Mapping paddy rice distribution using multi-temporal Landsat imagery in the Sanjiang Plain, northeast China
Cui JIN1(), Xiangming XIAO1,2, Jinwei DONG1, Yuanwei QIN1, Zongming WANG3
1. Department of Microbiology and Plant Biology, Center for Spatial Analysis, University of Oklahoma, Norman, OK 73019, USA 2. Institute of Biodiversity Sciences, Fudan University, Shanghai 200433, China 3. Northeast Institute of Geography and Agricultural Ecology, Chinese Academy of Sciences, Changchun 130102, China
Information of paddy rice distribution is essential for food production and methane emission calculation. Phenology-based algorithms have been utilized in the mapping of paddy rice fields by identifying the unique flooding and seedling transplanting phases using multi-temporal moderate resolution (500 m to 1 km) images. In this study, we developed simple algorithms to identify paddy rice at a fine resolution at the regional scale using multi-temporal Landsat imagery. Sixteen Landsat images from 2010–2012 were used to generate the 30 m paddy rice map in the Sanjiang Plain, northeast China—one of the major paddy rice cultivation regions in China. Three vegetation indices, Normalized Difference Vegetation Index (NDVI), Enhanced Vegetation Index (EVI), and Land Surface Water Index (LSWI), were used to identify rice fields during the flooding/transplanting and ripening phases. The user and producer accuracies of paddy rice on the resultant Landsat-based paddy rice map were 90% and 94%, respectively. The Landsat-based paddy rice map was an improvement over the paddy rice layer on the National Land Cover Dataset, which was generated through visual interpretation and digitalization on the fine-resolution images. The agricultural census data substantially underreported paddy rice area, raising serious concern about its use for studies on food security.
P Belder, B A M Bouman, R Cabangon, G Lu, E J P Quilang, Y H Li, J H J Spiertz, T P Tuong (2004). Effect of water-saving irrigation on rice yield and water use in typical lowland conditions in Asia. Agric Water Manage, 65(3): 193–210 https://doi.org/10.1016/j.agwat.2003.09.002
2
C M Biradar, X M Xiao (2011). Quantifying the area and spatial distribution of double- and triple-cropping croplands in India with multi-temporal MODIS imagery in 2005. Int J Remote Sens, 32(2): 367–386 https://doi.org/10.1080/01431160903464179
3
W B Cohen, Z G Yang, R Kennedy (2010). Detecting trends in forest disturbance and recovery using yearly Landsat time series: 2. TimeSync- Tools for calibration and validation. Remote Sens Environ, 114(12): 2911–2924 https://doi.org/10.1016/j.rse.2010.07.010
4
R G Congalton (1991). A review of asessing the accuracy of classifications of remotely sensed data. Remote Sens Environ, 37(1): 35–46 https://doi.org/10.1016/0034-4257(91)90048-B
5
P Döll (2002). Impact of climate change and variability on irrigation requirements: a global perspective. Clim Change, 54(3): 269–293 https://doi.org/10.1023/A:1016124032231
6
J W Dong, X M Xiao, B Q Chen, N Torbick, C Jin, G L Zhang, C Biradar (2013). Mapping deciduous rubber plantations through integration of PALSAR and multi-temporal Landsat imagery. Remote Sens Environ, 134: 392–402 https://doi.org/10.1016/j.rse.2013.03.014
7
M C Hansen, P V Potapov, R Moore, M Hancher, S A Turubanova, A Tyukavina, D Thau, S V Stehman, S J Goetz, T R Loveland, A Kommareddy, A Egorov, L Chini, C O Justice, J R G Townshend (2013). High-resolution global maps of 21st-century forest cover change. Science, 342(6160): 850–853 https://doi.org/10.1126/science.1244693
8
C Q Huang, S N Coward, J G Masek, N Thomas, Z L Zhu, J E Vogelmann (2010a). An automated approach for reconstructing recent forest disturbance history using dense Landsat time series stacks. Remote Sens Environ, 114(1): 183–198 https://doi.org/10.1016/j.rse.2009.08.017
9
N Huang, Z M Wang, D W Liu, Z Niu (2010b). Selecting sites for converting farmlands to wetlands in the Sanjiang Plain, Northeast China, based on remote sensing and GIS. Environ Manage, 46(5): 790–800 https://doi.org/10.1007/s00267-010-9547-6
10
A Huete, K Didan, T Miura, E P Rodriguez, X Gao, L G Ferreira (2002). Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens Environ, 83(1−2): 195–213 https://doi.org/10.1016/S0034-4257(02)00096-2
11
A R Huete, H Q Liu, K Batchily, W vanLeeuwen (1997). A comparison of vegetation indices global set of TM images for EOS-MODIS. Remote Sens Environ, 59(3): 440–451 https://doi.org/10.1016/S0034-4257(96)00112-5
12
R E Kennedy, Z G Yang, W B Cohen (2010). Detecting trends in forest disturbance and recovery using yearly Landsat time series: 1. LandTrendr- Temporal segmentation algorithms. Remote Sens Environ, 114(12): 2897–2910 https://doi.org/10.1016/j.rse.2010.07.008
M Laba, S D Smith, S D Degloria (1997). Landsat-based land cover mapping in the lower Yuna River watershed in the Dominican Republic. Int J Remote Sens, 18(14): 3011–3025 https://doi.org/10.1080/014311697217170
15
C S Li, A Mosier, R Wassmann, Z C Cai, X H Zheng, Y Huang, H Tsuruta, J Boonjawat, R Lantin (2004). Modeling greenhouse gas emissions from rice-based production systems: sensitivity and upscaling. Global Biogeochem Cycles, 18(1): GB1043 https://doi.org/10.1029/2003GB002045
16
P Li, Z M Feng, L G Jiang, Y J Liu, X M Xiao (2012). Changes in rice cropping systems in the Poyang Lake Region, China during 2004‒2010. J Geogr Sci, 22(4): 653–668 https://doi.org/10.1007/s11442-012-0954-x
17
J Liu, M Liu, H Tian, D Zhuang, Z Zhang, W Zhang, X Tang, X Deng (2005). Spatial and temporal patterns of China's cropland during 1990−2000: an analysis based on Landsat TM data. Remote Sens Environ, 98(4): 442–456 https://doi.org/10.1016/j.rse.2005.08.012
18
J G Masek, C Q Huang, R Wolfe, W Cohen, F Hall, J Kutler, P Nelson (2008). North American forest disturbance mapped from a decadal Landsat record. Remote Sens Environ, 112(6): 2914–2926 https://doi.org/10.1016/j.rse.2008.02.010
19
K R McCloy, F R Smith, M R Robinson (1987). Monitoring rice areas using LANDSAT MSS data. Int J Remote Sens, 8(5): 741–749 https://doi.org/10.1080/01431168708948685
20
H Müller, P Rufin, P Griffiths, A J Barros Siqueira, P Hostert (2015). Mining dense Landsat time series for separating cropland and pasture in a heterogeneous Brazilian savanna landscape. Remote Sens Environ, 156: 490–499 https://doi.org/10.1016/j.rse.2014.10.014
21
K Okamoto, M Fukuhara (1996). Estimation of paddy field area using the area ratio of categories in each mixel of Landsat TM. Int J Remote Sens, 17(9): 1735–1749 https://doi.org/10.1080/01431169608948736
22
K Okamoto, S Yamakawa, H Kawashima (1998). Estimation of flood damage to rice production in North Korea in 1995. Int J Remote Sens, 19(2): 365–371 https://doi.org/10.1080/014311698216332
23
S Panigrahy, J S Parihar (1992). Role of middle infrared bands of Landsat Thematic Mapper in determining the classification accuracy of rice. Int J Remote Sens, 13(15): 2943–2949 https://doi.org/10.1080/01431169208904092
24
J Qiu, H Tang, S Frolking, S Boles, C Li, X Xiao, J Liu, Y Zhuang, X Qin (2003). Mapping single-, double-, and triple-crop agriculture in China at 0.5°×0.5° by combining county-scale census data with a remote sensing-derived land cover map. Geocarto Int, 18(2): 3–13 https://doi.org/10.1080/10106040308542268
25
P P N Rao, V R Rao (1987). Rice crop identification and area estimation using remotely-sensed data from Indian cropping patterns. Int J Remote Sens, 8(4): 639–650 https://doi.org/10.1080/01431168708948670
26
J A Richards eds (1999). Remote Sensing Digital Image Analysis. Berlin: Springer-Verlag
27
T Sakamoto, P van Cao, N van Nguyen, A Kotera, M Yokozawa (2009a). Agro-ecological interpretation of rice cropping systems in flood-prone areas using MODIS imagery. Photogramm Eng Remote Sensing, 75(4): 413–424 https://doi.org/10.14358/PERS.75.4.413
28
T Sakamoto, N Van Nguyen, H Ohno, N Ishitsuka, M Yokozawa (2006). Spatio−temporal distribution of rice phenology and cropping systems in the Mekong Delta with special reference to the seasonal water flow of the Mekong and Bassac rivers. Remote Sens Environ, 100(1): 1–16 https://doi.org/10.1016/j.rse.2005.09.007
29
T Sakamoto, C Van Phung, A Kotera, K D Van Nguyen, M Yokozawa (2009b). Analysis of rapid expansion of inland aquaculture and triple rice-cropping areas in a coastal area of the Vietnamese Mekong Delta using MODIS time-series imagery. Landsc Urban Plan, 92(1): 34–46 https://doi.org/10.1016/j.landurbplan.2009.02.002
30
A Shalaby, R Tateishi (2007). Remote sensing and GIS for mapping and monitoring land cover and land-use changes in the Northwestern coastal zone of Egypt. Appl Geogr, 27(1): 28–41 https://doi.org/10.1016/j.apgeog.2006.09.004
31
H Sun, J Huang, A R Huete, D Peng, F Zhang (2009). Mapping paddy rice with multi-date moderate-resolution imaging spectroradiometer (MODIS) data in China. Journal of Zhejiang University SCIENCE A, 10: 1509–1522 https://doi.org/10.1631/jzus.A0820536
M D Turner, R G Congalton (1998). Classification of multi-temporal SPOT-XS satellite data for mapping rice fields on a West African floodplain. Int J Remote Sens, 19(1): 21–41 https://doi.org/10.1080/014311698216404
E F Vermote, N ElSaleous, C O Justice, Y J Kaufman, J L Privette, L Remer, J C Roger, D Tanre (1997). Atmospheric correction of visible to middle-infrared EOS-MODIS data over land surfaces: background, operational algorithm and validation. J Geophys Res, D, Atmospheres, 102(D14): 17131–17141 https://doi.org/10.1029/97JD00201
36
X M Xiao, S Boles, S Frolking, C S Li, J Y Babu, W Salas, B Moore III (2006). Mapping paddy rice agriculture in South and Southeast Asia using multi-temporal MODIS images. Remote Sens Environ, 100(1): 95–113 https://doi.org/10.1016/j.rse.2005.10.004
37
X M Xiao, S Boles, J Y Liu, D F Zhuang, S Frolking, C S Li, W Salas, B Moore III (2005). Mapping paddy rice agriculture in southern China using multi-temporal MODIS images. Remote Sens Environ, 95(4): 480–492 https://doi.org/10.1016/j.rse.2004.12.009
38
X M Xiao, Q Y Zhang, B Braswell, S Urbanski, S Boles, S Wofsy, M Berrien, D Ojima (2004). Modeling gross primary production of temperate deciduous broadleaf forest using satellite images and climate data. Remote Sens Environ, 91(2): 256–270 https://doi.org/10.1016/j.rse.2004.03.010
39
J Xie (2013). Classification of wetlands using object-oriented method and multi-season remote sensing images in Sanjiang Plain. Dissertation for Master degree. Available from China knowledge Resource Integrated Database (in Chinese)
40
Y Zhang, Y Y Wang, S L Su, C S Li (2011). Quantifying methane emissions from rice paddies in Northeast China by integrating remote sensing mapping with a biogeochemical model. Biogeosciences, 8(5): 1225–1235 https://doi.org/10.5194/bg-8-1225-2011
41
L Zhong, P Gong, G S Biging (2014). Efficient corn and soybean mapping with temporal extendability: a multi-year experiment using Landsat imagery. Remote Sens Environ, 140: 1–13 https://doi.org/10.1016/j.rse.2013.08.023
42
Z Zhu, C E Woodcock (2012). Object-based cloud and cloud shadow detection in Landsat imagery. Remote Sens Environ, 118: 83–94 https://doi.org/10.1016/j.rse.2011.10.028
43
Z Zhu, C E Woodcock, P Olofsson (2012). Continuous monitoring of forest disturbance using all available Landsat imagery. Remote Sens Environ, 122: 75–91 https://doi.org/10.1016/j.rse.2011.10.030