The relationships between urban-rural temperature difference and vegetation in eight cities of the Great Plains
Yaoping CUI1,2, Xiangming XIAO2,3(), Russell B DOUGHTY2, Yaochen QIN1, Sujie LIU1, Nan LI1, Guosong ZHAO4, Jinwei DONG4()
1. Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions, Henan University, Kaifeng 475004, China 2. Department of Microbiology and Plant Biology, Center for Spatial Analysis, University of Oklahoma, Norman, OK 73019, USA 3. Ministry of Education Key Laboratory of Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science, Fudan University, Shanghai 200438, China 4. Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
Interpreting the relationship between urban heat island (UHI) and urban vegetation is a basis for understanding the impacts of underlying surfaces on UHI. The calculation of UHI intensity (UHII) requires observations from paired stations in both urban and rural areas. Due to the limited number of paired meteorological stations, many studies have used remotely sensed land surface temperature, but these time-series land surface temperature data are often heavily affected by cloud cover and other factors. These factors, together with the algorithm for inversion of land surface temperature, lead to accuracy problems in detecting the UHII, especially in cities with weak UHII. Based on meteorological observations from the Oklahoma Mesonet, a world-class network, we quantified the UHII and trends in eight cities of the Great Plains, USA, where data from at least one pair of urban and rural meteorological stations were available. We examined the changes and variability in urban temperature, UHII, vegetation condition (as measured by enhanced vegetation index, EVI), and evapotranspiration (ET). We found that both UHI and urban cold islands (UCI) occurred among the eight cities during 2000–2014 (as measured by impervious surface area). Unlike what is generally considered, UHII in only three cities significantly decreased as EVI and ET increased (p<0.1), indicating that the UHI or UCI cannot be completely explained simply from the perspective of the underlying surface. Increased vegetative cover (signaled by EVI) can increase ET, and thereby effectively mitigate the UHI. Each study station clearly showed that the underlying surface or vegetation affects urban-rural temperature, and that these factors should be considered during analysis of the UHI effect over time.
. [J]. Frontiers of Earth Science, 2019, 13(2): 290-302.
Yaoping CUI, Xiangming XIAO, Russell B DOUGHTY, Yaochen QIN, Sujie LIU, Nan LI, Guosong ZHAO, Jinwei DONG. The relationships between urban-rural temperature difference and vegetation in eight cities of the Great Plains. Front. Earth Sci., 2019, 13(2): 290-302.
D Argüeso, J P Evans, L Fita, K J Bormann (2014). Temperature response to future urbanization and climate change. Clim Dyn, 42(7 – 8): 2183–2199 https://doi.org/10.1007/s00382-013-1789-6
J B Basara, H G Basara, B G Illston, K C Crawford (2010). The impact of the urban heat island during an intense heat wave in Oklahoma City. Adv Meteorol, 2010: 1–10 https://doi.org/10.1155/2010/230365
4
M Bokaie, M K Zarkesh, P D Arasteh, A Hosseini (2016). Assessment of Urban Heat Island based on the relationship between land surface temperature and Land Use/Land Cover in Tehran. Sustainable Cities and Society, 23: 94–104 https://doi.org/10.1016/j.scs.2016.03.009
P Brohan, J J Kennedy, I Harris, S F Tett, P D Jones (2006). Uncertainty estimates in regional and global observed temperature changes: a new data set from 1850. J Geophys Res Atmos, 111(D12 D12106): D12106 https://doi.org/10.1029/2005JD006548
7
T J Chandler (1976). Urban climatology and its relevance to urban design. WMO Tech, Note 149, WMO, Geneva
8
G Churkina (2016). The role of urbanization in the global carbon cycle. Frontiers in Ecology and Evolution, 3, doi: 10.3389/fevo.2015.00144
9
N Clinton, P Gong (2013). MODIS detected surface urban heat islands and sinks: global locations and controls. Remote Sens Environ, 134: 294–304 https://doi.org/10.1016/j.rse.2013.03.008
10
Y Cui, J Jiu, X Zhang, Y Hu, J Wang (2012a). Modeling urban heat energy balance and temperature differences of different underlying surfaces. Geogr Res, 31(7): 1257–1268
11
Y Cui, J Liu, Y Hu, J Wang, W Kuang (2012b). Modeling the radiation balance of different urban underlying surfaces. Chin Sci Bull, 57(9): 1046–1054 https://doi.org/10.1007/s11434-011-4933-x
12
Y Cui, J Liu, X Zhang, Y Qin, J Dong (2015). Modeling urban sprawl effects on regional warming in Beijing-Tianjing-Tangshan urban agglomeration. Acta Ecol Sin, 35(4): 993–1003
13
Y Cui, X Xiao, Y Zhang, J Dong, Y Qin, R Doughty, G Zhang, J Wang, X Wu, Y Qin, S Zhou, J Joiner, B Moore III (2017). Temporal consistency between gross primary production and solar-induced chlorophyll fluorescence in the ten most populous megacity areas over years. Sci Rep, 7(1): 14963 https://doi.org/10.1038/s41598-017-13783-5
14
Y Cui, X Xu, J Dong, Y Qin (2016). Influence of urbanization factors on surface urban heat island intensity: a comparison of countries at different developmental phases. Sustainability, 8(8): 706 https://doi.org/10.3390/su8080706
15
J Dong, X Xiao, P Wagle, G Zhang, Y Zhou, C Jin, M S Torn, T P Meyers, A E Suyker, J Wang, H Yan, C Biradar, B Moore III (2015). Comparison of four EVI-based models for estimating gross primary production of maize and soybean croplands and tallgrass prairie under severe drought. Remote Sens Environ, 162: 154–168 https://doi.org/10.1016/j.rse.2015.02.022
N B Grimm, S H Faeth, N E Golubiewski, C L Redman, J Wu, X Bai, J M Briggs (2008). Global change and the ecology of cities. Science, 319(5864): 756–760 https://doi.org/10.1126/science.1150195
20
G Guo, Z Wu, R Xiao, Y Chen, X Liu, X Zhang (2015). Impacts of urban biophysical composition on land surface temperature in urban heat island clusters. Landsc Urban Plan, 135: 1–10 https://doi.org/10.1016/j.landurbplan.2014.11.007
21
S Haashemi, Q Weng, A Darvishi, S K Alavipanah (2016). Seasonal variations of the surface urban heat island in a semi-arid city. Remote Sens, 8(4): 352 https://doi.org/10.3390/rs8040352
22
B G Heusinkveld, G J Steeneveld, van L W A Hove, C M J Jacobs, A A M Holtslag (2014). Spatial variability of the Rotterdam urban heat island as influenced by urban land use. J Geophys Res Atmos, 119(2): 677–692 https://doi.org/10.1002/2012JD019399
23
L Hu, N A Brunsell (2013). The impact of temporal aggregation of land surface temperature data for surface urban heat island (SUHI) monitoring. Remote Sens Environ, 134: 162–174 https://doi.org/10.1016/j.rse.2013.02.022
24
X Hu, W Zhou, Y Qian, W Yu (2017). Urban expansion and local land-cover change both significantly contribute to urban warming, but their relative importance changes over time. Landsc Ecol, 32(4): 763–780
25
L R Hutyra, R Duren, K R Gurney, N Grimm, E A Kort, E Larson, G Shrestha (2014). Urbanization and the carbon cycle: current capabilities and research outlook from the natural sciences perspective. Earths Futur, 2(10): 473–495 https://doi.org/10.1002/2014EF000255
26
M L Imhoff, L Bounoua, R DeFries, W T Lawrence, D Stutzer, C J Tucker, T Ricketts (2004). The consequences of urban land transformation on net primary productivity in the United States. Remote Sens Environ, 89(4): 434–443 https://doi.org/10.1016/j.rse.2003.10.015
27
M L Imhoff, P Zhang, R E Wolfe, L Bounoua (2010). Remote sensing of the urban heat island effect across biomes in the continental USA. Remote Sens Environ, 114(3): 504–513 https://doi.org/10.1016/j.rse.2009.10.008
28
G D Jenerette, S L Harlan, A Buyantuev, W L Stefanov, J Declet-Barreto, B L Ruddell, S W Myint, S Kaplan, X Li (2016). Micro-scale urban surface temperatures are related to land-cover features and residential heat related health impacts in Phoenix, AZ, USA. Landsc Ecol, 31(4): 745–760 https://doi.org/10.1007/s10980-015-0284-3
29
P Jones, D Lister, Q Li (2008). Urbanization effects in large-scale temperature records, with an emphasis on China. J Geophys Res Atmos, 113(D16): D16122 https://doi.org/10.1029/2008JD009916
30
E Kalnay, M Cai (2003). Impact of urbanization and land-use change on climate. Nature, 423(6939): 528–531 https://doi.org/10.1038/nature01675
31
Y Kamarianakis, X Li, B L Turner II, A J Brazel (2017). On the effects of landscape configuration on summer diurnal temperatures in urban residential areas: application in Phoenix, AZ. Front Earth Sci, https://doi.org/10.1007/s11707-017-0678-4
32
M Kottek, J Grieser, C Beck, B Rudolf, F Rubel (2006). World map of the Köppen-Geiger climate classification updated. Meteorol Z, 15(3): 259–263 https://doi.org/10.1127/0941-2948/2006/0130
33
H Kusaka, F Kimura (2004). Coupling a single-layer urban canopy model with a simple atmospheric model: impact on urban heat island simulation for an idealized case. J Meteorol Soc Jpn, 82(1): 67–80 https://doi.org/10.2151/jmsj.82.67
34
J Li, C Song, L Cao, F Zhu, X Meng, J Wu (2011). Impacts of landscape structure on surface urban heat islands: a case study of Shanghai, China. Remote Sens Environ, 115(12): 3249–3263 https://doi.org/10.1016/j.rse.2011.07.008
35
X Li, Y Zhou, G R Asrar, M Imhoff, X Li (2017). The surface urban heat island response to urban expansion: a panel analysis for the conterminous united states. Sci Total Environ, 605 – 606: 426–435 https://doi.org/10.1016/j.scitotenv.2017.06.229
K Liu, X Gu, T Yu, Z Gao, W Gao, C Liu (2011). Relationships between urban heat island effect and land use and land cover change around urban weather stations. Climatic and Environmental Research, 16(6): 707–716 (in Chinese)
38
K Liu, H Su, X Li, W Wang, L Yang, H Liang (2016). Quantifying spatial–temporal pattern of urban heat island in Beijing: an improved assessment using land surface temperature (LST) time series observations from LANDSAT, MODIS, and Chinese new satellite GaoFen-1. IEEE J Sel Top Appl Earth Obs Remote Sens, 9(5): 2028–2042 https://doi.org/10.1109/JSTARS.2015.2513598
39
Z Liu, C He, Y Zhou, J Wu (2014). How much of the world’s land has been urbanized, really? A hierarchical framework for avoiding confusion. Landsc Ecol, 29(5): 763–771 https://doi.org/10.1007/s10980-014-0034-y
40
X Luo, Y Peng (2016). Scale effects of the relationships between urban heat islands and impact factors based on a geographically-weighted regression model. Remote Sens, 8(9): 760 https://doi.org/10.3390/rs8090760
