Please wait a minute...
Frontiers of Earth Science

ISSN 2095-0195

ISSN 2095-0209(Online)

CN 11-5982/P

邮发代号 80-963

2019 Impact Factor: 1.62

Frontiers of Earth Science  2018, Vol. 12 Issue (3): 481-490   https://doi.org/10.1007/s11707-017-0681-9
  本期目录
Quantitative extraction of the bedrock exposure rate based on unmanned aerial vehicle data and Landsat-8 OLI image in a karst environment
Hongyan WANG, Qiangzi LI(), Xin DU, Longcai ZHAO
Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, Beijing 100101, China
 全文: PDF(4557 KB)   HTML
Abstract

In the karst regions of southwest China, rocky desertification is one of the most serious problems in land degradation. The bedrock exposure rate is an important index to assess the degree of rocky desertification in karst regions. Because of the inherent merits of macro-scale, frequency, efficiency, and synthesis, remote sensing is a promising method to monitor and assess karst rocky desertification on a large scale. However, actual measurement of the bedrock exposure rate is difficult and existing remote-sensing methods cannot directly be exploited to extract the bedrock exposure rate owing to the high complexity and heterogeneity of karst environments. Therefore, using unmanned aerial vehicle (UAV) and Landsat-8 Operational Land Imager (OLI) data for Xingren County, Guizhou Province, quantitative extraction of the bedrock exposure rate based on multi-scale remote-sensing data was developed. Firstly, we used an object-oriented method to carry out accurate classification of UAV images. From the results of rock extraction, the bedrock exposure rate was calculated at the 30 m grid scale. Parts of the calculated samples were used as training data; other data were used for model validation. Secondly, in each grid the band reflectivity of Landsat-8 OLI data was extracted and a variety of rock and vegetation indexes (e.g., NDVI and SAVI) were calculated. Finally, a network model was established to extract the bedrock exposure rate. The correlation coefficient of the network model was 0.855, that of the validation model was 0.677 and the root mean square error of the validation model was 0.073. This method is valuable for wide-scale estimation of bedrock exposure rate in karst environments. Using the quantitative inversion model, a distribution map of the bedrock exposure rate in Xingren County was obtained.

Key wordsbedrock exposure rate    quantitative extraction    UAV and Landsat-8 OLI data    karst rocky desertification
收稿日期: 2017-07-06      出版日期: 2018-09-05
Corresponding Author(s): Qiangzi LI   
 引用本文:   
. [J]. Frontiers of Earth Science, 2018, 12(3): 481-490.
Hongyan WANG, Qiangzi LI, Xin DU, Longcai ZHAO. Quantitative extraction of the bedrock exposure rate based on unmanned aerial vehicle data and Landsat-8 OLI image in a karst environment. Front. Earth Sci., 2018, 12(3): 481-490.
 链接本文:  
https://academic.hep.com.cn/fesci/CN/10.1007/s11707-017-0681-9
https://academic.hep.com.cn/fesci/CN/Y2018/V12/I3/481
Fig.1  
Fig.2  
Fig.3  
No. Types Features
1 Band reflection b1—band2 Blue, b2—band3 Green, b3—band4 Red,
b4—band5 NIR, b5—band6 SWIR1, b6—band7 SWIR2,
b7—band9 Cirrus
2 Vegetation index NDVI=(b4–b3)/(b4+b3), SAVI=(b4–b3)/(b4+b3+L)(1+L)
3 Rock index (b7–b5)/(b7+b5), (b7–b6)/(b7+b6), (b6–b2)/(b6+b2),
(b6–b4)/(b6+b4), b7/b6, b6/b5, b5/b4, b5/b3
4 Topographic factors DEM, Slope, Slope aspect
Tab.1  
Bedrock exposed rate Parameter Correlation coefficient R Bedrock exposed rate Parameter Correlation coefficient R
Y b1 0.6446 Y NDVI –0.5413
b2 0.6498 SAVI –0.4504
b3 0.5355 (b6–b2)/(b6+b2) –0.5283
b4 0.4793 (b6–b4)/(b6+b4) –0.4881
b5 0.0196 (b7–b5)/(b7+b5) 0.5287
b6 0.3400 (b7–b6)/(b7+b6) 0.6329
b7 0.5107 b7/b6 0.6385
DEM 0.0546 b6/b5 0.4268
Slope 0.0241 b5/b3 –0.5976
Slope aspect 0.0014 b5/b4 –0.5264
Tab.2  
Fig.4  
Parameter Coefficient Parameter Coefficient
b1 –7.916 Constant –1.812
b2 25.615 (b6–b2)/(b6+b2) 1.153
b4 –2.653 DEM 0.252
b7 –3.12 Slope –0.001
b7/b6 1.148 Slope aspect 0.001
Tab.3  
Parameter Coefficient Parameter Coefficient
Constant –4.97 NDVI 2.856
b1 –6.871 SAVI 2.652
b2 17.119 (b6–b2)/(b6+b2) 0.401
b3 4.949 (b6–b4)/(b6+b4) –2.535
b4 3.224 (b7–b5)/(b7+b5) 4.423
b5 –2.312 (b7–b6)/(b7+b6) 11.357
b6 –4.201 b7/b6 4.97
b7 0.046 b6/b5 –5.277
DEM 0.199 b5/b3 0.57
Slope –0.119 b5/b4 –0.737
Slope aspect –0.054
Tab.4  
Fig.5  
Fig.6  
Fig.7  
Fig.8  
1 Dai Q, Peng X, Yang Z, Zhao L (2017). Runoff and erosion processes on bare slopes in the karst rocky desertification area. Catena, 152: 218–226
https://doi.org/10.1016/j.catena.2017.01.013
2 Geerken R, Ilaiwi M (2004). Assessment of rangeland degradation and development of a strategy for rehabilitation. Remote Sens Environ, 90(4): 490–504
https://doi.org/10.1016/j.rse.2004.01.015
3 Jiang Z, Lian Y, Qin X (2014). Rocky desertification in southwest China: impacts, causes, and restoration. Earth Sci Rev, 132(3): 1–12
https://doi.org/10.1016/j.earscirev.2014.01.005
4 Lagacherie P, Baret F, Feret J B, Netto J M, Robbez-Masson J M (2008). Estimation of soil clay and calcium carbonate using laboratory, field and airborne hyperspectral measurements. Remote Sens Environ, 112(3): 825–835
https://doi.org/10.1016/j.rse.2007.06.014
5 Matthew M W, Adler-Golden S M, Berk A, Richtsmeier S C, Levine R Y, Bernstein L S, Acharya P K, Anderson G P, Felde G W, Hoke M L (2000). Status of atmospheric correction using a MODTRAN4-based algorithm. In: AeroSense 2000. International Society for Optics and Photonics, 199–207
6 Roy D P, Wulder M A, Loveland T R, Woodcock C E, Allen R G, Anderson M C, Helder D, Irons J R, Johnson D M, Kennedy R, Scambos T A, Schaaf C B, Schott J R, Sheng Y, Vermote E F, Belward A S, Bindschadler R, Cohen W B, Zhu Z (2014). Landsat-8: science and product vision for terrestrial global change research. Remote Sens Environ, 145(145): 154–172
https://doi.org/10.1016/j.rse.2014.02.001
7 Runnström M C (2003). Rangeland development of the Mu Us Sandy Land in semiarid China: an analysis using Landsat and NOAA remote sensing data. Land Degrad Dev, 14(2): 189–202
https://doi.org/10.1002/ldr.545
8 Salvati L, Kosmas C, Kairis O, Karavitis C, Acikalin S, Belgacem A, Solé-Benet A, Chaker M, Fassouli V, Gokceoglu C, Gungor H, Hessel R, Khatteli H, Kounalaki A, Laouina A, Ocakoglu F, Ouessar M, Ritsema C, Sghaier M, Sonmez H, Taamallah H, Tezcan L, de Vente J, Kelly C, Colantoni A, Carlucci M (2016). Assessing the effectiveness of sustainable land management policies for combating desertification: a data mining approach. J Environ Manage, 183: 754–762
https://doi.org/10.1016/j.jenvman.2016.09.017
9 Tavares J D P, Baptista I, Ferreira A J D, Amiotte-Suchet P, Coelho C, Gomes S, Amoros R, Reis E A D, Mendes A F, Costa L, Bentub J, Varelaet L (2015). Assessment and mapping the sensitive areas to desertification in an insular sahelian mountain region case study of the ribeira seca watershed, Santiago Island, Cabo Verde. Catena, 128: 214–223
https://doi.org/10.1016/j.catena.2014.10.005
10 Wang S J, Li Y B (2007). Problems and development trends about researches on karst rocky desertification. Advances in Earth Science, 22(6): 573–582 (in Chinese)
11 Xie X, Du P, Xia J, Luo J (2015). Spectral indices for estimating exposed carbonate rock fraction in karst areas of southwest China. IEEE Geosci Remote Sens Lett, 12(9): 1988–1992
https://doi.org/10.1109/LGRS.2015.2441962
12 Xiong Y, Yue Y M, Wang K L (2013). Comparative study of indicator extraction for assessment of karst rocky desertification based on hyperion and ASTER images. Bulletins of Soil and Water Conservation, 33(3): 186–190 (in Chinese)
13 Xu E Q, Zhang H Q (2014). Characterization and interaction of driving factors in karst rocky desertification: a case study from Changshun, China. Solid Earth, 5(2): 1329–1340
https://doi.org/10.5194/se-5-1329-2014
14 Yang Q Y, Jiang Z C, Ma Z L, Luo W Q, Yin H, Yu Q W, Li W J (2012). Spatial variability of karst rock desertification based on geostatistics and remote sensing. Transactions of the Chinese Society of Agricultural Engineering, 28(4): 243–247 (in Chinese)
15 You H (2017). Orienting rocky desertification towards sustainable land use: an advanced remote sensing tool to guide the conservation policy. Land Use Policy, 61: 171–184
https://doi.org/10.1016/j.landusepol.2016.11.024
16 Yue Y, Zhang B, Wang K, Ru L I, Liu B, Zhang M (2011). Remote sensing of indicators for evaluating karst rocky desertification. Journal of Remote Sensing, 15(4): 722–736
17 Yue Y M, Wang K L, Zhang B, Jiao Q J, Liu B, Zhang M Y (2012). Remote sensing of fractional cover of vegetation and exposed bedrock for karst rocky desertification assessment. Procedia Environ Sci, 13(10): 847–853
https://doi.org/10.1016/j.proenv.2012.01.078
18 Zhang M Y, Wang K L, Zhang C H, Chen H S, Liu H Y, Yue Y M, Luffman I, Qi X K (2011). Using the radial basis function network model to assess rocky desertification in northwest Guangxi, China. Environ Earth Sci, 62(1): 69–76
https://doi.org/10.1007/s12665-010-0498-2
19 Zhang X, Shang K, Cen Y, Shuai T, Sun Y L (2014). Estimating ecological indicators of karst rocky desertification by linear spectral unmixing method. Int J Appl Earth Obs Geoinf, 31(9): 86–94
https://doi.org/10.1016/j.jag.2014.03.009
20 Zhang Z, Ouyang Z, Xiao Y, Xiao Y, Xu W (2017). Using principal component analysis and annual seasonal trend analysis to assess karst rocky desertification in southwestern China. Environ Monit Assess, 189(6): 269
https://doi.org/10.1007/s10661-017-5976-5
21 Zong H L, Gan S, Ren P F (2014). Research on extraction of karst rocky desertification information in southeastern Yunnan. Value Engineering, 1(10): 211–214 (in Chinese)
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed