Please wait a minute...
Frontiers of Engineering Management

ISSN 2095-7513

ISSN 2096-0255(Online)

CN 10-1205/N

邮发代号 80-905

Frontiers of Engineering Management  2017, Vol. 4 Issue (4): 490-497   https://doi.org/10.15302/J-FEM-2017008
  本期目录
车辆交通服务:从接收原始探测数据到时空图的过程以及由此产生的交通服务
AUER Markus(), REHBORN Hubert, MOLZAHN Sven-Eric, KOLLER Micha
戴姆勒股份公司
Traffic services for vehicles: the process from receiving raw probe data to space-time diagrams and the resulting traffic service
Markus AUER(), Hubert REHBORN, Sven-Eric MOLZAHN, Micha KOLLER
Daimler AG, HPC 059-X901, D-71059 Sindelfingen, Germany
 全文: PDF(2468 KB)   HTML
摘要:

如今,交通服务提供者将大量的车辆数据(FCD:浮动车数据)广泛用于道路网络交通状态的创建和播报中。作为第一个处理步骤,从全球定位系统(GPS)接收的所有原始位置数据必须在数字路线图中进行地图匹配,本文描述了GPS数据匹配过程的技术问题。之后,创建显示交通空间和时间状况的详细探测数据时空图,并采用数值实例说明了交通服务质量如何取决于匹配的GPS原始数据的数量。结果显示,当总交通流中2%的连接车辆以较短的时间间隔发送其GPS数据时,可以实现对当前交通阶段的高质量和精确重构。最后,将进行交通信息的转换,这些信息可发送到车辆导航系统中用于驾驶员信息和动态路线引导。

Abstract

Today, large quantities of vehicle data (FCD: floating car data) are widely used by traffic service providers to create and broadcast traffic states in road networks. As a first processing step, all raw position data received from Global Positioning Systems (GPS) have to be map matched in a digital road map. The technical aspects of such a matching process for GPS data are described in this report. After the matching process, space-time-diagrams are created of the probe data showing traffic situation details over space and time. Various examples illustrate how traffic service quality depends on the number of matched GPS raw data; it will be stated that when 2% of connected vehicles in the total traffic flow are sending their GPS data in shorter time intervals, a high quality and precise reconstruction of the current traffic phases is achieved. Traffic reconstruction is followed by a translation into traffic information messages, which can be sent and used in vehicle navigation systems for driver information and dynamic route guidance.

Key wordsfloating car data    map matching    three phase traffic theory    traffic reconstruction    traffic service quality    navigation systems
收稿日期: 2017-02-07      出版日期: 2017-12-14
通讯作者: AUER Markus     E-mail: markus.m.auer@daimler.com
Corresponding Author(s): Markus AUER   
 引用本文:   
AUER Markus, REHBORN Hubert, MOLZAHN Sven-Eric, KOLLER Micha. 车辆交通服务:从接收原始探测数据到时空图的过程以及由此产生的交通服务[J]. Frontiers of Engineering Management, 2017, 4(4): 490-497.
Markus AUER, Hubert REHBORN, Sven-Eric MOLZAHN, Micha KOLLER. Traffic services for vehicles: the process from receiving raw probe data to space-time diagrams and the resulting traffic service. Front. Eng, 2017, 4(4): 490-497.
 链接本文:  
https://academic.hep.com.cn/fem/CN/10.15302/J-FEM-2017008
https://academic.hep.com.cn/fem/CN/Y2017/V4/I4/490
Fig.1  
Fig.2  
Fig.3  
Fig.4  
Fig.5  
Fig.6  
Fig.7  
Fig.8  
Fig.9  
Fig.10  
1 Beckmann N, Kriegel H P, Schneider R, Seeger B (1990). The R*-tree: An Efficient and Robust Access Method for Points and Rectangles. Proceedings of the 1990 ACM SIGMOD International Conference on Management of Data
2 Bernstein D, Kornhauser A (1996). An Introduction to Map Matching for Personal Navigation Assistants. Newark, New Jersey: New Jersey TIDE Center
3 Brakatsoulas S, Pfoser D, Salas R, Wenk C (2005). On Map-Matching Vehicle Tracking Data. 31st International Conference on Very Large Data Bases (VLDB2005) Proceedings, 853–864
4 Greenfeld J S (2002). Matching GPS observations to locations on a digital map. Proceedings of the 81th Annual Meeting of the Transportation Research Board, Washington D.C.
5 Guttman A (1984). R-trees: a dynamic index structure for spatial searching. Proceedings of the 1984 ACM SIGMOD international conference on Management of Data, 47–57
6 Kerner B S (2004). The Physics of Traffic. Berlin & New York, Springer
7 Kerner B S (2009). Introduction to Modern Traffic Flow Theory and Control. Berlin & New York, Springer
8 Kerner B S, Rehborn H, Palmer J, Klenov S L (2011). Using probe vehicle data to generate jam warning messages, Traffic Engineering and Control, 2011–3
9 Kerner B S, Rehborn H, Schäfer R P, Klenov S L, Palmer J, Lorkowski S, Witte N (2013). Traffic dynamics in empirical probe vehicle data studied with three-phase theory: Spatiotemporal reconstruction of traffic phases and generation of jam warning messages. Physica A, 392(1): 221–251
https://doi.org/10.1016/j.physa.2012.07.070
10 Leutenegger S T, Lopez M A, Edgington J (1997). STR: A simple and efficient algorithm for R-tree packing. Proceedings of the 13th International Conference on Data Engineering, IEEE, 497–506
11 Newson P, Krumm J (2009). Hidden Markov map matching through noise and sparseness. In: Proceedings of the 17th ACM SIGSPATIAL international conference on advances in geographic information systems, ACM, 336–343
12 Quddus M A, Ochieng W Y, Zhao L, Noland R B (2003). A general map matching algorithm for transport telematics applications. GPS Solutions, 7(3): 157–167
https://doi.org/10.1007/s10291-003-0069-z
13 Quddus M A, Ochieng W Y, Noland R B (2007). Current map-matching algorithms for transport applications: State-of-the art and future research directions. Transportation Research Part C, Emerging Technologies, 15(5): 312–328
https://doi.org/10.1016/j.trc.2007.05.002
14 Rehborn H, Klenov S L (2009). Traffic Prediction of Congested Patterns. Encyclopedia of Complexity and System Science. Ed. R. A. Meyers, 9500–9536
15 Rehborn H, Klenov S L, Palmer J (2011). An empirical study of common traffic congestion features based on traffic data measured in the USA, the UK, and Germany. Physica A, 390(23–24): 4466–4485
https://doi.org/10.1016/j.physa.2011.07.004
16 Treiterer J, Myers J A (1974). in Procs. 6th International Symposium on Transportation and Traffic. Theory, Ed. D. J. Buckley. (A.H. & AW Reed, London), 13–38
17 Treiterer J (1975). Investigation of Traffic Dynamics by Aerial Photogrammetry Techniques. Ohio State University Technical Report PB 246094, Columbus (Ohio)
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed