Please wait a minute...
Frontiers of Earth Science

ISSN 2095-0195

ISSN 2095-0209(Online)

CN 11-5982/P

邮发代号 80-963

2019 Impact Factor: 1.62

Frontiers of Earth Science  2012, Vol. 6 Issue (3): 314-323   https://doi.org/10.1007/s11707-012-0306-2
  RESEARCH ARTICLE 本期目录
Dynamic downscaling of near-surface air temperature at the basin scale using WRF–a case study in the Heihe River Basin, China
Dynamic downscaling of near-surface air temperature at the basin scale using WRF–a case study in the Heihe River Basin, China
Xiaoduo PAN(), Xin Li, Xiaokang SHI, Xujun HAN, Lihui LUO, Liangxu WANG
Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou 730000, China
 全文: PDF(6761 KB)   HTML
Abstract

The spatial resolution of general circulation models (GCMs) is too coarse to represent regional climate variations at the regional, basin, and local scales required for many environmental modeling and impact assessments. Weather research and forecasting model (WRF) is a next-generation, fully compressible, Euler non-hydrostatic mesoscale forecast model with a run-time hydrostatic option. This model is useful for downscaling weather and climate at the scales from one kilometer to thousands of kilometers, and is useful for deriving meteorological parameters required for hydrological simulation too. The objective of this paper is to validate WRF simulating 5 km/1 h air temperatures by daily observed data of China Meteorological Administration (CMA) stations, and by hourly in-situ data of the Watershed Allied Telemetry Experimental Research Project. The daily validation shows that the WRF simulation has good agreement with the observed data; the R2 between the WRF simulation and each station is more than 0.93; the absolute of meanbias error (MBE) for each station is less than 2°C; and the MBEs of Ejina, Mazongshan and Alxa stations are near zero, with R2 is more than 0.98, which can be taken as an unbiased estimation. The hourly validation shows that the WRF simulation can capture the basic trend of observed data, the MBE of each site is approximately 2°C, the R2 of each site is more than 0.80, with the highest at 0.95, and the computed and observed surface air temperature series show a significantly similar trend.

Key wordsweather research and forecasting model    dynamic downscaling    surface air temperature    Heihe River Basin    Watershed Allied Telemetry Experimental Research Project
收稿日期: 2011-09-30      出版日期: 2012-09-05
Corresponding Author(s): PAN Xiaoduo,Email:panxiaoduo@lzb.ac.cn   
 引用本文:   
. Dynamic downscaling of near-surface air temperature at the basin scale using WRF–a case study in the Heihe River Basin, China[J]. Frontiers of Earth Science, 2012, 6(3): 314-323.
Xiaoduo PAN, Xin Li, Xiaokang SHI, Xujun HAN, Lihui LUO, Liangxu WANG. Dynamic downscaling of near-surface air temperature at the basin scale using WRF–a case study in the Heihe River Basin, China. Front Earth Sci, 2012, 6(3): 314-323.
 链接本文:  
https://academic.hep.com.cn/fesci/CN/10.1007/s11707-012-0306-2
https://academic.hep.com.cn/fesci/CN/Y2012/V6/I3/314
Fig.1  
Station typeStation nameStation IDAltitude/mLatitude/°NLongitude/°ETa/°C
CMAEjina*52267940.541.57101.049.99
Mazongshan*523231770.141.4897.025.23
Guaizihu52378960.041.22102.2210.13
Yumenzhen524361526.040.1697.027.71
Jinta524471270.240.0098.548.94
Jiuquan*525331477.239.4698.297.90
Gaotai525461332.239.2299.508.03
Alax525761510.139.13101.419.01
Tuole526333367.038.4898.25-1.94
Yeniugou526453320.038.2599.35-2.47
Zhangye526521482.738.56100.268.34
Qilian526572787.438.11100.151.75
Shandan526611764.638.48101.057.03
Yongchang526741976.138.14101.585.82
Menyuan526752850.037.23101.371.73
WATERArouAR3032.838.04100.46-0.95
BinggouBG3449.038.07100.22Apr-Dec
DadongshuDDS4146.838.01100.24-5.44
GuantanGT2835.238.53100.25Exclude Apr
HuazhaiziHZZ1726.038.46100.25Jun-Dec
MaliantanMLT2817.038.55100.30Jan-JunNov-Dec
YingkelvzhouYK1519.138.86100.41Exclude MayExclude Jul-Sep
Tab.1  
Fig.2  
Fig.3  
Fig.4  
Station nameStation IDMBE/°CRMSE/°CR295% confidence interval
Ejina522670.212.150.98(-0.02, 0.44)
Mazongshan523230.001.880.98(-0.20, 0.20)
Guaizihu52378-0.672.130.98(-0.90, -0.45)
Yumenzhen52436-1.312.540.98(-1.58, -1.04)
Jinta52447-0.902.530.98(-1.16, -0.64)
Jiuquan52533-1.152.120.98(-1.37, -0.93)
Gaotai52546-0.781.990.98(-1.00, -0.57)
Alax52576-0.162.110.98(-0.38, 0.06)
Tuole526331.572.040.96(1.36, 1.78)
Yeniugou526451.772.490.94(1.51, 2.03)
Zhangye52652-0.771.820.98(-0.96, -0.58)
Qilian526570.912.010.97(0.70, 1.12)
Shandan526611.271.740.98(1.09, 1.45)
Yongchang526741.121.820.98(0.93, 1.31)
Menyuan526751.762.300.94(1.52, 2.00)
Tab.2  
Fig.5  
Fig.6  
Station IDMBE/°CRMSE/°CR295% confidence interval
AR0.352.870.92(0.29, 0.41)
BG-1.462.690.93(-1.52, -1.40)
DDS-1.192.210.94(-1.24, -1.14)
GT-0.661.710.94(-0.70, -0.62)
HZZ0.702.480.94(0.65, 0.75)
MLT0.703.090.92(0.63, 0.77)
YK1.303.160.94(1.23, 1.37)
Tab.3  
NameOrganizationReanalysis periodResolutionData assimilation method
JRA-25JMA/CRIEPI1979-presentT106 L403D-Var
ERA-40ECMWFSep 1957-Aug 2002TL159 L603D-Var
NCEP-IINCEP/DOE1979-presentT62 L283D-Var
Tab.4  
Fig.7  
Fig.8  
1 Chen D, Achberger C, R?is?nen J, Hellstr?m C (2006). Using statistical downscaling to quantify the GCM-related uncertainty in regional climate change scenarios: a case study of Swedish precipitation. Adv Atmos Sci , 23(1): 54–60
doi: 10.1007/s00376-006-0006-5
2 Collischonn W, Haas R, Andreolli I, Tucci C E M (2005). Forecasting River Uruguay flow using rainfall forecasts from a regional weather-prediction model. J Hydrol (Amst) , 305(1–4): 87–98
3 Cosgrove B A, Lohmann D, Mitchell K E, Houser P R, Wood E F, Schaake J C, Robock A, Marshall C, Sheffield J, Duan Q, Luo L, Higgins R W, Pinker R T, Tarpley J D, Meng J (2003). Real-time and retrospective forcing in the North American Land Data Assimilation System (NLDAS) Project. J Geophys Res , 108(D22): 1–12
doi: 10.1029/2002JD003118
4 Hanssen-Bauer I, Achberger C, Benestad R E, Chen D, F?rland E J (2005). Statistical downscaling of climate scenarios over Scandinavia. Clim Res , 29(3): 255–268
doi: 10.3354/cr029255
5 Jasper K, Gurtz J, Lang H (2002). Advanced flood forecasting in Alpine watersheds by coupling meteorological observations and forecasts with a distributed hydrological model. J Hydrol (Amst) , 267(1–2): 40–52
doi: 10.1016/S0022-1694(02)00138-5
6 Kalnay E, Kanamitsu M, Kistler R, Collins W, Deaven D, Gandin L, Iredell M, Saha S, White G, Woollen J, Zhu Y, Leetmaa A, Reynolds R, Chelliah M, Ebisuzaki W, Higgins W, Janowiak J, Mo K C, Ropelewski C, Wang J, Jenne R, Joseph D (1996). The NCEP/NCAR 40-year reanalysis project. Bull Am Meteorol Soc , 77(3): 437–471
doi: 10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2
7 Kislter R, Kalnay E, Collins W, Saha S, White G, Woollen J, Chelliah M, Ebisuzaki W, Kanamitsu M, Kousky V, Dool H, Jenne R, Fiorino M (2001). The NCEP/NCAR 50-year reanalysis: monthly means CD-ROM and documentation. Bull Am Meteorol Soc , 82(2): 247–267
8 Kunstmann H, Jung G, Wagner S, Clottey H (2008). Integration of atmospheric sciences and hydrology for the development of decision support systems in sustainable water management. Phys Chem Earth , 33(1–3): 165–174
9 Kunstmann H, Stadler C (2005). High resolution distributed atmospheric-hydrologic modeling for Alpine catchments. J Hydrol (Amst) , 314(1–4): 105–124
doi: 10.1016/j.jhydrol.2005.03.033
10 Laprise R (1992). The Euler equation of motion with hydrostatic pressure as independent coordinate. Mon Weather Rev , 120(1): 197–207
doi: 10.1175/1520-0493(1992)120<0197:TEEOMW>2.0.CO;2
11 Leander R T, Buishand A (2007). Resampling of regional climate model output for the simulation of extreme river flows. J Hydrol (Amst) , 332(3–4): 487–496
doi: 10.1016/j.jhydrol.2006.08.006
12 Leander R, Buishand T A, van den Hurk B J J M, de Wit M J M (2008). Estimated changes in flood quantiles of the river Meuse from resampling of regional climate model output. J Hydrol (Amst) , 351(3–4): 331–343
doi: 10.1016/j.jhydrol.2007.12.020
13 Li X, Li X W, Li Z Y, Ma M, Wang J, Xiao Q, Liu Q, Che T, Chen E, Yan G, Hu Z, Zhang L, Chu R, Su P, Liu Q, Liu S, Wang J, Niu Z, Chen Y, Jin R, Wang W, Ran Y, Xin X, Ren H (2009). Watershed allied telemetry experimental research. J Geophys Res , 114(D22103): 1–19
doi: 10.1029/2008JD011590
14 Lu G, Wu Z, Wen L, Zhang J (2006). Application of a coupled atmospheric-hydrological modeling system to real-time flood forecast. Advances in Water Science , 17(6): 847–852 (in Chinese)
15 Michalakes J, Chen S, Dudhia J, Hart L, Klemp J, Middlecoff J, Skamarock W (2001). Development of a Next Generation Regional Weather Research and Forecast Model in developments in teracomputing. In: Zwieflhofer W, Kreitz N, eds, Proceedings of the 9th ECMWF Workshop on the Use of High Performance Computing in Meteorology . Singapore: World Scientific, 269–276
16 Michalakes J, Dudhia J, Gill D, Klemp J, Shamarock W (1998). Design of a next-generation regional weather research and forecast model: towards teracomputing, World Scientific, River Edge, New Jersey, 117–124
17 Michalakes J, Dudhia J, Gill D, Henderson T, Skamarock W, Wang W (2004). The weather reseach and forecast model: software architecture and performance. In: Proceedings of the 11th ECMWF Workshop on the Use of High Performance Computing in Meteorology, 25–29 October, 2004.
18 Mpelasoka F S, Mullah A B, Heerdegen R G (2001). New Zealand climate change information derived by multivariate statistical and artificial neural networks approaches. Int J Climatol , 21(11): 1415–1433
doi: 10.1002/joc.617
19 Ngo-Duc T, Polcher J, Laval K (2005). A 53-year forcing data set for land surface models. J Geophys Res , 110(D06116): 13
doi: 10.1029/2004JD005434
20 Onogi K, Tsutsui J, Koide H, Sakamoto M, Kobayashi S, Hatsushika H, Matsumoto T, Yamazaki N, Kamahori H, Takahashi K, Kadokura S, Wada K, Kato K, Oyama R, Ose T, Mannoji N, Taira R (2007). The JRA-25 reanalysis. J Meteorol Soc Jpn , 85(3): 369–432
doi: 10.2151/jmsj.85.369
21 Skamarock W C, Klemp J B, Dudhia J, Gill D O, Barker D M, Duda M G, Huang X Y, Wang W, Power J G (2008). A description of the advanced research WRF Version 3. www.mmm.ucar.edu/ wrf/users/docs/user_guide/ARWUsersGuide.pdf (accessed June 2008)
22 Uppla S M, K?llberg P W, Simmons A J, Andrae U, Bechtold V D C, Fiorino M, Gibson J K, Haseler J, Hernandez A, Kelly G A, Li X, Onogi K, Saarinen S, Sokka N, Allan R P, Andersson E, Arpe K, Balmaseda M A, Beljaars A C M, Berg L V D, Bidlot J, Bormann N, Caires S, Chevallier F, Dethof A, Dragosavac M, Fisher M, Fuentes M, Hagemann S, Hólm E, Hoskins B J, Isaksen L, Janssen P A E M, Jenne R, Mcnally A P, Mahfouf J F, Morcrette J J, Rayner N A, Saunders R W, Simon P, Sterl A, Trenberth K E, Untch A, Vasiljevic D, Viterbo P, Woollen J (2005). The ERA-40 reanalysis. Q J R Meteorol Soc , 131(612): 2961–3012
doi: 10.1256/qj.04.176
23 Wilby R L, Hay L E, Gutowski W J Jr, Arritt R W, Takle E S, Pan Z, Leavesley G H, Clark M P (2000). Hydrological responses to dynamically and statistically downscaled climate model output. Geophys Res Lett , 27(8): 1199–1202
24 Wilby R L, Hay L E, Leavesley G H (1999). A comparison of downscaled and raw GCM output: implications for climate change scenarios in the San Juan River Basin, Colorado. Journal of Hydro1ogy , 225 (1–2): 67–91
25 Winkler J A, Palutikof J P, Andresen J A, Goodess C M (1997). The simulation of daily temperature time series from GCM output: Part II: Sensitivity analysis of an empirical transfer function methodology. J Clim , 10(10): 2514–2532
doi: 10.1175/1520-0442(1997)010<2514:TSODTT>2.0.CO;2
26 Yu Z, Barron E J, Yarnal B, Lakhtakia M N, White R A, Pollard D, Miller D A (2002). Evaluation of basin-scale hydrologic response to a multi-storm simulation. J Hydrol (Amst) , 257(1–4): 212–225
doi: 10.1016/S0022-1694(01)00538-8
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed