavirus: insights and way forward for SARS-CoV-2. Science of the Total Environment, 2020, 749: 141486 https://doi.org/10.1016/j.scitotenv.2020.141486
46
S Kataki, S Chatterjee, M G Vairale, S Sharma, S K Dwivedi. Concerns and strategies for wastewater treatment during COVID-19 pandemic to stop plausible transmission. Resources, Conservation and Recycling, 2021, 164: 105156 https://doi.org/10.1016/j.resconrec.2020.105156
47
M V Yates. Enterovirus. In: Microbiology of Waterborne Diseases. 2nd ed. Amsterdam: Elsevier, 2014, 493–504
48
G La Rosa, M Pourshaban, M Iaconelli, M Muscillo. Quantitative real-time PCR of enteric viruses in influent and effluent samples from wastewater treatment plants in Italy. Environmental Issues of Health Concern, 2010, 46: 266–273
49
M V Yates. Hepatitis A Virus (HAV). In: Microbiology of Waterborne Diseases. 2nd ed. Amsterdam: Elsevier, 2014, 505–513
50
M V Yates. Norovirus. In: Microbiology of Waterborne Diseases. 2nd ed. Amsterdam: Elsevier, 2014, 515–522
51
A I Okoh, T Sibanda, S S Gusha. Inadequately treated wastewater as a source of human enteric viruses in the environment. International Journal of Environmental Research and Public Health, 2010, 7(6): 2620–2637 https://doi.org/10.3390/ijerph7062620
52
M V Yates. Emerging Viruses. In: Microbiology of Waterborne Diseases. 2nd ed. Amsterdam: Elsevier, 2014, 529–533
53
C Ibrahim, S Hammami, N Chérif, S Mejri, P Pothier, A Hassen. Detection of sapoviruses in two biological lines of Tunisian hospital wastewater treatment. International Journal of Environmental Research and Public Health, 2019, 29(4): 400–413 https://doi.org/10.1080/09603123.2018.1546835
54
R M Chalmers. Cryptosporidium. In: Microbiology of Waterborne Diseases. 2nd ed. Amsterdam: Elsevier, 2014, 287–326
55
W Jiang, D M Roellig, N Li, L Wang, Y Guo, Y Feng, L Xiao. Contribution of hospitals to the occurrence of enteric protists in urban wastewater. Parasitology Research, 2020, 119(9): 3033–3040 https://doi.org/10.1007/s00436-020-06834-w
56
R M Chalmers. Entamoeba histolytica. In: Microbiology of Waterborne Diseases. 2nd ed. Amsterdam: Elsevier, 2014, 355–373
57
B Berglund, O Dienus, E Sokolova, E Berglind, A Matussek, T Pettersson, P E Lindgren. Occurrence and removal efficiency of parasitic protozoa in Swedish wastewater treatment plants. Science of the Total Environment, 2017, 598: 821–827 https://doi.org/10.1016/j.scitotenv.2017.04.015
58
L J Robertson. Giardia duodenalis. In: Microbiology of Waterborne Diseases. 2nd ed. Amsterdam: Elsevier, 2014, 375–405
59
S L Percival, D W Williams. Campylobacter. In: Microbiology of Waterborne Diseases. 2nd ed. Amsterdam: Elsevier, 2014, 65–78
60
T Rinsoz, S Hilfiker, A Oppliger. Quantification of thermotolerant campylobacter in Swiss water treatment plants, by real-time quantitative polymerase chain reaction. Water Environment Research, 2009, 81(9): 929–933 https://doi.org/10.2175/106143009X407429
61
S L Percival, D W Williams. Escherichia coli. In: Microbiology of Waterborne Diseases. 2nd ed. Amsterdam: Elsevier. 2014, 89–117
62
G A Kristanto, W Koven. Preliminary study of antibiotic resistant Escherichia coli in hospital wastewater treatment plants in Indonesia. International Journal of Technology, 2019, 10(4): 765 https://doi.org/10.14716/ijtech.v10i4.776
63
S L Percival, D W Williams. Legionella. In: Microbiology of Waterborne Diseases. 2nd ed. Amsterdam: Elsevier, 2014, 155–175
64
S W Huang, B M Hsu, P H Ma, K T Chien. Legionella prevalence in wastewater treatment plants of Taiwan. Water Science and Technology, 2009, 60(5): 1303–1310 https://doi.org/10.2166/wst.2009.410
65
L Nuñez, J Moretton. Disinfectant-resistant bacteria in Buenos Aires city hospital wastewater. Brazilian Journal of Microbiology, 2007, 38(4): 644–648 https://doi.org/10.1590/S1517-83822007000400012
66
S L Percival, D W Williams. Salmonella. In: Microbiology of Waterborne Diseases. 2nd ed. Amsterdam: Elsevier, 2014, 209–222
67
S Fekadu, Y Merid, H Beyene, W Teshome, S Gebre-Selassie. Assessment of antibiotic- and disinfectant-resistant bacteria in hospital wastewater, south Ethiopia: a cross-sectional study. Journal of Infection in Developing Countries, 2015, 9(02): 149–156 https://doi.org/10.3855/jidc.4808
68
C T Tsai, J S Lai, S T Lin. Quantification of pathogenic micro-organisms in the sludge from treated hospital wastewater. Journal of Applied Microbiology, 1998, 85(1): 171–176 https://doi.org/10.1046/j.1365-2672.1998.00491.x
69
S L Percival, D W Williams. Shigella. In: Microbiology of Waterborne Diseases. 2nd ed. Amsterdam: Elsevier, 2014, 223–236
70
S L Percival, D W Williams. Vibrio. In: Microbiology of Waterborne Diseases. 2nd ed. Amsterdam: Elsevier, 2014, 237–248
71
V Nongogo, A Okoh. Occurrence of vibrio pathotypes in the final effluents of five waste water treatment plants in Amathole and Chris Hani District Municipalities in South Africa. International Journal of Environmental Research and Public Health, 2014, 11(8): 7755–7766 https://doi.org/10.3390/ijerph110807755
72
S Leekha, C L Terrell, R S Edson. General principles of antimicrobial therapy. Mayo Clinic Proceedings, 2011, 86(2): 156–167 https://doi.org/10.4065/mcp.2010.0639
73
A C Singer, J D Jarhult, R Grabic, G A Khan, R H Lindberg, G Fedorova, J Fick, M J Bowes, B Olsen, H Soderstrom. Intra- and inter-pandemic variations of antiviral, antibiotics and decongestants in wastewater treatment plants and receiving rivers. PLoS One, 2014, 9(9): 108621 https://doi.org/10.1371/journal.pone.0108621
74
I Senta, P Kostanjevecki, I Krizman-Matasic, S Terzic, M Ahel. Occurrence and behavior of macrolide antibiotics in municipal wastewater treatment: possible importance of metabolites, synthesis byproducts, and transformation products. Environmental Science & Technology, 2019, 53(13): 7463–7472 https://doi.org/10.1021/acs.est.9b01420
75
H C Zhang, M Q Zhang, L Yuan, X Zhang, G P Sheng. Synergistic effect of permanganate and in situ synthesized hydrated manganese oxide for removing antibiotic resistance genes from wastewater treatment plant effluent. Environmental Science & Technology, 2019, 53(22): 13374–13381 https://doi.org/10.1021/acs.est.9b05250
76
C Nannou, A Ofrydopoulou, E Evgenidou, H David, E Heath, D Lambropoulou. Antiviral drugs in aquatic environment and wastewater treatment plants: a review on occurrence, fate, removal and ecotoxicity. Science of the Total Environment, 2020, 699: 134322 https://doi.org/10.1016/j.scitotenv.2019.134322
77
O Frederic, P Yves. Pharmaceuticals in hospital wastewater: their ecotoxicity and contribution to the environmental hazard of the effluent. Chemosphere, 2014, 115: 31–39 https://doi.org/10.1016/j.chemosphere.2014.01.016
78
C Prasse, M P Schlusener, S Ralf, T A Ternes. Antiviral drugs in wastewater and surface waters: a new pharmaceutical class of environmental relevance? Environmental Science & Technology, 2010, 44(5): 1728–1735 https://doi.org/10.1021/es903216p
79
C Accinelli, M L Sacca, I Batisson, J Fick, M Mencarelli, R Grabic. Removal of oseltamivir (Tamiflu) and other selected pharmaceuticals from wastewater using a granular bioplastic formulation entrapping propagules of Phanerochaete chrysosporium. Chemosphere, 2010, 81(3): 436–443 https://doi.org/10.1016/j.chemosphere.2010.06.074
80
F R Slater, A C Singer, S Turner, J J Barr, P L Bond. Pandemic pharmaceutical dosing effects on wastewater treatment: no adaptation of activated sludge bacteria to degrade the antiviral drug oseltamivir (Tamiflu(R)) and loss of nutrient removal performance. FEMS Microbiology Letters, 2011, 315(1): 17–22 https://doi.org/10.1111/j.1574-6968.2010.02163.x
81
V Fugere, M P Hebert, N B da Costa, C C Y Xu, R D H Barrett, B E Beisner, G Bell, G F Fussmann, B J Shapiro, V Yargeau, A Gonzalez. Community rescue in experimental phytoplankton communities facing severe herbicide pollution. Nature Ecology & Evolution, 2020, 4(4): 578–588 https://doi.org/10.1038/s41559-020-1134-5
82
T U Berendonk, C M Manaia, C Merlin, D Fatta-Kassinos, E Cytryn, F Walsh, H Burgmann, H Sorum, M Norstrom, M N Pons, et al.. Tackling antibiotic resistance: the environmental framework. Nature Reviews. Microbiology, 2015, 13(5): 310–317 https://doi.org/10.1038/nrmicro3439
83
S Rodriguez-Mozaz, S Chamorro, E Marti, B Huerta, M Gros, A Sànchez-Melsió, C M Borrego, D Barceló, J L Balcázar. Occurrence of antibiotics and antibiotic resistance genes in hospital and urban wastewaters and their impact on the receiving river. Water Research, 2015, 69: 234–242 https://doi.org/10.1016/j.watres.2014.11.021
84
Y Wang, X Wang, M Li, J Dong, C Sun, G Chen. Removal of pharmaceutical and personal care products (PPCPs) from municipal waste water with integrated membrane systems, MBR-RO/NF. International Journal of Environmental Research and Public Health, 2018, 15(2): 269 https://doi.org/10.3390/ijerph15020269
85
L Lien, N Hoa, N Chuc, N Thoa, H Phuc, V Diwan, N Dat, A Tamhankar, C Lundborg. Antibiotics in wastewater of a rural and an urban hospital before and after wastewater treatment, and the relationship with antibiotic use-A one year study from Vietnam. International Journal of Environmental Research and Public Health, 2016, 13(6): 588 https://doi.org/10.3390/ijerph13060588
86
K Kümmerer. Drugs in the environment: emission of drugs, diagnostic aids and disinfectants into wastewater by hospitals in relation to other sources: a review. Chemosphere, 2001, 45(6-7): 957–969 https://doi.org/10.1016/S0045-6535(01)00144-8
87
L Kovalova, H Siegrist, H Singer, A Wittmer, C S Mcardell. Hospital wastewater treatment by membrane bioreactor: performance and efficiency for organic micropollutant elimination. Environmental Science & Technology, 2012, 46(3): 1536–1545 https://doi.org/10.1021/es203495d
88
M F Moradali, B H A Rehm. Bacterial biopolymers: from pathogenesis to advanced materials. Nature Reviews. Microbiology, 2020, 18(4): 195–210 https://doi.org/10.1038/s41579-019-0313-3
89
D M Reurink, E Te Brinke, I Achterhuis, H D W Roesink, W M de Vos. Nafion-based low-hydration polyelectrolyte multilayer membranes for enhanced water purification. ACS Applied Polymer Materials, 2019, 1(9): 2543–2551 https://doi.org/10.1021/acsapm.9b00689
90
L A Amaral-Zettler, E R Zettler, T J Mincer. Ecology of the plastisphere. Nature Reviews. Microbiology, 2020, 18(3): 139–151 https://doi.org/10.1038/s41579-019-0308-0
91
M C Barry, K Hristovski, P Westerhoff. Membrane fouling by vesicles and prevention through ozonation. Environmental Science & Technology, 2014, 48(13): 7349–7356 https://doi.org/10.1021/es500435e
92
L Wang, Y Li, W Ben, J Hu, Z Cui, K Qu, Z Qiang. In-situ sludge ozone-reduction process for effective removal of fluoroquinolone antibiotics in wastewater treatment plants. Separation and Purification Technology, 2019, 213: 419–425 https://doi.org/10.1016/j.seppur.2018.12.062
93
S K Loeb, P J J Alvarez, J A Brame, E L Cates, W Choi, J Crittenden, D D Dionysiou, Q Li, G Li-Puma, X Quan, et al. The Technology horizon for photocatalytic water treatment: sunrise or sunset? Environmental Science & Technology, 2019, 53(6): 2937–2947 https://doi.org/10.1021/acs.est.8b05041
94
J Lienert, M Koller, J Konrad, C S McArdell, N Schuwirth. Multiple-criteria decision analysis reveals high stakeholder preference to remove pharmaceuticals from hospital wastewater. Environmental Science & Technology, 2011, 45(9): 3848–3857 https://doi.org/10.1021/es1031294
95
C I Kosma, D A Lambropoulou, T A Albanis. Occurrence and removal of PPCPs in municipal and hospital wastewaters in Greece. Journal of Hazardous Materials, 2010, 179(1-3): 804–817 https://doi.org/10.1016/j.jhazmat.2010.03.075
96
K Gurung, M C Ncibi, S K Thangaraj, J Jänis, M Seyedsalehi, M Sillanpää. Removal of pharmaceutically active compounds (PhACs) from real membrane bioreactor (MBR) effluents by photocatalytic degradation using composite Ag2O/P-25 photocatalyst. Separation and Purification Technology, 2019, 215: 317–328 https://doi.org/10.1016/j.seppur.2018.12.069
97
X Dong, Q Ge. Metal ion-bridged forward osmosis membranes for efficient pharmaceutical wastewater reclamation. ACS Applied Materials & Interfaces, 2019, 11(40): 37163–37171 https://doi.org/10.1021/acsami.9b14162
98
M Kramer, E Scifoni, C Schuy, M Rovituso, W Tinganelli, A Maier, R Kaderka, W Kraft-Weyrather, S Brons, T Tessonnier, et al. Helium ions for radiotherapy? Physical and biological verifications of a novel treatment modality. Medical Physics, 2016, 43(4): 1995–2004 https://doi.org/10.1118/1.4944593
99
F Soyekwo, C Liu, L Zhao, H Wen, W Huang, C Cai, P Kanagaraj, Y Hu. Nanofiltration membranes with metal cation-immobilized aminophosphonate networks for efficient heavy metal ion removal and organic dye degradation. ACS Applied Materials & Interfaces, 2019, 11(33): 30317–30331 https://doi.org/10.1021/acsami.9b10208
100
M N Sepehr, S Nasseri, M Zarrabi, M R Samarghandi, A Amrane. Removal of Cr(III) from tanning effluent by Aspergillus niger in airlift bioreactor. Separation and Purification Technology, 2012, 96: 256–262 https://doi.org/10.1016/j.seppur.2012.06.013
101
T Saitoh, K Shibata, K Fujimori, Y Ohtani. Rapid removal of tetracycline antibiotics from water by coagulation-flotation of sodium dodecyl sulfate and poly(allylamine hydrochloride) in the presence of Al(III) ions. Separation and Purification Technology, 2017, 187: 76–83 https://doi.org/10.1016/j.seppur.2017.06.036
102
Y Zhao, C Zhou, J Wang, H Liu, Y Xu, J W Seo, J Shen, C Gao, B Van der Bruggen. Formation of morphologically confined nanospaces via self-assembly of graphene and nanospheres for selective separation of lithium. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2018, 6(39): 18859–18864 https://doi.org/10.1039/C8TA06945J
103
Y Zhao, Y Qiu, Z Mai, E Ortega, J Shen, C Gao, B van der Bruggen. Symmetrically recombined nanofibers in a high-selectivity membrane for cation separation in high temperature and organic solvent. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2019, 7(34): 20006–20012 https://doi.org/10.1039/C9TA07416C
104
Y Zhao, K Tang, H Liu, B van der Bruggen, A Sotto Díaz, J Shen, C Gao. An anion exchange membrane modified by alternate electro-deposition layers with enhanced monovalent selectivity. Journal of Membrane Science, 2016, 520: 262–271 https://doi.org/10.1016/j.memsci.2016.07.026
105
A Helmi, F Gallucci. Latest developments in membrane (bio)reactors. Processes (Basel, Switzerland), 2020, 8(10): 1239 https://doi.org/10.3390/pr8101239
106
B Gunder, K Krauth. Replacement of secondary clarification by membrane separation-results with plate and hollow fibre modules. Water Science and Technology, 1998, 40(4-5): 311–320 https://doi.org/10.2166/wst.1999.0605
107
W Lv, Z Xiang, Y Min, Z Yu, L Ying, J Liu. Virus removal performance and mechanism of a submerged membrane bioreactor. Process Biochemistry, 2006, 41(2): 299–304 https://doi.org/10.1016/j.procbio.2005.06.005
A L Ahmad, A A Abdulkarim, B S Ooi, S Ismail. Recent development in additives modifications of polyethersulfone membrane for flux enhancement. Chemical Engineering Journal, 2013, 223: 246–267 https://doi.org/10.1016/j.cej.2013.02.130
110
F Meng, S R Chae, A Drews, M Kraume, H S Shin, F Yang. Recent advances in membrane bioreactors (MBRs): membrane fouling and membrane material. Water Research, 2009, 43(6): 1489–1512 https://doi.org/10.1016/j.watres.2008.12.044
111
S M Samaei, S Gato-Trinidad, A Ali. The application of pressure-driven ceramic membrane technology for the treatment of industrial wastewaters: a review. Separation and Purification Technology, 2018, 200: 198–220 https://doi.org/10.1016/j.seppur.2018.02.041
112
C Mbaab, C Zzab. Ceramic membrane technology for water and wastewater treatment: a critical review of performance, full-scale applications, membrane fouling and prospects. Chemical Engineering Journal, 2021, 418: 129418
113
S Zhang, Y Qu, Y Liu, F Yang, Y Yamada. Experimental study of domestic sewage treatment with a metal membrane bioreactor. Desalination, 2005, 177(1-3): 83–93 https://doi.org/10.1016/j.desal.2004.10.034
114
Y H Xie, T Zhu, C H Xu, T Nozaki, K Furukawa. Treatment of domestic sewage by a metal membrane bioreactor. Water Science and Technology, 2012, 65(6): 1102–1108 https://doi.org/10.2166/wst.2012.422
115
L Dumée, H Li, L Bao, F M Ailloux, L Kong. The fabrication and surface functionalization of porous metal frameworks—a review. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2013, 1(48): 15185 https://doi.org/10.1039/c3ta13240d
116
D S Dlamini, J Li, B B Mamba. Critical review of montmorillonite/polymer mixed-matrix filtration membranes: possibilities and challenges. Applied Clay Science, 2019, 168: 21–30 https://doi.org/10.1016/j.clay.2018.10.016
117
M R Bilad, L Marbelia, C Laine, I Vankelecom. A PVC-silica mixed-matrix membrane (MMM) as novel type of membrane bioreactor (MBR) membrane. Journal of Membrane Science, 2015, 493: 19–27 https://doi.org/10.1016/j.memsci.2015.05.074
118
V L Mathioudakis, A Soares, H Briers, I Martin-Garcia, B Jefferson. Treatment and energy efficiency of a granular sludge anaerobic membrane reactor handling domestic sewage. Procedia Engineering, 2012, 44: 1977–1979 https://doi.org/10.1016/j.proeng.2012.09.013
119
H J Lin, K Xie, B Mahendran, D M Ba Gley, K T Leung, S N Liss, B Q Liao. Sludge properties and their effects on membrane fouling in submerged anaerobic membrane bioreactors (SAnMBRs). Water Research, 2009, 43(15): 3827–3837 https://doi.org/10.1016/j.watres.2009.05.025
120
H Lin, J Chen, F Wang, L Ding, H Hong. Feasibility evaluation of submerged anaerobic membrane bioreactor for municipal secondary wastewater treatment. Desalination, 2011, 280(1-3): 120–126 https://doi.org/10.1016/j.desal.2011.06.058
121
R Chen, Y Nie, H Kato, J Wu, T Utashiro, J Lu, S Yue, H Jiang, L Zhang, Y Y Li. Methanogenic degradation of toilet-paper cellulose upon sewage treatment in an anaerobic membrane bioreactor at room temperature. Bioresource Technology, 2017, 228: 69–76 https://doi.org/10.1016/j.biortech.2016.12.089
122
Y Nie, H Kato, T Sugo, T Hojo, X Tian, Y Y Li. Effect of anionic surfactant inhibition on sewage treatment by a submerged anaerobic membrane bioreactor: efficiency, sludge activity and methane recovery. Chemical Engineering Journal, 2017, 315: 83–91 https://doi.org/10.1016/j.cej.2017.01.022
123
C Hui, H Yutaka, H Toshimasa, Y Y Li. Upgrading methane fermentation of food waste by using a hollow fiber type anaerobic membrane bioreactor. Bioresource Technology, 2018, 267: 386–394 https://doi.org/10.1016/j.biortech.2018.07.045
124
A P Trzcinski, D C Stuckey. Continuous treatment of the organic fraction of municipal solid waste in an anaerobic two-stage membrane process with liquid recycle. Water Research, 2009, 43(9): 2449–2462 https://doi.org/10.1016/j.watres.2009.03.030
125
A Akram, D C Stuckey. Flux and performance improvement in a submerged anaerobic membrane bioreactor (SAMBR) using powdered activated carbon (PAC). Process Biochemistry, 2008, 43(1): 93–102 https://doi.org/10.1016/j.procbio.2007.10.020
126
Y Nie, R Chen, X Tian, Y Y Li. Impact of water characteristics on the bioenergy recovery from sewage treatment by anaerobic membrane bioreactor via a comprehensive study on the response of microbial community and methanogenic activity. Energy, 2017, 139(15): 459–467 https://doi.org/10.1016/j.energy.2017.07.168
127
D Jang, Y Hwang, H Shin, W Lee. Effects of salinity on the characteristics of biomass and membrane fouling in membrane bioreactors. Bioresource Technology, 2013, 141: 50–56 https://doi.org/10.1016/j.biortech.2013.02.062
128
S Tan, C Cui, X Chen, W Li. Effect of bioflocculation on fouling-related biofoulants in a membrane bioreactor during saline wastewater treatments. Bioresource Technology, 2017, 224: 285–291 https://doi.org/10.1016/j.biortech.2016.10.066
129
P M Biesheuvel, H Verweij. Design of ceramic membrane supports: permeability, tensile strength and stress. Journal of Membrane Science, 1999, 156(1): 141–152 https://doi.org/10.1016/S0376-7388(98)00335-4
130
S A Sownya, G M Madhu, A Raizada, C D Madhusoodana. Studies on effective treatment of waste water using submerged ceramic membrane bioreactor. Materials Today: Proceedings, 2020, 24: 1251–1262 https://doi.org/10.1016/j.matpr.2020.04.440
131
E Trouve, V Urbain, J Manem. Treatment of municipal wastewater by a membrane bioreactor: results of a semi-industrial pilot-scale study. Water Science and Technology, 1994, 30(4): 151–157 https://doi.org/10.2166/wst.1994.0180
132
S Zhang, F Yang, Y Liu, X Zhang, Y Yamada, K Furukawa. Performance of a metallic membrane bioreactor treating simulated distillery wastewater at temperatures of 30 to 45 °C. Desalination, 2006, 194(1-3): 146–155 https://doi.org/10.1016/j.desal.2005.10.029
133
R Reif, A Besancon, K Le Corre, B Jefferson, J M Lema, F. OmilComparison of PPCPs removal on a parallel-operated MBR and AS system and evaluation of effluent post-treatment on vertical flow reed beds. Water ence & Technology, 2011, 63: 2411–2417
134
J Wang, S Wang. Removal of pharmaceuticals and personal care products (PPCPs) from wastewater: a review. Journal of Environmental Management, 2016, 182: 620–640 https://doi.org/10.1016/j.jenvman.2016.07.049
135
A Ng, A S Kim. A mini-review of modeling studies on membrane bioreactor (MBR) treatment for municipal wastewaters. Desalination, 2007, 212(1-3): 261–281 https://doi.org/10.1016/j.desal.2006.10.013
136
A Yurtsever, E Sahinkaya, Z Akta, D Uar, Z Wang. Performances of anaerobic and aerobic membrane bioreactors for the treatment of synthetic textile wastewater. Bioresource Technology, 2015, 192: 564–573 https://doi.org/10.1016/j.biortech.2015.06.024
137
A L Smith, L B Stadler, L Cao, N G Love, L Raskin, S J Skerlos. Navigating wastewater energy recovery strategies: a life cycle comparison of anaerobic membrane bioreactor and conventional treatment systems with anaerobic digestion. Environmental Science & Technology, 2014, 48(10): 5972–5981 https://doi.org/10.1021/es5006169
138
W Liu, X Song, N Huda, M Xie, G Li, W Luo. Comparison between aerobic and anaerobic membrane bioreactors for trace organic contaminant removal in wastewater treatment. Environmental Technology & Innovation, 2020, 17: 100564 https://doi.org/10.1016/j.eti.2019.100564
139
A Monteoliva-Garcia, J Martin-Pascual, M M Munio, J M Poyatos. Effects of carrier addition on water quality and pharmaceutical removal capacity of a membrane bioreactor—advanced oxidation process combined treatment. Science of the Total Environment, 2020, 708: 135104 https://doi.org/10.1016/j.scitotenv.2019.135104
140
K Xiao, S Liang, X Wang, C Chen, X Huang. Current state and challenges of full-scale membrane bioreactor applications: a critical review. Bioresource Technology, 2019, 271: 473–481 https://doi.org/10.1016/j.biortech.2018.09.061
141
G Blandin, C Gautier, M Sauchelli Toran, H Monclús, I Rodriguez-Roda, J Comas. Retrofitting membrane bioreactor (MBR) into osmotic membrane bioreactor (OMBR): a pilot scale study. Chemical Engineering Journal, 2018, 339: 268–277 https://doi.org/10.1016/j.cej.2018.01.103
142
X Li, Y Liu, J Wang, J Gascon, J Li, B van der Bruggen. Metal-organic frameworks based membranes for liquid separation. Chemical Society Reviews, 2017, 46(23): 7124–7144 https://doi.org/10.1039/C7CS00575J
143
X Chen, A Selloni. Introduction: titanium dioxide (TiO2) nanomaterials. Chemical Reviews, 2014, 114(19): 9281–9282 https://doi.org/10.1021/cr500422r
144
J N Tiwari, R N Tiwari, K S Kim. Zero-dimensional, one-dimensional, two-dimensional and three-dimensional nanostructured materials for advanced electrochemical energy devices. Progress in Materials Science, 2012, 57(4): 724–803 https://doi.org/10.1016/j.pmatsci.2011.08.003
145
B Sutisna, V Musteata, B Pulido, T Puspasari, D M Smilgies, N Hadjichristidis, S P Nunes. High flux membranes, based on self-assembled and H-bond linked triblock copolymer nanospheres. Journal of Membrane Science, 2019, 585: 10–18 https://doi.org/10.1016/j.memsci.2019.04.045
146
W Yan, M Shi, Z Wang, Y Zhou, L Liu, S Zhao, Y Ji, J Wang, C Gao. Amino-modified hollow mesoporous silica nanospheres-incorporated reverse osmosis membrane with high performance. Journal of Membrane Science, 2019, 581: 168–177 https://doi.org/10.1016/j.memsci.2019.03.042
147
D Zou, X Chen, E Drioli, X Ke, M Qiu, Y Fan. Facile co-sintering process to fabricate sustainable antifouling silver nanoparticles (AgNPs)-enhanced tight ceramic ultrafiltration membranes for protein separation. Journal of Membrane Science, 2020, 593: 117402 https://doi.org/10.1016/j.memsci.2019.117402
148
B J Hinds, N Chopra, T Rantell, R Andrews, V Gavalas, L G Bachas. Aligned multiwalled carbon nanotube membranes. Science, 2004, 303(5654): 62–65 https://doi.org/10.1126/science.1092048
X Zhao, L Cheng, R Wang, N Jia, L Liu, C Gao. Bioinspired synthesis of polyzwitterion/titania functionalized carbon nanotube membrane with superwetting property for efficient oil-in-water emulsion separation. Journal of Membrane Science, 2019, 589: 117257 https://doi.org/10.1016/j.memsci.2019.117257
151
J Li, X Li, B van der Bruggen. An MXene-based membrane for molecular separation. Environmental Science. Nano, 2020, 7(5): 1289–1304 https://doi.org/10.1039/C9EN01478K
152
Y Zhao, M Wu, Y Guo, N Mamrol, X Yang, C Gao, B van der Bruggen. Metal-organic framework based membranes for selective separation of target ions. Journal of Membrane Science, 2021, 634: 119407 https://doi.org/10.1016/j.memsci.2021.119407
153
H Yang, L Yang, H Wang, Z Xu, Y Zhao, Y Luo, N Nasir, Y Song, H Wu, F Pan, Z Jiang. Covalent organic framework membranes through a mixed-dimensional assembly for molecular separations. Nature Communications, 2019, 10(1): 2101 https://doi.org/10.1038/s41467-019-10157-5
154
Z F Gao, Y Feng, D Ma, T S Chung. Vapor-phase crosslinked mixed matrix membranes with UiO-66-NH2 for organic solvent nanofiltration. Journal of Membrane Science, 2019, 574: 124–135 https://doi.org/10.1016/j.memsci.2018.12.064
155
Z F Gao, A Naderi, W Wei, T S Chung. Selection of crosslinkers and control of microstructure of vapor-phase crosslinked composite membranes for organic solvent nanofiltration. Journal of Membrane Science, 2020, 616: 118582 https://doi.org/10.1016/j.memsci.2020.118582
156
T H Lee, J Y Oh, S P Hong, J M Lee, S M Roh, S H Kim, H B Park. ZIF-8 particle size effects on reverse osmosis performance of polyamide thin-film nanocomposite membranes: importance of particle deposition. Journal of Membrane Science, 2019, 570–571: 23–33 https://doi.org/10.1016/j.memsci.2018.10.015
157
D L Zhao, Q Zhao, T S Chung. Fabrication of defect-free thin-film nanocomposite (TFN) membranes for reverse osmosis desalination. Desalination, 2021, 516: 115230 https://doi.org/10.1016/j.desal.2021.115230
158
Z Zhang, P Li, X Y Kong, G Xie, Y Qian, Z Wang, Y Tian, L Wen, L Jiang. Bioinspired heterogeneous ion pump membranes: unidirectional selective pumping and controllable gating properties stemming from asymmetric ionic group distribution. Journal of the American Chemical Society, 2018, 140(3): 1083–1090 https://doi.org/10.1021/jacs.7b11472
159
S Yan, S Luan, H Shi, X Xu, J Zhang, S Yuan, Y Yang, J Yin. Hierarchical polymer brushes with dominant antibacterial mechanisms switching from bactericidal to bacteria repellent. Biomacromolecules, 2016, 17(5): 1696–1704 https://doi.org/10.1021/acs.biomac.6b00115
160
M K Shahid, Y G Choi. The comparative study for scale inhibition on surface of RO membranes in wastewater reclamation: CO2 purging versus three different antiscalants. Journal of Membrane Science, 2018, 546: 61–69 https://doi.org/10.1016/j.memsci.2017.09.087
161
Z Wang, Z Wu, X Yin, L Tian. Membrane fouling in a submerged membrane bioreactor (MBR) under sub-critical flux operation: membrane foulant and gel layer characterization. Journal of Membrane Science, 2008, 325(1): 238–244 https://doi.org/10.1016/j.memsci.2008.07.035
162
S Mikhaylin, L Bazinet. Fouling on ion-exchange membranes: classification, characterization and strategies of prevention and control. Advances in Colloid and Interface Science, 2016, 229: 34–56 https://doi.org/10.1016/j.cis.2015.12.006
163
M D Firouzjaei, S F Seyedpour, S A Aktij, M Giagnorio, N Bazrafshan, A Mollahosseini, F Samadi, S Ahmadalipour, F D Firouzjaei, M R Esfahani, et al.. Recent advances in functionalized polymer membranes for biofouling control and mitigation in forward osmosis. Journal of Membrane Science, 2020, 596: 117604 https://doi.org/10.1016/j.memsci.2019.117604
164
L Malaeb, P Le-Clech, J S Vrouwenvelder, G M Ayoub, P E Saikaly. Do biological-based strategies hold promise to biofouling control in MBRs? Water Research, 2013, 47(15): 5447–5463 https://doi.org/10.1016/j.watres.2013.06.033
165
A Bogler, S Lin, E Bar-Zeev. Biofouling of membrane distillation, forward osmosis and pressure retarded osmosis: principles, impacts and future directions. Journal of Membrane Science, 2017, 542: 378–398 https://doi.org/10.1016/j.memsci.2017.08.001
166
O Sánchez. Microbial diversity in biofilms from reverse osmosis membranes: a short review. Journal of Membrane Science, 2018, 545: 240–249 https://doi.org/10.1016/j.memsci.2017.09.082
167
E Bar-Zeev, U Passow, S R Castrillon, M Elimelech. Transparent exopolymer particles: from aquatic environments and engineered systems to membrane biofouling. Environmental Science & Technology, 2015, 49(2): 691–707 https://doi.org/10.1021/es5041738
168
H S Oh, C H Lee. Origin and evolution of quorum quenching technology for biofouling control in MBRs for wastewater treatment. Journal of Membrane Science, 2018, 554: 331–345 https://doi.org/10.1016/j.memsci.2018.03.019
169
H F Ridgway, J Orbell, S Gray. Molecular simulations of polyamide membrane materials used in desalination and water reuse applications: recent developments and future prospects. Journal of Membrane Science, 2017, 524: 436–448 https://doi.org/10.1016/j.memsci.2016.11.061
170
V Kochkodan, D J Johnson, N Hilal. Polymeric membranes: surface modification for minimizing (bio)colloidal fouling. Advances in Colloid and Interface Science, 2014, 206: 116–140 https://doi.org/10.1016/j.cis.2013.05.005
171
J M Dickhout, J Moreno, P M Biesheuvel, L Boels, R G H Lammertink, W M de Vos. Produced water treatment by membranes: a review from a colloidal perspective. Journal of Colloid and Interface Science, 2017, 487: 523–534 https://doi.org/10.1016/j.jcis.2016.10.013
172
M A Al Mamun, M Sadrzadeh, R Chatterjee, S Bhattacharjee, S De. Colloidal fouling of nanofiltration membranes: a novel transient electrokinetic model and experimental study. Chemical Engineering Science, 2015, 138: 153–163 https://doi.org/10.1016/j.ces.2015.08.022
173
B Dersoir, A B Schofield, M R de Saint Vincent, H Tabuteau. Dynamics of pore fouling by colloidal particles at the particle level. Journal of Membrane Science, 2019, 573: 411–424 https://doi.org/10.1016/j.memsci.2018.12.025
174
J Lohaus, Y M Perez, M Wessling. What are the microscopic events of colloidal membrane fouling? Journal of Membrane Science, 2018, 553: 90–98 https://doi.org/10.1016/j.memsci.2018.02.023
175
M Haddad, L Bazinet, O Savadogo, J Paris. Electrochemical acidification of Kraft black liquor: impacts of pulsed electric field application on bipolar membrane colloidal fouling and process intensification. Journal of Membrane Science, 2017, 524: 482–492 https://doi.org/10.1016/j.memsci.2016.10.043
176
Y L Lin. Effects of organic, biological and colloidal fouling on the removal of pharmaceuticals and personal care products by nanofiltration and reverse osmosis membranes. Journal of Membrane Science, 2017, 542: 342–351 https://doi.org/10.1016/j.memsci.2017.08.023
177
B Mi, M Elimelech. Organic fouling of forward osmosis membranes: fouling reversibility and cleaning without chemical reagents. Journal of Membrane Science, 2010, 348(1-2): 337–345 https://doi.org/10.1016/j.memsci.2009.11.021
178
X M Wang, T D Waite. Role of gelling soluble and colloidal microbial products in membrane fouling. Environmental Science & Technology, 2009, 43(24): 9341–9347 https://doi.org/10.1021/es9013129
179
Q Wang, Z Wang, Z Wu, J Ma, Z Jiang. Insights into membrane fouling of submerged membrane bioreactors by characterizing different fouling layers formed on membrane surfaces. Chemical Engineering Journal, 2012, 179: 169–177 https://doi.org/10.1016/j.cej.2011.10.074
180
Y Zhao, H Liu, K Tang, Y Jin, J Pan, B Van der Bruggen, J Shen, C Gao. Mimicking the cell membrane: bio-inspired simultaneous functions with monovalent anion selectivity and antifouling properties of anion exchange membrane. Scientific Reports, 2016, 6(1): 37285 https://doi.org/10.1038/srep37285
T Tong, A F Wallace, S Zhao, Z Wang. Mineral scaling in membrane desalination: mechanisms, mitigation strategies, and feasibility of scaling-resistant membranes. Journal of Membrane Science, 2019, 579: 52–69 https://doi.org/10.1016/j.memsci.2019.02.049
183
Y Zhao, M Yao, P Shen, C Uytterhoeven, N Marmrol, J Shen, C Gao, B Van der Bruggen. Composite anti-scaling membrane made of interpenetrating networks of nanofibers for selective separation of lithium. Journal of Membrane Science, 2021, 618: 118668 https://doi.org/10.1016/j.memsci.2020.118668
184
L I Tinggang, J Liu, R Bai, F S Wong. Membrane-aerated biofilm reactor for the treatment of acetonitrile wastewater. Environmental Science & Technology, 2008, 42(6): 2099–2104 https://doi.org/10.1021/es702150f
185
H Tian, Y Hu, X Xu, M Hui, B Li. Enhanced wastewater treatment with high o-aminophenol concentration by two-stage MABR and its biodegradation mechanism. Bioresource Technology, 2019, 289: 121649 https://doi.org/10.1016/j.biortech.2019.121649
186
H Tian, X Xu, J Qu, H Li, Y Hu, L Huang, W He, B Li. Biodegradation of phenolic compounds in high saline wastewater by biofilms adhering on aerated membranes. Journal of Hazardous Materials, 2020, 392: 122463 https://doi.org/10.1016/j.jhazmat.2020.122463
187
A G Livingston. Extractive membrane bioreactors: a new process technology for detoxifying chemical industry wastewaters. Journal of Chemical Technology and Biotechnology (Oxford, Oxfordshire), 1994, 60(2): 117–124 https://doi.org/10.1002/jctb.280600202
188
B J Yeo, S Goh, A G Livingston, A G Fane. Controlling biofilm development in the extractive membrane bioreactor. Separation and Purification Technology, 2017, 52: 113–121
189
G Skouteris, D Saroj, P Melidis, F I Hai, S Ouki. The effect of activated carbon addition on membrane bioreactor processes for wastewater treatment and reclamation—A critical review. Bioresource Technology, 2015, 185: 399–410 https://doi.org/10.1016/j.biortech.2015.03.010
190
B J Yeo, S Goh, J Zhang, A G Livingston, A G Fane. Novel MBRs for the removal of organic priority pollutants from industrial wastewaters: a review. Journal of Chemical Technology and Biotechnology (Oxford, Oxfordshire), 2015, 90(11): 1949–1967 https://doi.org/10.1002/jctb.4782
191
G Busca, S Berardinelli, C Resini, L Arrighi. Technologies for the removal of phenol from fluid streams: a short review of recent developments. Journal of Hazardous Materials, 2008, 160(2-3): 265–288 https://doi.org/10.1016/j.jhazmat.2008.03.045
192
A G Livingston, J P Arcangeli, A T Boam, S Zhang, M Marangon, L M F D Santos. Extractive membrane bioreactors for detoxification of chemical industry wastes: process development. Journal of Membrane Science, 1998, 151(1): 29–44 https://doi.org/10.1016/S0376-7388(98)00237-3
193
A G Livingston. A novel membrane bioreactor for detoxifying industrial wastewater: I. Biodegradation of phenol in a synthetically concocted wastewater. Biotechnology and Bioengineering, 1993, 41(10): 915–926 https://doi.org/10.1002/bit.260411002
194
M Xiao, J Zhou, Y Tan, A Zhang, Y Xia, L Ji. Treatment of highly-concentrated phenol wastewater with an extractive membrane reactor using silicone rubber. Desalination, 2006, 195(1-3): 281–293 https://doi.org/10.1016/j.desal.2005.12.006
195
L F Ren, M Adeel, J Li, C Xu, Z Xu, X Zhang, J Shao, Y He. Phenol separation from phenol-laden saline wastewater by membrane aromatic recovery system-like membrane contactor using superhydrophobic/organophilic electrospun PDMS/PMMA membrane. Water Research, 2018, 135: 31–43 https://doi.org/10.1016/j.watres.2018.02.011
196
L F Ren, H H Ngo, C Bu, C Ge, S Q Ni, J Shao, Y He. Novel external extractive membrane bioreactor (EMBR) using electrospun polydimethylsiloxane/polymethyl methacrylate membrane for phenol-laden saline wastewater. Chemical Engineering Journal, 2020, 383: 123179 https://doi.org/10.1016/j.cej.2019.123179
197
Y Liao, S Goh, M Tian, R Wang, A G Fane. Design, development and evaluation of nanofibrous composite membranes with opposing membrane wetting properties for extractive membrane bioreactors. Journal of Membrane Science, 2018, 551: 55–65 https://doi.org/10.1016/j.memsci.2018.01.029
198
M Y Jin, Y Liao, C H Loh, C H Tan, R Wang. Preparation of polydimethylsiloxane-polyvinylidene fluoride composite membranes for phenol removal in extractive membrane bioreactor. Industrial & Engineering Chemistry Research, 2017, 56(12): 3436–3445 https://doi.org/10.1021/acs.iecr.7b00191
199
L M D Freitas Santos, U Hömmerich, A G Livingston. Dichloroethane removal from gas streams by an extractive membrane bioreactor. Biotechnology Progress, 1995, 11(2): 194–201 https://doi.org/10.1021/bp00032a011
200
L F Dos Santos, G L Biundo. Treatment of pharmaceutical industry process wastewater using the extractive membrane bioreactor. Environment and Progress, 1999, 18(1): 34–39 https://doi.org/10.1002/ep.670180118
201
S Chuichulcherm, S Nagpal, L Peeva, A Livingston. Treatment of metal—containing wastewaters with a novel extractive membrane reactor using sulfate—reducing bacteria. Environmental & Clean Technology, 2001, 76(1): 61–68 https://doi.org/10.1002/1097-4660(200101)76:1<61::AID-JCTB357>3.0.CO;2-O
202
W Luo, F I Hai, W E Price, W Guo, H H Ngo, K Yamamoto, L D Nghiem. High retention membrane bioreactors: challenges and opportunities. Bioresource Technology, 2014, 167: 539–546 https://doi.org/10.1016/j.biortech.2014.06.016
203
Y L Liu, X M Wang, H W Yang, Y F Xie, X Huang. Preparation of nanofiltration membranes for high rejection of organic micropollutants and low rejection of divalent cations. Journal of Membrane Science, 2019, 572(15): 152–160 https://doi.org/10.1016/j.memsci.2018.11.013
204
J H Choi, K Fukushi, K Yamamoto. A submerged nanofiltration membrane bioreactor for domestic wastewater treatment: the performance of cellulose acetate nanofiltration membranes for long-term operation. Separation and Purification Technology, 2007, 52(3): 470–477 https://doi.org/10.1016/j.seppur.2006.05.027
205
F Zaviska, P Drogui, A Grasmick, A Azais, M Héran. Nanofiltration membrane bioreactor for removing pharmaceutical compounds. Journal of Membrane Science, 2013, 429: 121–129 https://doi.org/10.1016/j.memsci.2012.11.022
206
D Li, H Wang. Recent developments in reverse osmosis desalination membranes. Journal of Materials Chemistry, 2010, 20(22): 4551–4566 https://doi.org/10.1039/b924553g
207
F T Ming, S Lee, H Xu, K Jeong, T H Chong. Impact of salt accumulation in the bioreactor on the performance of nanofiltration membrane bioreactor (NF-MBR) + reverse osmosis (RO) process for water reclamation. Water Research, 2019, 170: 115352
208
M Waszak, A Markowska-Szczupak, M Gryta. Application of nanofiltration for production of 1,3-propanediol in membrane bioreactor. Catalysis Today, 2016, 268(15): 164–170 https://doi.org/10.1016/j.cattod.2016.02.024
209
J Snowdon, K S Singh, G Zanatta. Optimization of an external nanofiltration anaerobic membrane bioreactor treating a high-strength starch-based wastewater. Journal of Environmental Engineering, 2018, 144(6): 04018032 https://doi.org/10.1061/(ASCE)EE.1943-7870.0001376
210
E R Cornelissen, D Harmsen, K Korte, C J Ruiken, J J Qin, H Oo, L P Wessels. Membrane fouling and process performance of forward osmosis membranes on activated sludge. Journal of Membrane Science, 2008, 319(1-2): 158–168 https://doi.org/10.1016/j.memsci.2008.03.048
211
R W Holloway, A Achilli, T Y Cath. The osmotic membrane bioreactor: a critical review. Environmental Science & Technology, 2015, 1: 581–605
212
X Wang, V Chang, C Y Tang. Osmotic membrane bioreactor (OMBR) technology for wastewater treatment and reclamation: advances, challenges, and prospects for the future. Journal of Membrane Science, 2016, 504: 113–132 https://doi.org/10.1016/j.memsci.2016.01.010
213
A Achilli, T Y Cath, E A Marchand, A E Childress. The forward osmosis membrane bioreactor: a low fouling alternative to MBR processes. Desalination, 2009, 239(1-3): 10–21 https://doi.org/10.1016/j.desal.2008.02.022
214
J Y Wei, J Zhang, W Lay, B Cao, A G Fane, L Yu. State of the art of osmotic membrane bioreactors for water reclamation. Bioresource Technology, 2012, 122: 217–222 https://doi.org/10.1016/j.biortech.2012.03.060
215
W C L Lay, Q Zhang, J Zhang, D McDougald, C Tang, R Wang, Y Liu, A G Fane. Effect of pharmaceuticals on the performance of a novel osmotic membrane bioreactor (OMBR). Separation Science and Technology, 2012, 47(4): 543–554 https://doi.org/10.1080/01496395.2011.630249
216
A Alturki, J Mcdonald, S J Khan, F I Hai, D N Long. Performance of a novel osmotic membrane bioreactor (OMBR) system: flux stability and removal of trace organics. Bioresource Technology, 2012, 113: 201–206 https://doi.org/10.1016/j.biortech.2012.01.082
217
D Kwon, S J Kwon, J Kim, J H Lee. Feasibility of the highly-permselective forward osmosis membrane process for the post-treatment of the anaerobic fluidized bed bioreactor effluent. Desalination, 2020, 485: 114451 https://doi.org/10.1016/j.desal.2020.114451
218
S Tan, I Acquah, W Li. Cultivation of marine activated sludge to treat saline wastewater. Fresenius Environmental Bulletin, 2016, 25: 3134–3141
219
Y Lu, Z He. Mitigation of salinity buildup and recovery of wasted salts in a hybrid osmotic membrane bioreactor-electrodialysis system. Environmental Science & Technology, 2015, 49(17): 10529–10535 https://doi.org/10.1021/acs.est.5b01243
220
N D Viet, J Cho, Y Yoon, A Jang. Enhancing the removal efficiency of osmotic membrane bioreactors: a comprehensive review of influencing parameters and hybrid configurations. Chemosphere, 2019, 236: 124363 https://doi.org/10.1016/j.chemosphere.2019.124363
221
Y K Geng, Y Wang, X R Pan, G P Sheng. Electricity generation and in situ phosphate recovery from enhanced biological phosphorus removal sludge by electrodialysis membrane bioreactor. Bioresource Technology, 2018, 247: 471–476 https://doi.org/10.1016/j.biortech.2017.09.118
222
Y K Wang, Y K Geng, X R Pan, G P Sheng. In situ utilization of generated electricity for nutrient recovery in urine treatment using a selective electrodialysis membrane bioreactor. Chemical Engineering Science, 2017, 171(2): 451–458 https://doi.org/10.1016/j.ces.2017.06.002
223
J Mamo, M J García-Galán, M Stefani, S Rodríguez-Mozaz, D Barceló, H Monclús, I Rodriguez-Roda, J Comas. Fate of pharmaceuticals and their transformation products in integrated membrane systems for wastewater reclamation. Chemical Engineering Journal, 2018, 331: 450–461 https://doi.org/10.1016/j.cej.2017.08.050
224
M Racar, D Dolar, K Karadakić, N Čavarović, N Glumac, D Ašperger, K Košutić. Challenges of municipal wastewater reclamation for irrigation by MBR and NF/RO: physico-chemical and microbiological parameters, and emerging contaminants. Science of the Total Environment, 2020, 722: 137959 https://doi.org/10.1016/j.scitotenv.2020.137959
225
O Díaz, E Gonzalez, L Vera, L Porlán, J Rodríguez-Sevilla, C Afonso-Olivares, Z Ferrera, J J Santana Rodriguez. Nanofiltration/reverse osmosis as pretreatment technique for water reuse: ultrafiltration versus tertiary membrane reactor. Clean (Weinheim), 2017, 45(5): 1600014 https://doi.org/10.1002/clen.201600014
226
K Dhangar, M Kumar. Tricks and tracks in removal of emerging contaminants from the wastewater through hybrid treatment systems: a review. Science of the Total Environment, 2020, 738: 140320 https://doi.org/10.1016/j.scitotenv.2020.140320
227
S Beier, S Köster, K Veltmann, H Schröder, J Pinnekamp. Treatment of hospital wastewater effluent by nanofiltration and reverse osmosis. Water Science and Technology, 2010, 61(7): 1691–1698 https://doi.org/10.2166/wst.2010.119
228
L S Tam, T W Tang, G N Lau, K R Sharma, G H Chen. A pilot study for wastewater reclamation and reuse with MBR/RO and MF/RO systems. Desalination, 2007, 202(1-3): 106–113 https://doi.org/10.1016/j.desal.2005.12.045
229
A M Comerton, R C Andrews, D M Bagley. Evaluation of an MBR-RO system to produce high quality reuse water: microbial control, DBP formation and nitrate. Water Research, 2005, 39(16): 3982–3990 https://doi.org/10.1016/j.watres.2005.07.014
230
T Prado, A De Castro Bruni, M R F Barbosa, S C Garcia, A M De Jesus Melo, M I Z Sato. Performance of wastewater reclamation systems in enteric virus removal. Science of the Total Environment, 2019, 678: 33–42 https://doi.org/10.1016/j.scitotenv.2019.04.435
231
T Prado, A De Castro Bruni, M R F Barbosa, S C Garcia, L Z Moreno, M I Z Sato. Noroviruses in raw sewage, secondary effluents and reclaimed water produced by sand-anthracite filters and membrane bioreactor/reverse osmosis system. Science of the Total Environment, 2019, 646: 427–437 https://doi.org/10.1016/j.scitotenv.2018.07.301
232
A Plevri, C Noutsopoulos, D Mamais, C Makropoulos, A Andreadakis, E Lytras, S Samios. Priority pollutants and other micropollutants removal in an MBR-RO wastewater treatment system. Desalination and Water Treatment, 2018, 127: 121–131 https://doi.org/10.5004/dwt.2018.22857
233
A Plevri, D Mamais, C Noutsopoulos, C Makropoulos, A Andreadakis, K Rippis, E Smeti, E Lytras, C Lioumis. Promoting on-site urban wastewater reuse through MBR-RO treatment. Desalination and Water Treatment, 2017, 91: 2–11 https://doi.org/10.5004/dwt.2017.20804
234
C Li, C Cabassud, C Guigui. Evaluation of membrane bioreactor on removal of pharmaceutical micropollutants: a review. Desalination and Water Treatment, 2014, 55(4): 845–858 https://doi.org/10.1080/19443994.2014.926839
235
E Sahar, I David, Y Gelman, H Chikurel, A Aharoni, R Messalem, A Brenner. The use of RO to remove emerging micropollutants following CAS/UF or MBR treatment of municipal wastewater. Desalination, 2011, 273(1): 142–147 https://doi.org/10.1016/j.desal.2010.11.004
236
D Dolar, M Gros, S Rodriguez-Mozaz, J Moreno, J Comas, I Rodriguez-Roda, D Barceló. Removal of emerging contaminants from municipal wastewater with an integrated membrane system, MBR-RO. Journal of Hazardous Materials, 2012, 239–240: 64–69 https://doi.org/10.1016/j.jhazmat.2012.03.029
237
M Aziz, T Ojumu. Exclusion of estrogenic and androgenic steroid hormones from municipal membrane bioreactor wastewater using UF/NF/RO membranes for water reuse application. Membranes, 2020, 10(3): 37 https://doi.org/10.3390/membranes10030037
238
B Wu, T Kitade, T H Chong, T Uemura, A G Fane. Impact of membrane bioreactor operating conditions on fouling behavior of reverse osmosis membranes in MBR-RO processes. Desalination, 2013, 311(15): 37–45 https://doi.org/10.1016/j.desal.2012.11.020
239
G Wang, Z Fan, D Wu, L Qin, G Zhang, C Gao, Q Meng. Anoxic/aerobic granular active carbon assisted MBR integrated with nanofiltration and reverse osmosis for advanced treatment of municipal landfill leachate. Desalination, 2014, 349: 136–144 https://doi.org/10.1016/j.desal.2014.06.030
240
J Wang, K Li, Y Wei, Y Cheng, D Wei, M Li. Performance and fate of organics in a pilot MBR-NF for treating antibiotic production wastewater with recycling NF concentrate. Chemosphere, 2015, 121: 92–100 https://doi.org/10.1016/j.chemosphere.2014.11.034
241
M C Hacıfazlıoğlu, İ Parlar, T Ö Pek, N Kabay. Evaluation of chemical cleaning to control fouling on nanofiltration and reverse osmosis membranes after desalination of MBR effluent. Desalination, 2019, 466: 44–51 https://doi.org/10.1016/j.desal.2019.05.003
242
R Rautenbach, R Mellis. Waste water treatment by a combination of bioreactor and nanofiltration. Desalination, 1994, 95(2): 171–188 https://doi.org/10.1016/0011-9164(94)00012-3
243
T Tran, T Nguyen, H Ho, D Le, T Lam, D Nguyen, A Hoang, T Do, L Hoang, T Nguyen, et al. Integration of membrane bioreactor and nanofiltration for the treatment process of real hospital wastewater in Ho Chi Minh City, Vietnam. Processes (Basel, Switzerland), 2019, 7(3): 123 https://doi.org/10.3390/pr7030123
244
I Parlar, M Hacıfazlıoğlu, N Kabay, T Ö Pek, M Yüksel. Performance comparison of reverse osmosis (RO) with integrated nanofiltration (NF) and reverse osmosis process for desalination of MBR effluent. Journal of Water Process Engineering, 2019, 29: 100640 https://doi.org/10.1016/j.jwpe.2018.06.002
245
Y Lan, K Groenen-Serrano, C Coetsier, C Causserand. Fouling control using critical, threshold and limiting fluxes concepts for cross-flow NF of a complex matrix: membrane bioreactor effluent. Journal of Membrane Science, 2017, 524: 288–298 https://doi.org/10.1016/j.memsci.2016.11.001
246
Y Lan, K Groenen-Serrano, C Coetsier, C Causserand. Nanofiltration performances after membrane bioreactor for hospital wastewater treatment: fouling mechanisms and the quantitative link between stable fluxes and the water matrix. Water Research, 2018, 146: 77–87 https://doi.org/10.1016/j.watres.2018.09.004
247
L Geoswami, R V Kumar, S N Borah, N A Manikandan, K Pakshirajan, G Pugazhenthi. Membrane bioreactor and integrated membrane bioreactor systems for micropollutant removal from wastewater: A review. Journal of Water Process Engineering, 2018, 26: 314–328 https://doi.org/10.1016/j.jwpe.2018.10.024
248
K Arola, H Hatakka, M Mänttäri, M Kallioinen. Novel process concept alternatives for improved removal of micropollutants in wastewater treatment. Separation and Purification Technology, 2017, 186: 333–341 https://doi.org/10.1016/j.seppur.2017.06.019
249
A A Alturki, N Tadkaew, J A Mcdonald, S J Khan, W E Price, L D Nghiem. Combining MBR and NF/RO membrane filtration for the removal of trace organics in indirect potable water reuse applications. Journal of Membrane Science, 2010, 365(1-2): 206–215 https://doi.org/10.1016/j.memsci.2010.09.008
250
K Chon, S Sarp, S Lee, J H Lee, J A Lopez-Ramirez, J Cho. Evaluation of a membrane bioreactor and nanofiltration for municipal wastewater reclamation: trace contaminant control and fouling mitigation. Desalination, 2011, 272(1-3): 128–134 https://doi.org/10.1016/j.desal.2011.01.002