Advances in catalysts and reaction systems for electro/photocatalytic ammonia production
Shenshen Zheng1,2, Fengying Zhang1,2(), Yuman Jiang2, Tao Xu2, Han Li2, Heng Guo1,2, Ying Zhou1,2()
1. National Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu 610500, China 2. School of New Energy and Materials, Southwest Petroleum University, Chengdu 610500, China
Ammonia is a vital component in the fertilizer and chemical industries, as well as serving as a significant carrier of renewable hydrogen energy. Compared with the industry’s principal technique, the Haber-Bosch method, for ammonia synthesis, electro/photocatalytic ammonia synthesis is increasingly recognized as a viable and eco-friendly alternative. This method enables distributed small-scale deployment and can be powered by sustainable renewable energy sources. However, the efficiency of electro/photocatalytic nitrogen reduction reaction is hindered by the challenges in activating the N≡N bond and nitrogen’s low solubility, thereby limiting its large-scale industrial applications. In this review, recent advancements in electro/photocatalytic nitrogen reduction are summarized, encompassing the complex reaction mechanisms, as well as the effective strategies for developing electro/photocatalytic catalysts and advanced reaction systems. Furthermore, the energy efficiency and economic analysis of electro/photocatalytic nitrogen fixation are deeply discussed. Finally, some unsolved challenges and potential opportunities are discussed for the future development of electro/photocatalytic ammonia synthesis.
. [J]. Frontiers of Chemical Science and Engineering, 2024, 18(10): 112.
Shenshen Zheng, Fengying Zhang, Yuman Jiang, Tao Xu, Han Li, Heng Guo, Ying Zhou. Advances in catalysts and reaction systems for electro/photocatalytic ammonia production. Front. Chem. Sci. Eng., 2024, 18(10): 112.
A J Medford , M C Hatzell . Photon-driven nitrogen fixation: current progress, thermodynamic considerations, and future outlook. ACS Catalysis, 2017, 7(4): 2624–2643 https://doi.org/10.1021/acscatal.7b00439
2
C J M Van der Ham , M T M Koper , D G H Hetterscheid . Challenges in reduction of dinitrogen by proton and electron transfer. Chemical Society Reviews, 2014, 43(15): 5183–5191 https://doi.org/10.1039/C4CS00085D
3
N Gruber , J N Galloway . An earth-system perspective of the global nitrogen cycle. Nature, 2008, 451(7176): 293–296 https://doi.org/10.1038/nature06592
4
Green ammonia synthesis. Nature Synthesis, 2023, 2(7): 581–582
5
N Lazouski , M Chung , K Williams , M L Gala , K Manthiram . Non-aqueous gas diffusion electrodes for rapid ammonia synthesis from nitrogen and water-splitting-derived hydrogen. Nature Catalysis, 2020, 3(5): 463–469 https://doi.org/10.1038/s41929-020-0455-8
6
M Kitano , Y Inoue , Y Yamazaki , F Hayashi , S Kanbara , S Matsuishi , T Yokoyama , S W Kim , M Hara , H Hosono . Ammonia synthesis using a stable electride as an electron donor and reversible hydrogen store. Nature Chemistry, 2012, 4(11): 934–940 https://doi.org/10.1038/nchem.1476
7
T Oshikiri , K Ueno , H Misawa . Selective dinitrogen conversion to ammonia using water and visible light through plasmon-induced charge separation. Angewandte Chemie International Edition, 2016, 55(12): 3942–3946 https://doi.org/10.1002/anie.201511189
8
E E Van Tamelen , D A Seeley . Catalytic fixation of molecular nitrogen by electrolytic and chemical reduction. Journal of the American Chemical Society, 1969, 91(18): 5194–5194 https://doi.org/10.1021/ja01046a063
9
G N Schrauzer , T D Guth . Photolysis of water and photoreduction of nitrogen on titanium dioxide. Journal of the American Chemical Society, 1977, 99(22): 7189–7193 https://doi.org/10.1021/ja00464a015
10
Y Wan , J Xu , R Lv . Heterogeneous electrocatalysts design for nitrogen reduction reaction under ambient conditions. Materials Today, 2019, 27: 69–90 https://doi.org/10.1016/j.mattod.2019.03.002
11
S Wang , F Ichihara , H Pang , H Chen , J Ye . Nitrogen fixation reaction derived from nanostructured catalytic materials. Advanced Functional Materials, 2018, 28(50): 1803309 https://doi.org/10.1002/adfm.201803309
12
J Li , X Guo , L Gan , Z F Huang , L Pan , C Shi , X Zhang , G Yang , J J Zou . Fundamentals and advances in emerging crystalline porous materials for photocatalytic and electrocatalytic nitrogen fixation. ACS Applied Energy Materials, 2022, 5(8): 9241–9265 https://doi.org/10.1021/acsaem.2c01346
13
X Cui , C Tang , Q Zhang . A review of electrocatalytic reduction of dinitrogen to ammonia under ambient conditions. Advanced Energy Materials, 2018, 8(22): 1800369 https://doi.org/10.1002/aenm.201800369