41
B H Lynn, T N Carlson, C Rosenzweig, R Goldberg, L Druyan, J Cox, S Gaffin, L Parshall, K Civerolo (2009). A modification to the NOAH LSM to simulate heat mitigation strategies in the New York City metropolitan area. J Appl Meteorol Climatol, 48(2): 199–216 https://doi.org/10.1175/2008JAMC1774.1
42
W Mao, X Wang, J Cai, M Zhu (2016). Multi-dimensional histogram-based information capacity analysis of urban heat island effect using Landsat 8 data. Remote Sens Lett, 7(10): 925–934 https://doi.org/10.1080/2150704X.2016.1182656
43
R A McPherson, C A Fiebrich, K C Crawford, J R Kilby, D L Grimsley, J E Martinez, J B Basara, B G Illston, D A Morris, K A Kloesel, A D Melvin, H Shrivastava, J M Wolfinbarger, J P Bostic, D B Demko, R L Elliott, S J Stadler, J D Carlson, A J Sutherland (2007). Statewide monitoring of the mesoscale environment: a technical update on the Oklahoma Mesonet. J Atmos Ocean Technol, 24(3): 301–321 https://doi.org/10.1175/JTECH1976.1
44
D J Mildrexler, M Zhao, S W Running (2011). A global comparison between station air temperatures and MODIS land surface temperatures reveals the cooling role of forests. J Geophys Res Biogeosci, 116(G03025) https://doi.org/10.1029/2010JG001486
45
Q Mu, F A Heinsch, M Zhao, S W Running (2007). Development of a global evapotranspiration algorithm based on MODIS and global meteorology data. Remote Sens Environ, 111(4): 519–536 https://doi.org/10.1016/j.rse.2007.04.015
T R Oke (2004). Initial guidance to obtain representative meteorological observations at urban sites. IOM Rep. 81, WMO/TD-No. 1250, 1–47.
48
D E Parker (2010). Urban heat island effects on estimates of observed climate change. Wiley Interdiscip Rev Clim Chang, 1(1): 123–133 https://doi.org/10.1002/wcc.21
49
S Peng, S Piao, P Ciais, P Friedlingstein, C Ottle, F M Bréon, H Nan, L Zhou, R B Myneni (2012). Surface urban heat island across 419 global big cities. Environ Sci Technol, 46(2): 696–703 https://doi.org/10.1021/es2030438
S Piao, S Sitch, P Ciais, P Friedlingstein, P Peylin, X Wang, A Ahlström, A Anav, J G Canadell, N Cong, C Huntingford, M Jung, S Levis, P E Levy, J Li, X Lin, M R Lomas, M Lu, Y Luo, Y Ma, R B Myneni, B Poulter, Z Z Sun, T Wang, N Viovy, S Zaehle, N Zeng (2013). Evaluation of terrestrial carbon cycle models for their response to climate variability and to CO2 trends. Glob Change Biol, 19(7): 2117–2132 https://doi.org/10.1111/gcb.12187
Y Qian, W Zhou, W Li, L Han (2015). Understanding the dynamic of greenspace in the urbanized area of Beijing based on high resolution satellite images. Urban Forestry & Urban Greening, 14(1): 39–47 https://doi.org/10.1016/j.ufug.2014.11.006
54
G Qiu, H Li, Q Zhang, W Chen, X Liang, X Li (2013). Effects of evapotranspiration on mitigation of urban temperature by vegetation and urban agriculture. J Integr Agric, 12(8): 1307–1315 https://doi.org/10.1016/S2095-3119(13)60543-2
55
G Ren, Y Zhou, Z Chu, J Zhou, A Zhang, J Guo, X Liu (2008). Urbanization effects on observed surface air temperature trends in North China. J Clim, 21(6): 1333–1348 https://doi.org/10.1175/2007JCLI1348.1
56
K K Roman, T O’Brien, J B Alvey, O Woo (2016). Simulating the effects of cool roof and PCM (phase change materials) based roof to mitigate UHI (urban heat island) in prominent US cities. Energy, 96: 103–117 https://doi.org/10.1016/j.energy.2015.11.082
57
H Schmid, H Cleugh, C Grimmond, T Oke (1991). Spatial variability of energy fluxes in suburban terrain. Boundary-Layer Meteorol, 54(3): 249–276 https://doi.org/10.1007/BF00183956
58
G Steeneveld, S Koopmans, B Heusinkveld, L Van Hove, A Holtslag (2011). Quantifying urban heat island effects and human comfort for cities of variable size and urban morphology in the Netherlands. J Geophys Res Atmos, 116(D20): D20129 https://doi.org/10.1029/2011JD015988
59
I D Stewart (2011). A systematic review and scientific critique of methodology in modern urban heat island literature. Int J Climatol, 31(2): 200–217 https://doi.org/10.1002/joc.2141
J Walker, K de Beurs, G Henebry (2015). Land surface phenology along urban to rural gradients in the US Great Plains. Remote Sens Environ, 165: 42–52 https://doi.org/10.1016/j.rse.2015.04.019
62
Z Wan (2008). New refinements and validation of the MODIS land-surface temperature/emissivity products. Remote Sens Environ, 112(1): 59–74 https://doi.org/10.1016/j.rse.2006.06.026
63
M Watts, S Schultz, T Bailey, E Ast, B Russell, E Morris, K, S L Vines (2015). Climate action in megacities 3.0: Networking works, there is no global solution without local action. London: C40 Cities Climate Leadership Group
64
Q Weng, D Lu, J Schubring (2004). Estimation of land surface temperature–vegetation abundance relationship for urban heat island studies. Remote Sens Environ, 89(4): 467–483 https://doi.org/10.1016/j.rse.2003.11.005
65
N H Wong, Y Chen, C L Ong, A Sia (2003). Investigation of thermal benefits of rooftop garden in the tropical environment. Build Environ, 38(2): 261–270 https://doi.org/10.1016/S0360-1323(02)00066-5
66
X Yang, Y Li, Z Luo, P W Chan (2017). The urban cool island phenomenon in a high- rise high- density city and its mechanisms. Int J Climatol, 37(2): 890–904 https://doi.org/10.1002/joc.4747
67
R Yao, L Wang, X Huang, Y Niu, Y Chen, Z Niu (2018). The influence of different data and method on estimating the surface urban heat island intensity. Ecol Indic, 89: 45–55 https://doi.org/10.1016/j.ecolind.2018.01.044
68
X Zhang, M A Friedl, C B Schaaf, A H Strahler (2004a). Climate controls on vegetation phenological patterns in northern mid- and high latitudes inferred from MODIS data. Glob Change Biol, 10(7): 1133–1145 https://doi.org/10.1111/j.1529-8817.2003.00784.x
69
X Zhang, M A Friedl, C B Schaaf, A H Strahler, A Schneider (2004b). The footprint of urban climates on vegetation phenology. Geophys Res Lett, 31(12): L12209 https://doi.org/10.1029/2004GL020137
70
G Zhao, J Dong, Y Cui, J Liu, J Zhai, T He, Y Zhou, X Xiao (2018). Evapotranspiration-dominated biogeophysical warming effect of urbanization in the Beijing-Tianjin-Hebei region, China. Clim Dyn, https://doi.org/10.1007/s00382-018-4189-0
71
L Zhao, X Lee, R B Smith, K Oleson (2014). Strong contributions of local background climate to urban heat islands. Nature, 511(7508): 216–219 https://doi.org/10.1038/nature13462
72
S Zhao, S Liu, D Zhou (2016). Prevalent vegetation growth enhancement in urban environment. Proc Natl Acad Sci USA, 113(22): 6313–6318 https://doi.org/10.1073/pnas.1602312113
73
B Zhou, D Rybski, J Kropp (2013). On the statistics of urban heat island intensity. Geophys Res Lett, 40(20): 5486–5491 https://doi.org/10.1002/2013GL057320
74
D Zhou, L Zhang, L Hao, G Sun, Y Liu, C Zhu (2016). Spatiotemporal trends of urban heat island effect along the urban development intensity gradient in China. Sci Total Environ, 544: 617–626 https://doi.org/10.1016/j.scitotenv.2015.11.168