Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

邮发代号 80-969

2019 Impact Factor: 3.552

Frontiers of Chemical Science and Engineering  2024, Vol. 18 Issue (6): 70   https://doi.org/10.1007/s11705-024-2429-x
  本期目录
Continuous flow pyrolysis of virgin and waste polyolefins: a comparative study, process optimization and product characterization
Ecrin Ekici1,2, Güray Yildiz2,3(), Magdalena Joka Yildiz4, Monika Kalinowska5, Erol Şeker6, Jiawei Wang7
1. Karlsruhe Institute of Technology, Institute of Catalysis Research and Technology, Eggenstein-Leopoldshafen 76344, Germany
2. Izmir Institute of Technology, Faculty of Engineering, Department of Energy Systems Engineering, Izmir 35430, Türkiye
3. Department of Materials Engineering and Production, Faculty of Mechanical Engineering, Bialystok University of Technology, Bialystok 15-351, Poland
4. Department of Agricultural and Food Engineering and Environmental Development, Institute of Civil Engineering and Energetics, Faculty of Civil Engineering and Environmental Sciences, Bialystok University of Technology, 15-351 Bialystok, Poland
5. Department of Chemistry, Biology and Biotechnology, Institute of Civil Engineering and Energetics, Faculty of Civil Engineering and Environmental Sciences, Bialystok University of Technology, Bialystok 15-351, Poland
6. Izmir Institute of Technology, Faculty of Engineering, Department of Chemical Engineering, Izmir 35430, Türkiye
7. Energy and Bioproducts Research Institute (EBRI), Aston University, Birmingham B4 7ET, United Kingdom
 全文: PDF(1217 KB)   HTML
Abstract

Under optimal process conditions, pyrolysis of polyolefins can yield ca. 90 wt % of liquid product, i.e., combination of light oil fraction and heavier wax. In this work, the experimental findings reported in a selected group of publications concerning the non-catalytic pyrolysis of polyolefins were collected, reviewed, and compared with the ones obtained in a continuously operated bench-scale pyrolysis reactor. Optimized process parameters were used for the pyrolysis of waste and virgin counterparts of high-density polyethylene, low-density polyethylene, polypropylene and a defined mixture of those (i.e., 25:25:50 wt %, respectively). To mitigate temperature drops and enhance heat transfer, an increased feed intake is employed to create a hot melt plastic pool. With 1.5 g·min–1 feed intake, 1.1 L·min–1 nitrogen flow rate, and a moderate pyrolysis temperature of 450 °C, the formation of light hydrocarbons was favored, while wax formation was limited for polypropylene-rich mixtures. Pyrolysis of virgin plastics yielded more liquid (maximum 73.3 wt %) than that of waste plastics (maximum 66 wt %). Blending polyethylenes with polypropylene favored the production of liquids and increased the formation of gasoline-range hydrocarbons. Gas products were mainly composed of C3 hydrocarbons, and no hydrogen production was detected due to moderate pyrolysis temperature.

Key wordswaste plastics    polyolefins    chemical recycling    pyrolysis    alternative fuels    waste-to-energy
收稿日期: 2023-11-20      出版日期: 2024-05-29
Corresponding Author(s): Güray Yildiz   
 引用本文:   
. [J]. Frontiers of Chemical Science and Engineering, 2024, 18(6): 70.
Ecrin Ekici, Güray Yildiz, Magdalena Joka Yildiz, Monika Kalinowska, Erol Şeker, Jiawei Wang. Continuous flow pyrolysis of virgin and waste polyolefins: a comparative study, process optimization and product characterization. Front. Chem. Sci. Eng., 2024, 18(6): 70.
 链接本文:  
https://academic.hep.com.cn/fcse/CN/10.1007/s11705-024-2429-x
https://academic.hep.com.cn/fcse/CN/Y2024/V18/I6/70
Composition/wt %Feed intake/ (kg·h–1)Carrier gas flow rate/(L·min–1)Reaction temperature/oCProcess duration/minProduct yields/wt %Ref.