14
H Cheng , P Cui , F Wang , L X Ding , H Wang . High efficiency electrochemical nitrogen fixation achieved with a lower pressure reaction system by changing the chemical equilibrium. Angewandte Chemie International Edition, 2019, 58(43): 15541–15547 https://doi.org/10.1002/anie.201910658
15
D Liu , M Chen , X Du , H Ai , K H Lo , S Wang , S Chen , G Xing , X Wang , H Pan . Development of electrocatalysts for efficient nitrogen reduction reaction under ambient condition. Advanced Functional Materials, 2021, 31(11): 2008983 https://doi.org/10.1002/adfm.202008983
16
H P Jia , E A Quadrelli . Mechanistic aspects of dinitrogen cleavage and hydrogenation to produce ammonia in catalysis and organometallic chemistry: relevance of metal hydride bonds and dihydrogen. Chemical Society Reviews, 2014, 43(2): 547–564 https://doi.org/10.1039/C3CS60206K
17
G Qing , R Ghazfar , S T Jackowski , F Habibzadeh , M M Ashtiani , C P Chen , M R III Smith , T W Hamann . Recent advances and challenges of electrocatalytic N2 reduction to ammonia. Chemical Reviews, 2020, 120(12): 5437–5516 https://doi.org/10.1021/acs.chemrev.9b00659
18
Y Abghoui , E Skúlason . Onset potentials for different reaction mechanisms of nitrogen activation to ammonia on transition metal nitride electro-catalysts. Catalysis Today, 2017, 286: 69–77 https://doi.org/10.1016/j.cattod.2016.11.047
19
V T Chebrolu , D Jang , G M Rani , C Lim , K Yong , W B Kim . Overview of emerging catalytic materials for electrochemical green ammonia synthesis and process. Carbon Energy, 2023, 5(12): e361 https://doi.org/10.1002/cey2.361
20
S Liu , M Wang , H Ji , X Shen , C Yan , T Qian . Altering the rate-determining step over cobalt single clusters leading to highly efficient ammonia synthesis. National Science Review, 2021, 8(5): 136 https://doi.org/10.1093/nsr/nwaa136
21
M A Shipman , M D Symes . Recent progress towards the electrosynthesis of ammonia from sustainable resources. Catalysis Today, 2017, 286: 57–68 https://doi.org/10.1016/j.cattod.2016.05.008
22
Y Abghoui , A L Garden , J G Howalt , T Vegge , E Skúlason . Electroreduction of N2 to ammonia at ambient conditions on mononitrides of Zr, Nb, Cr, and V: a DFT guide for experiments. ACS Catalysis, 2016, 6(2): 635–646 https://doi.org/10.1021/acscatal.5b01918
23
C Ling , Y Zhang , Q Li , X Bai , L Shi , J Wang . New mechanism for N2 reduction: the essential role of surface hydrogenation. Journal of the American Chemical Society, 2019, 141(45): 18264–18270 https://doi.org/10.1021/jacs.9b09232
24
Z Yan , M Ji , J Xia , H Zhu . Recent advanced materials for electrochemical and photoelectrochemical synthesis of ammonia from dinitrogen: one step closer to a sustainable energy future. Advanced Energy Materials, 2020, 10(11): 1902020 https://doi.org/10.1002/aenm.201902020
25
A J Medford , A Vojvodic , J S Hummelshøj , J Voss , F Abild-Pedersen , F Studt , T Bligaard , A Nilsson , J K Nørskov . From the Sabatier principle to a predictive theory of transition-metal heterogeneous catalysis. Journal of Catalysis, 2015, 328: 36–42 https://doi.org/10.1016/j.jcat.2014.12.033
26
E Skúlason , T Bligaard , S Gudmundsdóttir , F Studt , J Rossmeisl , Pedersen F Abild , T Vegge , H Jónsson , J K Nørskov . A theoretical evaluation of possible transition metal electro-catalysts for N2 reduction. Physical Chemistry Chemical Physics, 2012, 14(3): 1235–1245 https://doi.org/10.1039/C1CP22271F
27
J H Montoya , C Tsai , A Vojvodic , J K Nørskov . The challenge of electrochemical ammonia synthesis: a new perspective on the role of nitrogen scaling relations. ChemSusChem, 2015, 8(13): 2180–2186 https://doi.org/10.1002/cssc.201500322
28
Y Yao , H Wang , X Z Yuan , H Li , M Shao . Electrochemical nitrogen reduction reaction on ruthenium. ACS Energy Letters, 2019, 4(6): 1336–1341 https://doi.org/10.1021/acsenergylett.9b00699
29
Y Zhao , F Li , W Li , Y Li , C Liu , Z Zhao , Y Shan , Y Ji , L Sun . Identification of M-NH2-NH2 intermediate and rate determining step for nitrogen reduction with bioinspired sulfur-bonded FeW catalyst. Angewandte Chemie International Edition, 2021, 60(37): 20331–20341 https://doi.org/10.1002/anie.202104918
30
W Liao , K Xie , L Liu , X Wang , Y Luo , S Liang , F Liu , L Jiang . Triggering in-plane defect cluster on MoS2 for accelerated dinitrogen electroreduction to ammonia. Journal of Energy Chemistry, 2021, 62: 359–366 https://doi.org/10.1016/j.jechem.2021.03.043
31
X Xue , R Chen , C Yan , P Zhao , Y Hu , W Zhang , S Yang , Z Jin . Review on photocatalytic and electrocatalytic artificial nitrogen fixation for ammonia synthesis at mild conditions: advances, challenges and perspectives. Nano Research, 2019, 12(6): 1229–1249 https://doi.org/10.1007/s12274-018-2268-5
32
S Yu , T Xiang , N S Alharbi , B A Alaidaroos , C Chen . Recent development of catalytic strategies for sustainable ammonia production. Chinese Journal of Chemical Engineering, 2023, 62: 65–113 https://doi.org/10.1016/j.cjche.2023.03.028
33
M M Shi , D Bao , S J Li , B R Wulan , J M Yan , Q Jiang . Anchoring PdCu amorphous nanocluster on graphene for electrochemical reduction of N2 to NH3 under ambient conditions in aqueous solution. Advanced Energy Materials, 2018, 8(21): 1800124 https://doi.org/10.1002/aenm.201800124
34
H Tao , C Choi , L X Ding , Z Jiang , Z Han , M Jia , Q Fan , Y Gao , H Wang , A W Robertson . et al.. Nitrogen fixation by Ru single-atom electrocatalytic reduction. Chem, 2019, 5(1): 204–214 https://doi.org/10.1016/j.chempr.2018.10.007
35
L Li , C Tang , B Xia , H Jin , Y Zheng , S Z Qiao . Two-dimensional mosaic bismuth nanosheets for highly selective ambient electrocatalytic nitrogen reduction. ACS Catalysis, 2019, 9(4): 2902–2908 https://doi.org/10.1021/acscatal.9b00366
36
T N Ye , S W Park , Y Lu , J Li , M Sasase , M Kitano , T Tada , H Hosono . Vacancy-enabled N2 activation for ammonia synthesis on an Ni-loaded catalyst. Nature, 2020, 583(7816): 391–395 https://doi.org/10.1038/s41586-020-2464-9
37
J Han , X Ji , X Ren , G Cui , L Li , F Xie , H Wang , B Li , X Sun . MoO3 nanosheets for efficient electrocatalytic N2 fixation to NH3. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2018, 6(27): 12974–12977 https://doi.org/10.1039/C8TA03974G
38
W Zhao , J Zhang , X Zhu , M Zhang , J Tang , M Tan , Y Wang . Enhanced nitrogen photofixation on Fe-doped TiO2 with highly exposed (101) facets in the presence of ethanol as scavenger. Applied Catalysis B: Environmental, 2014, 144: 468–477 https://doi.org/10.1016/j.apcatb.2013.07.047
39
K Chu , Y P Liu , Y B Li , H Zhang , Y Tian . Efficient electrocatalytic N2 reduction on CoO quantum dots. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2019, 7(9): 4389–4394 https://doi.org/10.1039/C9TA00016J
40
P Wang , W Nong , Y Li , H Cui , C Wang . Strengthening nitrogen affinity on CuAu@Cu core-shell nanoparticles with ultrathin Cu skin via strain engineering and ligand effect for boosting nitrogen reduction reaction. Applied Catalysis B: Environmental, 2021, 288: 119999 https://doi.org/10.1016/j.apcatb.2021.119999
41
B Yang , W Ding , H Zhang , S Zhang . Recent progress in electrochemical synthesis of ammonia from nitrogen: strategies to improve the catalytic activity and selectivity. Energy & Environmental Science, 2021, 14(2): 672–687 https://doi.org/10.1039/D0EE02263B
42
R Zhao , H Xie , L Chang , X Zhang , X Zhu , X Tong , T Wang , Y Luo , P Wei , Z Wang . et al.. Recent progress in the electrochemical ammonia synthesis under ambient conditions. EnergyChem, 2019, 1(2): 100011 https://doi.org/10.1016/j.enchem.2019.100011
43
Y Tian , D Xu , K Chu , Z Wei , W Liu . Metal-free N, S co-doped graphene for efficient and durable nitrogen reduction reaction. Journal of Materials Science, 2019, 54(12): 9088–9097 https://doi.org/10.1007/s10853-019-03538-0
44
S Zhou , X Yang , X Xu , S X Dou , Y Du , J Zhao . Boron nitride nanotubes for ammonia synthesis: activation by filling transition metals. Journal of the American Chemical Society, 2020, 142(1): 308–317 https://doi.org/10.1021/jacs.9b10588
45
Z Wei , Y Zhang , S Wang , C Wang , J Ma . Fe-doped phosphorene for the nitrogen reduction reaction. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2018, 6(28): 13790–13796 https://doi.org/10.1039/C8TA03989E
46
L Zhang , L X Ding , G F Chen , X Yang , H Wang . Ammonia synthesis under ambient conditions: selective electroreduction of dinitrogen to ammonia on black phosphorus nanosheets. Angewandte Chemie International Edition, 2019, 58(9): 2612–2616 https://doi.org/10.1002/anie.201813174
47
J LaiH LiuL X DingJ WangG F ChenH Wang. Black phosphorene with removable aluminum ion protection for enhanced electrochemical nitrogen fixation. Advanced Energy Materials, Jan 9, 2024. https://doi.org/10.1002/aenm.202303963
48
Y G Liu , M Tian , J Hou , H Y Jiang . Research progress and perspectives on active sites of photo- and electrocatalytic nitrogen reduction. Energy & Fuels, 2022, 36(19): 11323–11358 https://doi.org/10.1021/acs.energyfuels.2c01390
49
J X Li , Y Yu , S Xu , W Yan , S Mu , J N Zhang . Function of electron spin effect in electrocatalysts. Wuli Huaxue Xuebao, 2023, 39(12): 2302049 https://doi.org/10.3866/PKU.WHXB202302049
50
T Li , C Tang , H Guo , H Wu , C Duan , H Wang , F Zhang , Y Cao , G Yang , Y Zhou . In situ growth of Fe2O3 nanorod arrays on carbon cloth with rapid charge transfer for efficient nitrate electroreduction to ammonia. ACS Applied Materials & Interfaces, 2022, 14(44): 49765–49773 https://doi.org/10.1021/acsami.2c14215
51
M Nazemi , S R Panikkanvalappil , M A El Sayed . Enhancing the rate of electrochemical nitrogen reduction reaction for ammonia synthesis under ambient conditions using hollow gold nanocages. Nano Energy, 2018, 49: 316–323 https://doi.org/10.1016/j.nanoen.2018.04.039
52
J Zhao , B Wang , Q Zhou , H Wang , X Li , H Chen , Q Wei , D Wu , Y Luo , J You . et al.. Efficient electrohydrogenation of N2 to NH3 by oxidized carbon nanotubes under ambient conditions. Chemical Communications, 2019, 55(34): 4997–5000 https://doi.org/10.1039/C9CC00726A
53
Z Wang , K Zheng , S Liu , Z Dai , Y Xu , X Li , H Wang , L Wang . Electrocatalytic nitrogen reduction to ammonia by Fe2O3 nanorod array on carbon cloth. ACS Sustainable Chemistry & Engineering, 2019, 7(13): 11754–11759 https://doi.org/10.1021/acssuschemeng.9b01991
54
Y Luo , G F Chen , L Ding , X Chen , L X Ding , H Wang . Efficient electrocatalytic N2 fixation with MXene under ambient conditions. Joule, 2019, 3(1): 279–289 https://doi.org/10.1016/j.joule.2018.09.011
55
S Zhang , Y Zhao , R Shi , C Zhou , G I N Waterhouse , L Z Wu , C H Tung , T Zhang . Efficient photocatalytic nitrogen fixation over Cuδ+-modified defective ZnAl-layered double hydroxide nanosheets. Advanced Energy Materials, 2020, 10(8): 1901973 https://doi.org/10.1002/aenm.201901973
56
D Bao , Q Zhang , F L Meng , H X Zhong , M M Shi , Y Zhang , J M Yan , Q Jiang , X B Zhang . Electrochemical reduction of N2 under ambient conditions for artificial N2 fixation and renewable energy storage using N2/NH3 cycle. Advanced Materials, 2017, 29(3): 1604799 https://doi.org/10.1002/adma.201604799
57
W Zhang , Y Shen , F Pang , D Quek , W Niu , W Wang , P Chen . Facet-dependent catalytic performance of Au nanocrystals for electrochemical nitrogen reduction. ACS Applied Materials & Interfaces, 2020, 12(37): 41613–41619 https://doi.org/10.1021/acsami.0c13414
58
D Yang , T Chen , Z Wang . Electrochemical reduction of aqueous nitrogen (N2) at a low overpotential on (110)-oriented Mo nanofilm. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2017, 5(36): 18967–18971 https://doi.org/10.1039/C7TA06139K
59
Y Bai , L Ye , T Chen , L Wang , X Shi , X Zhang , D Chen . Facet-dependent photocatalytic N2 fixation of bismuth-rich Bi5O7I nanosheets. ACS Applied Materials & Interfaces, 2016, 8(41): 27661–27668 https://doi.org/10.1021/acsami.6b08129
60
M Jin , X Zhang , M Han , H Wang , G Wang , H Zhang . Efficient electrochemical N2 fixation by doped-oxygen-induced phosphorus vacancy defects on copper phosphide nanosheets. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2020, 8(12): 5936–5942 https://doi.org/10.1039/C9TA13135C
61
H Jin , L Li , X Liu , C Tang , W Xu , S Chen , L Song , Y Zheng , S Z Qiao . Nitrogen vacancies on 2D layered W2N3: a stable and efficient active site for nitrogen reduction reaction. Advanced Materials, 2019, 31(32): 1902709 https://doi.org/10.1002/adma.201902709
62
X Yang , F Ling , J Su , X Zi , H Zhang , H Zhang , J Li , M Zhou , Y Wang . Insights into the role of cation vacancy for significantly enhanced electrochemical nitrogen reduction. Applied Catalysis B: Environmental, 2020, 264: 118477 https://doi.org/10.1016/j.apcatb.2019.118477
63
C Mao , J Wang , Y Zou , H Li , G Zhan , J Li , J Zhao , L Zhang . Anion (O, N, C, and S) vacancies promoted photocatalytic nitrogen fixation. Green Chemistry, 2019, 21(11): 2852–2867 https://doi.org/10.1039/C9GC01010F
64
H GuoP YangY YangH WuF ZhangZ F HuangG YangY Zhou. Vacancy-mediated control of local electronic structure for high-efficiency electrocatalytic conversion of N2 to NH3. Small, Nov 30, 2023. https://doi.org/110.1002/small.202309007
65
C Lv , C Yan , G Chen , Y Ding , J Sun , Y Zhou , G Yu . Back cover: an amorphous noble-metal-free electrocatalyst that enables nitrogen fixation under ambient conditions. Angewandte Chemie International Edition, 2018, 57(21): 6354–6354 https://doi.org/10.1002/anie.201803952
66
Y Liu , X Kong , X Guo , Q Li , J Ke , R Wang , Q Li , Z Geng , J Zeng . Enhanced N2 electroreduction over LaCoO3 by introducing oxygen vacancies. ACS Catalysis, 2020, 10(2): 1077–1085 https://doi.org/10.1021/acscatal.9b03864
67
C Lv , C Yan , G Chen , Y Ding , J Sun , Y Zhou , G Yu . An amorphous noble-metal-free electrocatalyst that enables nitrogen fixation under ambient conditions. Angewandte Chemie International Edition, 2018, 57(21): 6073–6076 https://doi.org/10.1002/anie.201801538
68
P Yang , H Guo , H Wu , F Zhang , J Liu , M Li , Y Yang , Y Cao , G Yang , Y Zhou . Boosting charge-transfer in tuned Au nanoparticles on defect-rich TiO2 nanosheets for enhancing nitrogen electroreduction to ammonia production. Journal of Colloid and Interface Science, 2023, 636: 184–193 https://doi.org/10.1016/j.jcis.2023.01.002
69
J Xiong , P Song , J Di , H Li . Atomic-level active sites steering in ultrathin photocatalysts to trigger high efficiency nitrogen fixation. Chemical Engineering Journal, 2020, 402: 126208 https://doi.org/10.1016/j.cej.2020.126208
70
M Ji , N Liu , K Li , Q Xu , G Liu , B Wang , J Di , H Li , J Xia . Oxygen defect modulating the charge behavior in titanium dioxide for boosting photocatalytic nitrogen fixation performance. Materials Reports: Energy, 2023, 3(4): 100231 https://doi.org/10.1016/j.matre.2023.100231
71
H Jia , A Du , H Zhang , J Yang , R Jiang , J Wang , C Y Zhang . Site-selective growth of crystalline ceria with oxygen vacancies on gold nanocrystals for near-infrared nitrogen photofixation. Journal of the American Chemical Society, 2019, 141(13): 5083–5086 https://doi.org/10.1021/jacs.8b13062
72
P Li , Z Zhou , Q Wang , M Guo , S Chen , J Low , R Long , W Liu , P Ding , Y Wu . et al.. Visible-light-driven nitrogen fixation catalyzed by Bi5O7Br nanostructures: enhanced performance by oxygen vacancies. Journal of the American Chemical Society, 2020, 142(28): 12430–12439 https://doi.org/10.1021/jacs.0c05097
73
G Dong , W Ho , C Wang . Selective photocatalytic N2 fixation dependent on g-C3N4 induced by nitrogen vacancies. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2015, 3(46): 23435–23441 https://doi.org/10.1039/C5TA06540B
74
Z Ying , S Chen , T Peng , R Li , J Zhang . Fabrication of an Fe-doped SrTiO3 photocatalyst with enhanced dinitrogen photofixation performance. European Journal of Inorganic Chemistry, 2019, 2019(16): 2182–2192 https://doi.org/10.1002/ejic.201900098
75
H B Wang , J Q Wang , R Zhang , C Q Cheng , K W Qiu , Y Yang , J Mao , H Liu , M Du , C K Dong . et al.. Bionic design of a Mo(IV)-doped FeS2 catalyst for electroreduction of dinitrogen to ammonia. ACS Catalysis, 2020, 10(9): 4914–4921 https://doi.org/10.1021/acscatal.0c00271
76
T Wu , W Kong , Y Zhang , Z Xing , J Zhao , T Wang , X Shi , Y Luo , X Sun . Greatly enhanced electrocatalytic N2 eeduction on TiO2 via V doping. Small Methods, 2019, 3(11): 1900356 https://doi.org/10.1002/smtd.201900356
77
X Yu , P Han , Z Wei , L Huang , Z Gu , S Peng , J Ma , G Zheng . Boron-doped graphene for electrocatalytic N2 reduction. Joule, 2018, 2(8): 1610–1622 https://doi.org/10.1016/j.joule.2018.06.007
78
X Chen , C Burda . The electronic origin of the visible-light absorption properties of C-, N- and S-doped TiO2 nanomaterials. Journal of the American Chemical Society, 2008, 130(15): 5018–5019 https://doi.org/10.1021/ja711023z
79
X Li , X Huang , S Xi , S Miao , J Ding , W Cai , S Liu , X Yang , H Yang , J Gao . et al.. Single cobalt atoms anchored on porous N-doped graphene with dual reaction sites for efficient fenton-like catalysis. Journal of the American Chemical Society, 2018, 140(39): 12469–12475 https://doi.org/10.1021/jacs.8b05992
80
Y Kang , X Wu , Q Gao . Plasmonic-enhanced near-infrared photocatalytic activity of F-doped (NH4)0.33WO3 nanorods. ACS Sustainable Chemistry & Engineering, 2019, 7(4): 4210–4219 https://doi.org/10.1021/acssuschemeng.8b05880
81
W Guo , K Zhang , Z Liang , R Zou , Q Xu . Electrochemical nitrogen fixation and utilization: theories, advanced catalyst materials and system design. Chemical Society Reviews, 2019, 48(24): 5658–5716 https://doi.org/10.1039/C9CS00159J
82
C Chen , D Yan , Y Wang , Y Zhou , Y Zou , Y Li , S Wang . B-N pairs enriched defective carbon nanosheets for ammonia synthesis with high efficiency. Small, 2019, 15(7): 1805029 https://doi.org/10.1002/smll.201805029
83
Y Liu , Q Li , X Guo , X Kong , J Ke , M Chi , Q Li , Z Geng , J Zeng . A highly efficient metal-free electrocatalyst of F-doped porous carbon toward N2 electroreduction. Advanced Materials, 2020, 32(24): 1907690 https://doi.org/10.1002/adma.201907690
84
M Tang , X Jiang , M He , N Jiang , Q Zheng , D B Lin . (boron), O (oxygen) dual-doped carbon spheres as a high-efficiency electrocatalyst for nitrogen reduction. International Journal of Hydrogen Energy, 2021, 46(1): 439–448 https://doi.org/10.1016/j.ijhydene.2020.09.187
85
J Lee , L L Tan , S P Chai . Heterojunction photocatalysts for artificial nitrogen fixation: fundamentals, latest advances and future perspectives. Nanoscale, 2021, 13(15): 7011–7033 https://doi.org/10.1039/D1NR00783A
86
L Zhang , S Hou , T Wang , S Liu , X Gao , C Wang , G Wang . Recent advances in application of graphitic carbon nitride-based catalysts for photocatalytic nitrogen fixation. Small, 2022, 18(28): 2202252 https://doi.org/10.1002/smll.202202252
87
H Xu , Y Wang , X Dong , N Zheng , H Ma , X Zhang . Fabrication of In2O3/In2S3 microsphere heterostructures for efficient and stable photocatalytic nitrogen fixation. Applied Catalysis B: Environmental, 2019, 257: 117932 https://doi.org/10.1016/j.apcatb.2019.117932
88
J Hu , A Al Salihy , J Wang , X Li , Y Fu , Z Li , X Han , B Song , P Xu . Improved interface charge transfer and redistribution in CuO-CoOOH p-n heterojunction nanoarray electrocatalyst for enhanced oxygen evolution reaction. Advanced Science, 2021, 8(22): 2103314 https://doi.org/10.1002/advs.202103314
89
X Xue , R Chen , C Yan , Y Hu , W Zhang , S Yang , L Ma , G Zhu , Z Jin . Efficient photocatalytic nitrogen fixation under ambient conditions enabled by the heterojunctions of n-type Bi2MoO6 and oxygen-vacancy-rich p-type BiOBr. Nanoscale, 2019, 11(21): 10439–10445 https://doi.org/10.1039/C9NR02279A
90
W ZhangA R MohamedW J Ong. Z-scheme photocatalytic systems for carbon dioxide reduction: Where are we now? Angewandte Chemie International Edition, 2020, 59(51): 22894–22915
91
H Liang , H Zou , S Hu . Preparation of the W18O49/g-C3N4 heterojunction catalyst with full-spectrum-driven photocatalytic N2 photofixation ability from the UV to near infrared region. New Journal of Chemistry, 2017, 41(17): 8920–8926 https://doi.org/10.1039/C7NJ01848G
Y Zhang , J Di , X Zhu , M Ji , C Chen , Y Liu , L Li , T Wei , H Li , J Xia . Chemical bonding interface in Bi2Sn2O7/BiOBr S-scheme heterojunction triggering efficient N2 photofixation. Applied Catalysis B: Environmental, 2023, 323: 122148 https://doi.org/10.1016/j.apcatb.2022.122148
94
I Garagounis , V Kyriakou , A Skodra , E Vasileiou , M Stoukides . Electrochemical synthesis of ammonia in solid electrolyte cells. Frontiers in Energy Research, 2014, 2: 1–10 https://doi.org/10.3389/fenrg.2014.00001
95
R Lan , S Tao . Electrochemical synthesis of ammonia directly from air and water using a Li+/H+/NH4+ mixed conducting electrolyte. RSC Advances, 2013, 3(39): 18016–18021 https://doi.org/10.1039/c3ra43432j
96
F Köleli , T Röpke . Electrochemical hydrogenation of dinitrogen to ammonia on a polyaniline electrode. Applied Catalysis B: Environmental, 2006, 62(3): 306–310 https://doi.org/10.1016/j.apcatb.2005.08.006
97
V Kordali , G Kyriacou , C Lambrou . Electrochemical synthesis of ammonia at atmospheric pressure and low temperature in a solid polymer electrolyte cell. Chemical Communications, 2000, (17): 1673–1674 https://doi.org/10.1039/b004885m
98
R Liu , G Xu . Comparison of electrochemical synthesis of ammonia by using sulfonated polysulfone and nafion membrane with Sm1.5Sr0.5NiO4. Chinese Journal of Chemistry, 2010, 28(2): 139–142 https://doi.org/10.1002/cjoc.201090044
99
H Xie , H Wang , Q Geng , Z Xing , W Wang , J Chen , L Ji , L Chang , Z Wang , J Mao . Oxygen vacancies of Cr-doped CeO2 nanorods that efficiently enhance the performance of electrocatalytic N2 fixation to NH3 under ambient conditions. Inorganic Chemistry, 2019, 58(9): 5423–5427 https://doi.org/10.1021/acs.inorgchem.9b00622
100
H Zou , W Rong , S Wei , Y Ji , L Duan . Regulating kinetics and thermodynamics of electrochemical nitrogen reduction with metal single-atom catalysts in a pressurized electrolyser. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(47): 29462–29468 https://doi.org/10.1073/pnas.2015108117
101
N Lazouski , Z J Schiffer , K Williams , K Manthiram . Understanding continuous lithium-mediated electrochemical nitrogen reduction. Joule, 2019, 3(4): 1127–1139 https://doi.org/10.1016/j.joule.2019.02.003
102
K Steinberg , X Yuan , C K Klein , N Lazouski , M Mecklenburg , K Manthiram , Y Li . Imaging of nitrogen fixation at lithium solid electrolyte interphases via cryo-electron microscopy. Nature Energy, 2023, 8(2): 138–148 https://doi.org/10.1038/s41560-022-01177-5
103
X Fu , J B Pedersen , Y Zhou , M Saccoccio , S Li , R Sažinas , K Li , S Z Andersen , A Xu , N H Deissler . et al.. Continuous-flow electrosynthesis of ammonia by nitrogen reduction and hydrogen oxidation. Science, 2023, 379(6633): 707–712 https://doi.org/10.1126/science.adf4403
104
Y Guan , H Wen , K Cui , Q Wang , W Gao , Y Cai , Z Cheng , Q Pei , Z Li , H Cao . et al.. Light-driven ammonia synthesis under mild conditions using lithium hydride. Nature Chemistry, 2024, 16(3): 373–379 https://doi.org/10.1038/s41557-023-01395-8
105
A Tsuneto , A Kudo , T Sakata . Lithium-mediated electrochemical reduction of high pressure N2 to NH3. Journal of Electroanalytical Chemistry, 1994, 367(1): 183–188 https://doi.org/10.1016/0022-0728(93)03025-K
106
K Li , S Z Andersen , M J Statt , M Saccoccio , V J Bukas , K Krempl , R Sažinas , J B Pedersen , V Shadravan , Y Zhou . et al.. Enhancement of lithium-mediated ammonia synthesis by addition of oxygen. Science, 2021, 374(6575): 1593–1597 https://doi.org/10.1126/science.abl4300
107
H L Du , M Chatti , R Y Hodgetts , P V Cherepanov , C K Nguyen , K Matuszek , D R MacFarlane , A N Simonov . Electroreduction of nitrogen with almost 100% current-to-ammonia efficiency. Nature, 2022, 609(7928): 722–727 https://doi.org/10.1038/s41586-022-05108-y
108
G F Chen , A Savateev , Z Song , H Wu , Y Markushyna , L Zhang , H Wang , M Antonietti . Saving the energy loss in lithium-mediated nitrogen fixation by using a highly reactive Li3N intermediate for C–N coupling reactions. Angewandte Chemie International Edition, 2022, 61(27): e202203170 https://doi.org/10.1002/anie.202203170
109
Y C Hao , Y Guo , L W Chen , M Shu , X Y Wang , T A Bu , W Y Gao , N Zhang , X Su , X Feng . et al.. Promoting nitrogen electroreduction to ammonia with bismuth nanocrystals and potassium cations in water. Nature Catalysis, 2019, 2(5): 448–456 https://doi.org/10.1038/s41929-019-0241-7
110
L Hu , Z Xing , X Feng . Understanding the electrocatalytic interface for ambient ammonia synthesis. ACS Energy Letters, 2020, 5(2): 430–436 https://doi.org/10.1021/acsenergylett.9b02679
111
S Mahmood , H Wang , F Chen , Y Zhong , Y Hu . Recent progress and prospects of electrolytes for electrocatalytic nitrogen reduction toward ammonia. Chinese Chemical Letters, 2023, 35(4): 108550 https://doi.org/10.1016/j.cclet.2023.108550
112
J Wang , L Yu , L Hu , G Chen , H Xin , X Feng . Ambient ammonia synthesis via palladium-catalyzed electrohydrogenation of dinitrogen at low overpotential. Nature Communications, 2018, 9(1): 1795 https://doi.org/10.1038/s41467-018-04213-9
113
K Kim , N Lee , C Y Yoo , J N Kim , H C Yoon , J I Han . Communication-electrochemical reduction of nitrogen to ammonia in 2-propanol under ambient temperature and pressure. Journal of the Electrochemical Society, 2016, 163(7): F610–F612 https://doi.org/10.1149/2.0231607jes
114
A R Singh , B A Rohr , J A Schwalbe , M Cargnello , K Chan , T F Jaramillo , I Chorkendorff , J K Nørskov . Electrochemical ammonia synthesis-the selectivity challenge. ACS Catalysis, 2017, 7(1): 706–709 https://doi.org/10.1021/acscatal.6b03035
115
F Zhou , L M Azofra , M Ali , M Kar , A N Simonov , C McDonnell Worth , C Sun , X Zhang , D R MacFarlane . Electro-synthesis of ammonia from nitrogen at ambient temperature and pressure in ionic liquids. Energy & Environmental Science, 2017, 10(12): 2516–2520 https://doi.org/10.1039/C7EE02716H
116
K Kim , C Y Yoo , J N Kim , H C Yoon , J I Han . Electrochemical synthesis of ammonia from water and nitrogen catalyzed by nano-Fe2O3 and CoFe2O4 suspended in a molten LiCl-KCl-CsCl electrolyte. Korean Journal of Chemical Engineering, 2016, 33(6): 1777–1780 https://doi.org/10.1007/s11814-016-0086-6
117
A Katayama , T Inomata , T Ozawa , H Masuda . Electrochemical conversion of dinitrogen to ammonia induced by a metal complex-supported ionic liquid. Electrochemistry Communications, 2016, 67: 6–10 https://doi.org/10.1016/j.elecom.2016.03.001
L Wang , X Yan , W Si , D Liu , X Hou , D Li , F Hou , S X Dou , J Liang . Photoelectrochemical nitrogen reduction: a step toward achieving sustainable ammonia synthesis. Chinese Journal of Catalysis, 2022, 43(7): 1761–1773 https://doi.org/10.1016/S1872-2067(21)64001-9
120
L W Chen , Y C Hao , Y Guo , Q Zhang , J Li , W Y Gao , L Ren , X Su , L Hu , N Zhang . et al.. Metal-organic framework membranes encapsulating gold nanoparticles for direct plasmonic photocatalytic nitrogen fixation. Journal of the American Chemical Society, 2021, 143(15): 5727–5736 https://doi.org/10.1021/jacs.0c13342
D Liu , J Wang , S Bian , Q Liu , Y Gao , X Wang , P K Chu , X F Yu . Photoelectrochemical ammonia synthesis: photoelectrochemical synthesis of ammonia with black phosphorus. Advanced Functional Materials, 2020, 30(24): 2070156 https://doi.org/10.1002/adfm.202070156
123
J Liu , F Zhang , H Wu , Y Jiang , P Yang , W Zhang , H Guo , Y Cao , G Yang , Y Zhou . Efficient carrier transfer induced by Au nanoparticles for photoelectrochemical nitrogen reduction. Sustainable Energy & Fuels, 2023, 7(3): 883–889 https://doi.org/10.1039/D2SE01201D
124
T Oshikiri , K Ueno , H Misawa . Plasmon-induced ammonia synthesis through nitrogen photofixation with visible light irradiation. Angewandte Chemie International Edition, 2014, 53(37): 9802–9805 https://doi.org/10.1002/anie.201404748
125
M Ali , F Zhou , K Chen , C Kotzur , C Xiao , L Bourgeois , X Zhang , D R MacFarlane . Nanostructured photoelectrochemical solar cell for nitrogen reduction using plasmon-enhanced black silicon. Nature Communications, 2016, 7(1): 11335 https://doi.org/10.1038/ncomms11335
126
J Zhang , H Chen , X Duan , H Sun , S Wang . Photothermal catalysis: from fundamentals to practical applications. Materials Today, 2023, 68: 234–253 https://doi.org/10.1016/j.mattod.2023.06.017
127
S Wang , W Yu , S Xu , K Han , F Wang . Ammonia from photothermal N2 hydrogenation over Ni/TiO2 catalysts under mild conditions. ACS Sustainable Chemistry & Engineering, 2022, 10(1): 115–123 https://doi.org/10.1021/acssuschemeng.1c04931
128
C Mao , L Yu , J Li , J Zhao , L Zhang . Energy-confined solar thermal ammonia synthesis with K/Ru/TiO2-xHx. Applied Catalysis B: Environmental, 2018, 224: 612–620 https://doi.org/10.1016/j.apcatb.2017.11.010
129
C Mao , J Wang , Y Zou , Y Shi , C J Viasus , J Y Y Loh , M Xia , S Ji , M Li , H Shang . et al.. Photochemical acceleration of ammonia production by Pt1-Ptn-TiN reduction and N2 activation. Journal of the American Chemical Society, 2023, 145(24): 13134–13146 https://doi.org/10.1021/jacs.3c01947
130
J Zheng , L Lu , K Lebedev , S Wu , P Zhao , I J McPherson , T S Wu , R Kato , Y Li , P L Ho . et al.. Fe on molecular-layer MoS2 as inorganic Fe-S2-Mo motifs for light-driven nitrogen fixation to ammonia at elevated temperatures. Chem Catalysis, 2021, 1(1): 162–182 https://doi.org/10.1016/j.checat.2021.03.002
L Wang , M Xia , H Wang , K Huang , C Qian , C T Maravelias , G A Ozin . Greening ammonia toward the solar ammonia refinery. Joule, 2018, 2(6): 1055–1074 https://doi.org/10.1016/j.joule.2018.04.017
133
M WangM A KhanI MohsinJ WicksA H IpK Z SumonC T DinhE H SargentI D GatesM G Kibria. Can sustainable ammonia synthesis pathways compete with fossil-fuel based Haber-Bosch processes? Energy & Environmental Science, 2021, 14(5): 2535–2548
134
C Smith , A K Hill , L Torrente Murciano . Current and future role of Haber-Bosch ammonia in a carbon-free energy landscape. Energy & Environmental Science, 2020, 13(2): 331–344 https://doi.org/10.1039/C9EE02873K
135
G Hochman , A S Goldman , F A Felder , J M Mayer , A J M Miller , P L Holland , L A Goldman , P Manocha , Z Song , S Aleti . Potential economic feasibility of direct electrochemical nitrogen reduction as a route to ammonia. ACS Sustainable Chemistry & Engineering, 2020, 8(24): 8938–8948 https://doi.org/10.1021/acssuschemeng.0c01206
136
C Arnaiz del Pozo , S Cloete . Techno-economic assessment of blue and green ammonia as energy carriers in a low-carbon future. Energy Conversion and Management, 2022, 255: 115312 https://doi.org/10.1016/j.enconman.2022.115312
137
B Parkinson , P Balcombe , J F Speirs , A D Hawkes , K Hellgardt . Levelized cost of CO2 mitigation from hydrogen production routes. Energy & Environmental Science, 2019, 12(1): 19–40 https://doi.org/10.1039/C8EE02079E
138
D R MacFarlane , P V Cherepanov , J Choi , B H R Suryanto , R Y Hodgetts , J M Bakker , F M Ferrero Vallana , A N Simonov . A roadmap to the ammonia economy. Joule, 2020, 4(6): 1186–1205 https://doi.org/10.1016/j.joule.2020.04.004
139
S Zhang , Y Zhao , R Shi , G I N Waterhouse , T Zhang . Photocatalytic ammonia synthesis: recent progress and future. EnergyChem, 2019, 1(2): 100013 https://doi.org/10.1016/j.enchem.2019.100013
140
B Lin , T Wiesner , M Malmali . Performance of a small-scale haber process: a techno-economic analysis. ACS Sustainable Chemistry & Engineering, 2020, 8(41): 15517–15531 https://doi.org/10.1021/acssuschemeng.0c04313
141
X Liu , Z Shen , X Peng , L Tian , R Hao , L Wang , Y Xu , Y Liu , C T Maravelias , W Li . et al.. A photo-assisted electrochemical-based demonstrator for green ammonia synthesis. Journal of Energy Chemistry, 2022, 68: 826–834 https://doi.org/10.1016/j.jechem.2021.12.021