1. Key Laboratory of Digital Earth Sciences, Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, Beijing 100094, China; 2. University of Chinese Academy of Sciences, Beijing 100049, China; 3. National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012, China
Craters, one of the most significant features of the lunar surface, have been widely researched because they offer us the relative age of the surface unit as well as crucial geological information. Research on crater detection algorithms (CDAs) of the Moon and other planetary bodies has concentrated on detecting them from imagery data, but the computational cost of detecting large craters using images makes these CDAs impractical. This paper presents a new approach to crater detection that utilizes a digital elevation model instead of images; this enables fully automatic global detection of large craters. Craters were delineated by terrain attributes, and then thresholding maps of terrain attributes were used to transform topographic data into a binary image, finally craters were detected by using the Hough Transform from the binary image. By using the proposed algorithm, we produced a catalog of all craters≥10 km in diameter on the lunar surface and analyzed their distribution and population characteristics.
Corresponding Author(s):
WANG Xinyuan,Email:xywang@ceode.ac.cn
引用本文:
. Global detection of large lunar craters based on the CE-1 digital elevation model[J]. Frontiers of Earth Science, 2013, 7(4): 456-464.
Lei LUO, Lingli MU, Xinyuan WANG, Chao LI, Wei JI, Jinjin ZHAO, Heng CAI. Global detection of large lunar craters based on the CE-1 digital elevation model. Front Earth Sci, 2013, 7(4): 456-464.
Alves E I (2003). A New Crater Recognition Method and Its Application to Images of Mars. In: Geophysical Research Abstracts . Nice: Copernicus Publications
2
Bandeira L, Ding W, Stepinski T F (2010). Automatic detection of sub-km craters using shape and texture in formation. In: Proceedings of the 41st Lunar and Planetary Science Conference, Abs . 1144, March1–5, 2010, Houston, US
3
Bue B D, Stepinski T F (2007). Machine detection of Martian impact craters from digital topography data. IEEE Trans Geosci Rem Sens , 45(1): 265–274 doi: 10.1109/TGRS.2006.885402
4
Di S F, Costantini M, DiMartino M (2002). Craters — Executive summary: survey of algorithms for automatic recognition of impact craters. ESA Contract Report, Paris, France
5
Earl J, Chicarro A, Koeberl C, Marchetti P G, Milnes M (2005). Automatic recognition of crater-like structures in terrestrial and planetary images. In: Proceedings of the 36th Lunar and Planetary Science Conference, Abs .1319, March14–18, 2005, Houston, US
6
Head J W Ⅲ, Fassett C I, Kadish S J, Smith D E, Zuber M T, Neumann G A, Mazarico E (2010). Global distribution of large lunar craters: implications for resurfacing and impactor populations. Science , 329(5998): 1504–1507 doi: 10.1126/science.1195050 pmid:20847265
7
Honda R, Iijima Y, Konishi O (2002). Mining of topographic feature from heterogeneous imagery and its application to lunar craters. Lecture Notes in Computer Science , 2281: 395–407
8
Ivanov B A, Neukum G, Bottke W F, Hartmann W K (2002). The Comparison of Size-Distributions of Impact Craters and Asteroids and the Planetary Cratering Rate, Asteroids III. Tucson: University of Arizona Press
9
Kadish S J, Fassett C I, Head J W, Smith D E, Zuber M T, Neumann G A, Mazarico E (2011). A global catalog of large Lunar craters (≥ 20 km) from the Lunar Orbiter Laser Altimeter. In: Proceedings of the 42nd Lunar and Planetary Science Conference, Abs . 1006, March7–11, 2011, Houston, US
10
Kim J R, Muller J P, Stephan S V, Morley J G, Neukum G (2005). Automated crater detection, a new tool for Mars cartography and chronology. Photogrammetric Engineering & Remote Sensing , 71: 1205–1217
11
Li C L, Liu J J, Mu L L, Ren X (2013). The Chang’E-1 Topographic Atlas of the Moon. Beijing: SinoMaps Press (in Chinese)
12
Li C L, Ren X, Liu J J, Zou X D, Mu L L, Wang J Y, Shu R, Zou Y L, Zhang H B, Lü C, Liu J Z, Zuo W, Su Y, Wen W B, Bian W, Wang M, Xu C, Kong D Q, Wang X Q, Wang F, Geng L, Zhang Z B, Zheng L, Zhu X Y, Li J D, Ouyang Z Y (2010). Laser altimetry data of Chang’E-1 and the global lunar DEM model. Science China–Earth Sciences , 53(11): 1582–1593 doi: 10.1007/s11430-010-4020-1
13
Li C, Wang X Y, Luo L, Ji W (2012). Automatic detection of lunar elliptical craters from Apollo Image. Remote Sensing for Land & Resources , 95: 71–75 (in Chinese)
14
Luo L, Wang X Y, Ji W, Li C (2011). Automated detection of lunar craters based on Chang’E-1 CCD data. In: Qiu P H, Xiang Y, Ding Y S, Li D M, Wang L P, eds. Proceedings of the 4th International Congress on Image and Signal Processing . Shanghai: Donghua University
15
Magee M, Chapman C R, Dellenback S W, Enke B, Merline W J, Rigney M P (2003). Automated identification of Martian craters using image processing. In: Proceedings of the 34th Lunar and Planetary Science Conference, Abs . 1756, March17–21, 2003, Houston, US
16
McDowell J (2007). Lunar Nomenclature. Jonathan’s Space Report
17
McEwen A S, Bierhaus E B (2006). The importance of secondary cratering to age constraints on planetary surfaces. Annual Review of Earth and Planetary Sciences , 34(1): 535–567 doi: 10.1146/annurev.earth.34.031405.125018
18
Michael G G (2003). Coordinate registration by automated crater recognition. Planetary and Space Science , 51(9–10): 563–568 doi: 10.1016/S0032-0633(03)00074-6
19
Neukum G, Ivanov B A (1994). Crater size distributions and impact probabilities on earth from lunar terrestrial-planet, and asteroid cratering data, Hazards Due to Comets and Asteroids. Arizona: University of Arizona
20
Neukum G, Ivanov B, Hartmann W K (2001). Cratering records in the inner solar system in relation to the lunar reference system. Space Science Reviews , 96: 55–86 doi: 10.1023/A:1011989004263
21
Neukum G, Konig B, Arkani J H (1975). A study of lunar impact crater size-distributions. Moon , 12: 201–229 doi: 10.1007/BF00577878
22
Ouyang Z Y (2005). Introduction to Lunar Science. Beijing: China Aerospace Press (in Chinese)
23
Ouyang Z Y, Li C L, Zou Y L, Zhang H B, Lü C, Liu J Z, Liu J J, Zuo W, Su Y, Wen W B, Bian W, Zhao B C, Wang J Y, Yang J F, Chang J, Wang H Y, Zhang X H, Wang S J, Wang M, Ren X, Mu L L, Kong D Q, Wang X Q, Wang F, Geng L, Zhang Z B, Zheng L, Zhu X Y, Zheng Y C, Li J D, Zou X D, Xu C, Shi S B, Gao Y F, Gao G N (2010). Primary scientific results of Chang’E-1 Lunar mission. Science China-Earth Sciences , 53(11): 1565–1581 doi: 10.1007/s11430-010-4056-2
24
Rodionova J F, Karlov A A, Skobeleva T P, Konotopskaya E V, Shevchenko V V, Kozubskiy K E, Dekhtyareva K I, Smolyakova T F, Tishik L I, Fedorova E A (1987). Morphological Catalogue of the Craters of the Moon. Moscow: Mosk Gos Univ Press
25
Salamuniccar G, Loncaric S (2010). Method for crater detection fron Martian digital topography data using gradient value/orientation, morphometry, votes-analysis, slip-tuning and calibration. IEEE Trans Geosci Rem Sens , 48(5): 2317–2329 doi: 10.1109/TGRS.2009.2037750
26
Sawabe Y, Matsunaga T, Rokugawa S (2006). Automated detection and classification of lunar craters using multiple approaches. Advances in Space Research , 37(1): 21–27 doi: 10.1016/j.asr.2005.08.022
27
Wan C, Cheng W M, Zhou Z P, Zhao S M, Xia Y (2012). Automatic extraction of lunar impact craters from Chang’E-1 satellite photographs. Sci China Phys Mech Astron , 55(1): 162–169 doi: 10.1007/s11433-011-4584-6
28
Yue Z Y, Liu J Z, Wu G G (2008). Automated detection of lunar craters based on object-oriented approach. Chinese Science Bulletin , 53(23): 3699–3704 doi: 10.1007/s11434-008-0413-3