PE**HDPELDPEPPLiquidGasSolid
N/Aa)37.537.5252.00N/A39748078.8021.20.00[40]
N/A25.025.0502.00N/A38748082.5017.50.00[40]
N/A12.512.5752.00N/A38448091.308.70.00[40]
60N/AN/A40N/A80.0051022594.704.50.11[42]
40N/AN/A60N/A82.0051023595.405.10.18[42]
50N/AN/A500.40N/A430N/A90.505.63.90[41]
N/A30.046.0240.91N/A65013248.0037.015.00[43]
N/A30.046.0240.24N/A72824044.0042.014.00[43]
N/A74.825.202.00N/A535N/A94.905.10.00[44]
N/A0.033.366.63.600.21625104.7686.50.00[45]
N/A0.066.633.33.600.21625102.9889.50.00[45]
N/A12.0b)881.00N/A4503087.009.03.00[57]
Tab.1  
Fig.1  
Fig.2  
Fig.3  
Fig.4  
Fig.5  
Fig.6  
SampleMixing ratio/wt %Liquid yield/wt %Composition of liquid products/%
(HDPE:LDPE:PP)Wax (C21+)Gasoline range (C5–C12)Diesel range (C13?C20)
V-HDPE100:0:067.07.7422.769.80
V-LDPE0:100:071.54.4824.758.30
V-PP0:0:10066.90.0098.91.07
V-Mix25:25:5073.36.2066.030.60
W-HDPE100:0:052.37.3624.167.80
W-LDPE0:100:066.011.6027.257.00
W-PP0:0:10066.00.0094.95.15
W-Mix25:25:5065.05.2257.533.90
Tab.2  
Fig.7  
Fig.8  
Fig.9  
Fig.10  
V-HDPEV-LDPEV-PPV-MixW-HDPEW-LDPEW-PPW-Mix
C/wt %84.90083.40082.1081.60085.80084.40082.1085.700
H/wt %14.40014.10013.7013.70014.60014.20013.3014.500
N/wt %0.0100.0400.020.0200.0400.0400.030.030
Oa)/wt %0.6802.4204.184.6600.0001.3404.640.000
H/C2.0302.0101.992.0002.0302.0001.922.000
O/C0.0060.0220.040.0570.0000.0120.040.000
HHVexp/(MJ·kg–1)52.30052.80050.9051.80051.20052.70051.5052.000
HHVMilneb)/(MJ·kg–1)49.40048.10046.8046.50050.10048.80046.0049.700
Tab.3  
FeedstockCH4/wt %C2H4/wt %C2H6/wt %C3H6/wt %C3H8/wt %
V-HDPE4.8816.7014.0042.821.50
V-LDPE6.8715.2021.2045.111.70
V-PP3.054.1010.4077.05.42
V-Mix3.636.0612.1064.813.40
W-HDPE3.6610.2012.7048.425.00
W-LDPE4.9114.7015.2040.025.40
W-PP3.155.039.4874.18.21
W-Mix4.238.8913.1072.11.64
Tab.4  
1 C Abdy , Y Zhang , J Wang , Y Yang , I Artamendi , B Allen . Pyrolysis of polyolefin plastic waste and potential applications in asphalt road construction: a technical review. Resources, Conservation and Recycling, 2022, 180: 106213
https://doi.org/10.1016/j.resconrec.2022.106213
2 S A Salaudeen , S M Al-Salem , S Sharma , A Dutta . Pyrolysis of high-density polyethylene in a fluidized bed reactor: pyro-wax and gas analysis. Industrial & Engineering Chemistry Research, 2021, 60(50): 18283–18292
https://doi.org/10.1021/acs.iecr.1c03373
3 G Elordi , M Olazar , G Lopez , M Artetxe , J Bilbao . Product yields and compositions in the continuous pyrolysis of high-density polyethylene in a conical spouted bed reactor. Industrial & Engineering Chemistry Research, 2011, 50(11): 6650–6659
https://doi.org/10.1021/ie200186m
4 R Miandad , M A Barakat , A S Aburiazaiza , M Rehan , A S Nizami . Catalytic pyrolysis of plastic waste: a review. Process Safety and Environmental Protection, 2016, 102: 822–838
https://doi.org/10.1016/j.psep.2016.06.022
5 L Dai , N Zhou , Y Lv , Y Cheng , Y Wang , Y Liu , K Cobb , P Chen , H Lei , R Ruan . Pyrolysis technology for plastic waste recycling: a state-of-the-art review. Progress in Energy and Combustion Science, 2022, 93: 101021
https://doi.org/10.1016/j.pecs.2022.101021
6 H A Gabbar , M Aboughaly . Conceptual process design, energy and economic analysis of solid waste to hydrocarbon fuels via thermochemical processes. Processes, 2021, 9(12): 2149
https://doi.org/10.3390/pr9122149
7 A Zabaniotou , I Vaskalis . Economic assessment of polypropylene waste (PP) pyrolysis in circular economy and industrial symbiosis. Energies, 2023, 16(2): 593
https://doi.org/10.3390/en16020593
8 Z Jin , D Chen , L Yin , Y Hu , H Zhu , L Hong . Molten waste plastic pyrolysis in a vertical falling film reactor and the influence of temperature on the pyrolysis products. Chinese Journal of Chemical Engineering, 2018, 26(2): 400–406
https://doi.org/10.1016/j.cjche.2017.08.001
9 K B Park , Y S Jeong , J S Kim . Activator-assisted pyrolysis of polypropylene. Applied Energy, 2019, 253: 113558
https://doi.org/10.1016/j.apenergy.2019.113558
10 R X YangK JanC T ChenW T ChenK C Wu. Thermochemical conversion of plastic waste into fuels, chemicals, and value-added materials: a critical review and outlooks. ChemSusChem. 2022, 8;15(11): e202200171
11 D Jubinville , E Esmizadeh , S Saikrishnan , C Tzoganakis , T Mekonnen . A comprehensive review of global production and recycling methods of polyolefin (PO) based products and their post-recycling applications. Sustainable Materials and Technologies, 2020, 25: e00188
https://doi.org/10.1016/j.susmat.2020.e00188
12 S Kumagai , J Nakatani , Y Saito , Y Fukushima , T Yoshioka . Latest trends and challenges in feedstock recycling of polyolefinic plastics. Journal of the Japan Petroleum Institute, 2020, 63(6): 345–364
https://doi.org/10.1627/jpi.63.345
13 E Butler , G Devlin , K McDonnell . Waste polyolefins to liquid fuels via pyrolysis: review of commercial state-of-the-art and recent laboratory research. Waste and Biomass Valorization, 2011, 2(3): 227–255
https://doi.org/10.1007/s12649-011-9067-5
14 J Mertinkat , A Kirsten , M Predel , W Kaminsky . Cracking catalysts used as fluidized bed material in the Hamburg pyrolysis process. Journal of Analytical and Applied Pyrolysis, 1999, 49(1): 87–95
https://doi.org/10.1016/S0165-2370(98)00103-X
15 S Miller , N Shah , G P Huffman . Conversion of waste plastic to lubricating base oil. Energy Fuels, 2005, 19(4): 1580–1586
https://doi.org/10.1021/ef049696y
16 Y Kodera , Y Ishihara , T Kuroki . Novel process for recycling waste plastics to fuel gas using a moving-bed reactor. Energy and Fuels, 2006, 20(1): 155–158
https://doi.org/10.1021/ef0502655
17 W Kaminsky . Thermal recycling of polymers. Journal of Analytical and Applied Pyrolysis, 1985, 8(C): 439–448
https://doi.org/10.1016/0165-2370(85)80042-5
18 W Kaminsky . Recycling of polymeric materials by pyrolysis. Makromolekulare Chemie. Macromolecular Symposia, 1991, 48–49(1): 381–393
https://doi.org/10.1002/masy.19910480127
19 B J Milne , L A Behie , F Berruti . Recycling of waste plastics by ultrapyrolysis using an internally circulating fluidized bed reactor. Journal of Analytical and Applied Pyrolysis, 1999, 51(1): 157–166
https://doi.org/10.1016/S0165-2370(99)00014-5
20 M del R Hernández , A Gómez , Á N García , J Agulló , A Marcilla . Effect of the temperature in the nature and extension of the primary and secondary reactions in the thermal and HZSM-5 catalytic pyrolysis of HDPE. Applied Catalysis A: General, 2007, 317(2): 183–194
https://doi.org/10.1016/j.apcata.2006.10.017
21 M Kusenberg , A Eschenbacher , M R Djokic , A Zayoud , K Ragaert , S De Meester , K M Van Geem . Opportunities and challenges for the application of post-consumer plastic waste pyrolysis oils as steam cracker feedstocks: to decontaminate or not to decontaminate?. Waste Management, 2022, 138: 83–115
https://doi.org/10.1016/j.wasman.2021.11.009
22 S Belbessai , A Azara , N Abatzoglou . Recent advances in the decontamination and upgrading of waste plastic pyrolysis products: an overview. Processes, 2022, 10(4): 733
https://doi.org/10.3390/pr10040733
23 M Kusenberg , A Eschenbacher , L Delva , S De Meester , E Delikonstantis , G D Stefanidis , K Ragaert , K M Van Geem . Towards high-quality petrochemical feedstocks from mixed plastic packaging waste via advanced recycling: the past, present and future. Fuel Processing Technology, 2022, 238: 107474
https://doi.org/10.1016/j.fuproc.2022.107474
24 J Aguado , D P Serrano , J M Escola , E Garagorri . Catalytic conversion of low-density polyethylene using a continuous screw kiln reactor. Catalysis Today, 2002, 75(1–4): 257–262
https://doi.org/10.1016/S0920-5861(02)00077-9
25 M Arabiourrutia , G Elordi , G Lopez , E Borsella , J Bilbao , M Olazar . Characterization of the waxes obtained by the pyrolysis of polyolefin plastics in a conical spouted bed reactor. Journal of Analytical and Applied Pyrolysis, 2012, 94: 230–237
https://doi.org/10.1016/j.jaap.2011.12.012
26 M ArabiourrutiaG ElordiM OlazarJ Bilbao. Pyrolysis of polyolefins in a conical spouted bed reactor: a way to obtain valuable products. Pyrolysis. Rijeka: INTECH, 2017, 285–304
27 C Berrueco , E J Mastral , E Esperanza , J Ceamanos . Production of waxes and tars from the continuous pyrolysis of high density polyethylene. Influence of operation variables. Energy & Fuels, 2002, 16(5): 1148–1153
https://doi.org/10.1021/ef020008p
28 F J Mastral , E Esperanza , P García , M Juste . Pyrolysis of high-density polyethylene in a fluidised bed reactor. Influence of the temperature and residence time. Journal of Analytical and Applied Pyrolysis, 2002, 63(1): 1–15
https://doi.org/10.1016/S0165-2370(01)00137-1
29 F J Mastral , E Esperanza , C Berrueco , M Juste , J Ceamanos . Fluidized bed thermal degradation products of HDPE in an inert atmosphere and in air-nitrogen mixtures. Journal of Analytical and Applied Pyrolysis, 2003, 70(1): 1–17
https://doi.org/10.1016/S0165-2370(02)00068-2
30 J F Mastral , C Berrueco , J Ceamanos . Pyrolysis of high-density polyethylene in free-fall reactors in series. Energy & Fuels, 2006, 20(4): 1365–1371
https://doi.org/10.1021/ef060007n
31 J F Mastral , C Berrueco , J Ceamanos . Modelling of the pyrolysis of high density polyethylene. Journal of Analytical and Applied Pyrolysis, 2007, 79(1–2): 313–322
https://doi.org/10.1016/j.jaap.2006.10.018
32 P T WilliamsE A Williams. Fluidised bed pyrolysis of low density polyethylene to produce petrochemical feedstock. Journal of Analytical and Applied Pyrolysis, 1999, 51(1): 107–126
33 D Zhao , X Wang , J B Miller , G W Huber . The chemistry and kinetics of polyethylene pyrolysis: a process to produce fuels and chemicals. ChemSusChem, 2020, 13(7): 1764–1774
https://doi.org/10.1002/cssc.201903434
34 M ArtetxeG LopezM AmutioG ElordiJ BilbaoM Olazar. Light olefins from HDPE cracking in a two-step thermal and catalytic process. Chemical Engineering Journal, 2012, 207–208: 27–34
35 M Artetxe , G Lopez , M Amutio , G Elordi , J Bilbao , M Olazar . Cracking of high density polyethylene pyrolysis waxes on HZSM-5 catalysts of different acidity. Industrial & Engineering Chemistry Research, 2013, 52(31): 10637–10645
https://doi.org/10.1021/ie4014869
36 A R Auxilio , W L Choo , I Kohli , S Chakravartula Srivatsa , S Bhattacharya . An experimental study on thermo-catalytic pyrolysis of plastic waste using a continuous pyrolyser. Waste Management, 2017, 67: 143–154
https://doi.org/10.1016/j.wasman.2017.05.011
37 E Borsella , R Aguado , A De Stefanis , M Olazar . Comparison of catalytic performance of an iron-alumina pillared montmorillonite and HZSM-5 zeolite on a spouted bed reactor. Journal of Analytical and Applied Pyrolysis, 2018, 130: 320–331
https://doi.org/10.1016/j.jaap.2017.12.015
38 M S Abbas-Abadi , A Zayoud , M Kusenberg , M Roosen , F Vermeire , P Yazdani , Waeyenberg J Van , A Eschenbacher , F J A Hernandez , M Kuzmanović . et al.. Thermochemical recycling of end-of-life and virgin HDPE: a pilot-scale study. Journal of Analytical and Applied Pyrolysis, 2022, 166: 105614
https://doi.org/10.1016/j.jaap.2022.105614
39 N M Ainali , D N Bikiaris , D A Lambropoulou . Aging effects on low- and high-density polyethylene, polypropylene and polystyrene under UV irradiation: an insight into decomposition mechanism by Py-GC/MS for microplastic analysis. Journal of Analytical and Applied Pyrolysis, 2021, 158: 105207
https://doi.org/10.1016/j.jaap.2021.105207
40 D Frączak , G Fabiś , B Orlińska . Influence of the feedstock on the process parameters, product composition and pilot-scale cracking of plastics. Material, 2021, 14(11): 3094
https://doi.org/10.3390/ma14113094
41 J Walendziewski . Continuous flow cracking of waste plastics. Fuel Processing Technology, 2005, 86(12–13): 1265–1278
https://doi.org/10.1016/j.fuproc.2004.12.004
42 M Predel , W Kaminsky . Pyrolysis of mixed polyolefins in a fluidized-bed reactor and on a pyro-GC/MS to yield aliphatic waxes. Polymer Degradation & Stability, 2000, 70(3): 373–385
https://doi.org/10.1016/S0141-3910(00)00131-2
43 P J Donaj , W Kaminsky , F Buzeto , W Yang . Pyrolysis of polyolefins for increasing the yield of monomers’ recovery. Waste Management, 2012, 32(5): 840–846
https://doi.org/10.1016/j.wasman.2011.10.009
44 N Miskolczi , C Wu , P T Williams . Fuels by waste plastics using activated carbon, MCM-41, HZSM-5 and their mixture. MATEC Web of Conferences, 2016, 49: 1–6
45 R W J Westerhout , J Waanders , J A M Kuipers , W P M Van Swaaij . Recycling of polyethene and polypropene in a novel bench-scale rotating cone reactor by high-temperature pyrolysis. Industrial & Engineering Chemistry Research, 1998, 37(6): 2293–2300
https://doi.org/10.1021/ie970704q
46 I Dubdub , M Al-Yaari . Pyrolysis of mixed plastic waste: I. Kinetic study. Materials, 2020, 13(21): 4912
https://doi.org/10.3390/ma13214912
47 Y Cheng , E Ekici , G Yildiz , Y Yang , B Coward , J Wang . Applied machine learning for prediction of waste plastic pyrolysis towards valuable fuel and chemicals production. Journal of Analytical and Applied Pyrolysis, 2023, 169: 105857
https://doi.org/10.1016/j.jaap.2023.105857
48 G Lopez , M Artetxe , M Amutio , J Bilbao , M Olazar . Thermochemical routes for the valorization of waste polyolefinic plastics to produce fuels and chemicals. A review. Renewable & Sustainable Energy Reviews, 2017, 73: 346–368
https://doi.org/10.1016/j.rser.2017.01.142
49 G YildizF RonsseW Prins. Catalytic fast pyrolysis over zeolites. Fast pyrolysis of biomass: advances in science and technology. The Royal Society of Chemistry, Cambridge 2017, 200–230
50 L S Diaz Silvarrey , A N Phan . Kinetic study of municipal plastic waste. International Journal of Hydrogen Energy, 2016, 41(37): 16352–16364
https://doi.org/10.1016/j.ijhydene.2016.05.202
51 J M Saad , P T Williams , Y S Zhang , D Yao , H Yang , H Zhou . Comparison of waste plastics pyrolysis under nitrogen and carbon dioxide atmospheres: a thermogravimetric and kinetic study. Journal of Analytical and Applied Pyrolysis, 2021, 156: 105135
https://doi.org/10.1016/j.jaap.2021.105135
52 S H Jung , M H Cho , B S Kang , J S Kim . Pyrolysis of a fraction of waste polypropylene and polyethylene for the recovery of BTX aromatics using a fluidized bed reactor. Fuel Processing Technology, 2010, 91(3): 277–284
https://doi.org/10.1016/j.fuproc.2009.10.009
53 A F Anene , S B Fredriksen , K A Sætre , L A Tokheim . Experimental study of thermal and catalytic pyrolysis of plastic waste components. Sustainability, 2018, 10(11): 3979
https://doi.org/10.3390/su10113979
54 & Ekici E.G. Yildiz. Determination of optimal pyrolysis process parameters to maximize gasoline like renewable fuel production from polypropylene. Innovations-Sustainability-Modernity-Openness Modern Solutions in Engineering (ISMO 2022), 44: 67–175 (eBook)
55 S R Chandrasekaran , B Kunwar , B R Moser , N Rajagopalan , B K Sharma . Catalytic thermal cracking of postconsumer waste plastics to fuels. 1. Kinetics and optimization. Energy & Fuels, 2015, 29(9): 6068–6077
https://doi.org/10.1021/acs.energyfuels.5b01083
56 D P SerranoJ AguadoJ M EscolaE Garagorri. Conversion of low density polyethylene into petrochemical feedstocks using a continuous screw kiln reactor. Journal of Analytical and Applied Pyrolysis, 2001, 58–59: 789–801
57 M Kusenberg , A Zayoud , M Roosen , H D Thi , M S Abbas-Abadi , A Eschenbacher , U Kresovic , S De Meester , K M Van Geem . A comprehensive experimental investigation of plastic waste pyrolysis oil quality and its dependence on the plastic waste composition. Fuel Processing Technology, 2022, 227: 107090
https://doi.org/10.1016/j.fuproc.2021.107090
58 R Aguado , M Olazar , José M J San , B Gaisán , J Bilbao . Wax formation in the pyrolysis of polyolefins in a conical spouted bed reactor. Energy & Fuels, 2002, 16(6): 1429–1437
https://doi.org/10.1021/ef020043w
59 K M Qureshi , A N Kay Lup , S Khan , F Abnisa , W M A Wan Daud . A technical review on semi-continuous and continuous pyrolysis process of biomass to bio-oil. Journal of Analytical and Applied Pyrolysis, 2018, 131: 52–75
https://doi.org/10.1016/j.jaap.2018.02.010
60 J A ConesaR FontA MarcillaJ A Caballero. Kinetic model for the continuous pyrolysis of two types of polyethylene in a fluidized bed reactor. Journal of Analytical and Applied Pyrolysis, 1997, 40–41(19): 419–431
61 M del R Hernández , Á N García , A Marcilla . Study of the gases obtained in thermal and catalytic flash pyrolysis of HDPE in a fluidized bed reactor. Journal of Analytical and Applied Pyrolysis, 2005, 73(2): 314–322
https://doi.org/10.1016/j.jaap.2005.03.001
62 M L Mastellone , F Perugini , M Ponte , U Arena . Fluidized bed pyrolysis of a recycled polyethylene. Polymer Degradation & Stability, 2002, 76(3): 479–487
https://doi.org/10.1016/S0141-3910(02)00052-6
63 ASTM D7611/D7611M–21 “Standard practice for coding plastic manufactured articles for resin identification”. ASTM International, 2022
64 & Ekici E.G. Yildiz. Analysis of Pyrolysis Process Parameters for the Maximized Production of Gasoline-range Renewable Fuels from High-density Polyethylene. In: Proceedings of the 2022 International Symposium on Energy Management and Sustainability, Springer: Cham, 2022, 311–318
65 ISO 1928:2020 “Solid mineral fuels—determination of gross calorific value by the bomb calorimetric method and calculation of net calorific value”. ISO, 2020
66 S Obidziński , Yildiz M Joka , S Dąbrowski , J Jasiński , W Czekała . Application of post-flotation dairy sludge in the production of wood pellets: pelletization and combustion analysis. Energies, 2022, 15(24): 9427
https://doi.org/10.3390/en15249427
67 Phyllis2 ECN Phyllis classification-Plastics. 2023 phyllis.nl/Browse/Standard/ECN-Phyllis#plastic. Accessed 07 Apr 2023
68 A Gala , M Guerrero , J M Serra . Characterization of post-consumer plastic film waste from mixed MSW in Spain: a key point for the successful implementation of sustainable plastic waste management strategies. Waste Management, 2020, 111: 22–33
https://doi.org/10.1016/j.wasman.2020.05.019
69 A C K Chowlu , P K Reddy , A K Ghoshal . Pyrolytic decomposition and model-free kinetics analysis of mixture of polypropylene (PP) and low-density polyethylene (LDPE). Thermochimica Acta, 2009, 485(1–2): 20–25
https://doi.org/10.1016/j.tca.2008.12.004
70 M S Abbas-Abadi , M Kusenberg , A Zayoud , M Roosen , F Vermeire , S Madanikashani , M Kuzmanović , B Parvizi , U Kresovic , Meester S De , Geem K M Van . Thermal pyrolysis of waste versus virgin polyolefin feedstocks: the role of pressure, temperature and waste composition. Waste Management, 2023, 165: 108–118
https://doi.org/10.1016/j.wasman.2023.04.029
71 Y Uemichi , Y Kashiwaya , A Ayame , K Kanoh . Formation of aromatic hydrocarbons in degradation of polyethylene over activated carbon catalyst. Chemical Letters, 1984, 13(1): 41–44
https://doi.org/10.1246/cl.1984.41
72 K Murata , Y Hirano , Y Sakata , M A Uddin . Basic study on a continuous flow reactor for thermal degradation of polymers. Journal of Analytical and Applied Pyrolysis, 2002, 65(1): 71–90
https://doi.org/10.1016/S0165-2370(01)00181-4
73 K Murata , M Brebu , Y Sakata . The effect of PVC on thermal and catalytic degradation of polyethylene, polypropylene and polystyrene by a continuous flow reactor. Journal of Analytical and Applied Pyrolysis, 2009, 86(1): 33–38
https://doi.org/10.1016/j.jaap.2009.04.003
74 K Murata , M Brebu , Y Sakata . The effect of silica-alumina catalysts on degradation of polyolefins by a continuous flow reactor. Journal of Analytical and Applied Pyrolysis, 2010, 89(1): 30–38
https://doi.org/10.1016/j.jaap.2010.05.002
75 S Breyer , L Mekhitarian , B Rimez , B Haut . Production of an alternative fuel by the co-pyrolysis of landfill recovered plastic wastes and used lubrication oils. Waste Management, 2017, 60: 363–374
https://doi.org/10.1016/j.wasman.2016.12.011
76 B Kunwar , H N Cheng , S R Chandrashekaran , B K Sharma . Plastics to fuel: a review. Renewable & Sustainable Energy Reviews, 2016, 54: 421–428
https://doi.org/10.1016/j.rser.2015.10.015
77 N Phetyim , S Pivsa-Art . Prototype co-pyrolysis of used lubricant oil and mixed plastic waste to produce a diesel-like fuel. Energies, 2018, 11(11): 2973
https://doi.org/10.3390/en11112973
78 A Marcilla , M I Beltrán , R Navarro . Evolution of products during the degradation of polyethylene in a batch reactor. Journal of Analytical and Applied Pyrolysis, 2009, 86(1): 14–21
https://doi.org/10.1016/j.jaap.2009.03.004
79 S M Al-Salem , P Lettieri . Kinetic study of high density polyethylene (HDPE) pyrolysis. Chemical Engineering Research & Design, 2010, 88(12): 1599–1606
https://doi.org/10.1016/j.cherd.2010.03.012
80 Y P Supriyanto , T Ylitervo . Gaseous products from primary reactions of fast plastic pyrolysis. Journal of Analytical and Applied Pyrolysis, 2021, 158: 105248
https://doi.org/10.1016/j.jaap.2021.105248
81 R Aguado , G Elordi , A Arrizabalaga , M Artetxe , J Bilbao , M Olazar . Principal component analysis for kinetic scheme proposal in the thermal pyrolysis of waste HDPE plastics. Chemical Engineering Journal, 2014, 254: 357–364
https://doi.org/10.1016/j.cej.2014.05.131
82 M S Klippel , M F Martins . Physicochemical assessment of waxy products directly recovered from plastic waste pyrolysis: review and synthesis of characterization techniques. Polymer Degradation & Stability, 2022, 204: 110090
https://doi.org/10.1016/j.polymdegradstab.2022.110090
83 R Thahir , M Irwan , A Alwathan , R Ramli . Effect of temperature on the pyrolysis of plastic waste using zeolite ZSM-5 using a refinery distillation bubble cap plate column. Results in Engineering, 2021, 11: 100231
https://doi.org/10.1016/j.rineng.2021.100231
84 MERCK IR Spectrum Table & Chart. 2023: www.sigmaaldrich.com/TR/en/technical-documents/technical-article/analytical-chemistry/photometry-and-reflectometry/ir-spectrum-table
85 J Gómez-Estaca , C López-de-Dicastillo , P Hernández-Muñoz , R Catalá , R Gavara . Advances in antioxidant active food packaging. Trends in Food Science & Technology, 2014, 35(1): 42–51
https://doi.org/10.1016/j.tifs.2013.10.008
86 O W Lau , S K Wong . Contamination in food from packaging material. Journal of Chromatography. A, 2000, 882(1–2): 255–270
https://doi.org/10.1016/S0021-9673(00)00356-3
87 A Kamali , S Heidari , A Golzary , O Tavakoli , D A Wood . Optimized catalytic pyrolysis of refinery waste sludge to yield clean high quality oil products. Fuel, 2022, 328: 125292
https://doi.org/10.1016/j.fuel.2022.125292
88 B Kunwar , B R Moser , S R Chandrasekaran , N Rajagopalan , B K Sharma . Catalytic and thermal depolymerization of low value post-consumer high density polyethylene plastic. Energy, 2016, 111: 884–892
https://doi.org/10.1016/j.energy.2016.06.024
89 N Miskolczi , A Angyal , L Bartha , I Valkai . Fuels by pyrolysis of waste plastics from agricultural and packaging sectors in a pilot scale reactor. Fuel Processing Technology, 2009, 90(7–8): 1032–1040
https://doi.org/10.1016/j.fuproc.2009.04.019
90 K B Park , S J Oh , G Begum , J S Kim . Production of clean oil with low levels of chlorine and olefins in a continuous two-stage pyrolysis of a mixture of waste low-density polyethylene and polyvinyl chloride. Energy, 2018, 157: 402–411
https://doi.org/10.1016/j.energy.2018.05.182
91 J F Mastral , C Berrueco , M Gea , J Ceamanos . Catalytic degradation of high density polyethylene over nanocrystalline HZSM-5 zeolite. Polymer Degradation & Stability, 2006, 91(12): 3330–3338
https://doi.org/10.1016/j.polymdegradstab.2006.06.009
92 K B Park , Y S Jeong , B Guzelciftci , J S Kim . Characteristics of a new type continuous two-stage pyrolysis of waste polyethylene. Energy, 2019, 166(1): 343–351
https://doi.org/10.1016/j.energy.2018.10.078
[1] FCE-23108-OF-EE_suppl_1 Download
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed