Please wait a minute...
Frontiers of Earth Science

ISSN 2095-0195

ISSN 2095-0209(Online)

CN 11-5982/P

邮发代号 80-963

2019 Impact Factor: 1.62

Frontiers of Earth Science  2021, Vol. 15 Issue (1): 12-22   https://doi.org/10.1007/s11707-020-0815-3
  本期目录
Ecological sustainability assessment of the carbon footprint in Fujian Province, southeast China
Jingyu ZENG1,2, Rongrong ZHANG1,2, Jia TANG1,2, Jingchen LIANG1,2, Jinghan LI5, Yue ZENG1,2, Yefan LI1,2, Qing ZHANG4, Wei SHUI1,2, Qianfeng WANG1,2,3()
1. Fujian Provincial Key Laboratory of Remote Sensing of Soil Erosion and Disaster Protection/College of Environment and Resource, Fuzhou University, Fuzhou 350116, China
2. Key Laboratory of Spatial Data Mining & Information Sharing (Ministry of Education of China), Fuzhou 350116, China
3. Joint Global Change Research Institute, Pacific Northwest National Laboratory and University of Maryland, College Park, MD 20740, USA
4. Key Laboratory of Digital Earth Science, Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, Beijing 100094, China
5. College of Geography and Tourism, Anhui Normal University, Wuhu 241000, China
 全文: PDF(6041 KB)  
Abstract

China’s rapid economic development has initiated the deterioration of its ecological environment, posing a threat to the sustainable development of human society. As a result, an assessment of regional sustainability is critical. This paper researches China’s most forested province, Fujian Province, as the study area. We proposed a grid-based approach to assess the regional carbon footprint in accordance with the Intergovernmental Panel on Climate Change’s (IPCC) carbon emission guidelines. Our method of assessment also introduced carbon emission indicators with our improved and published Net Primary Production (NPP) based on process simulation. The carbon footprint in Fujian Province from 2005–2017 was calculated and examined from a spatiotemporal perspective. Ecological indicators were used in the sustainability assessment. The research draws the following conclusions: 1) the carbon footprint in the eastern regions of Fujian Province was higher due to rapid economic development; 2) that of the western regions was lower; 3) an uptrend in the carbon footprint of Fujian Province was observed. All five ecological indicators based on carbon emissions and economic and social data showed an ecologically unsustainable trend over 13 years in the research area due to unsustainable economic development. Therefore, it is urgent to balance the relationship between economic development and environmental protection. Our research provides scientific references for achieving ecological civilization and sustainability in a similar region.

Key wordsFujian Province    carbon emission    carbon footprint    ecological index    sustainable development
收稿日期: 2019-11-27      出版日期: 2021-04-19
Corresponding Author(s): Qianfeng WANG   
 引用本文:   
. [J]. Frontiers of Earth Science, 2021, 15(1): 12-22.
Jingyu ZENG, Rongrong ZHANG, Jia TANG, Jingchen LIANG, Jinghan LI, Yue ZENG, Yefan LI, Qing ZHANG, Wei SHUI, Qianfeng WANG. Ecological sustainability assessment of the carbon footprint in Fujian Province, southeast China. Front. Earth Sci., 2021, 15(1): 12-22.
 链接本文:  
https://academic.hep.com.cn/fesci/CN/10.1007/s11707-020-0815-3
https://academic.hep.com.cn/fesci/CN/Y2021/V15/I1/12
1 O P Bahl, T L Dhami (2007). Surface energetics, interface and mechanical properties of carbon/carbon composites. J Catal, 248(2): 226–234
https://doi.org/10.1016/j.jcat.2007.02.016
2 S Benjaafar, Y Li, M Daskin (2013). Carbon footprint and the management of supply chains: insights from simple models. IEEE Trans Autom Sci Eng, 10(1): 99–116
https://doi.org/10.1109/TASE.2012.2203304
3 M Berners-Lee, D C Howard, J Moss, K Kaivanto, W A Scott (2011). Greenhouse gas footprinting for small businesses—the use of input-output data. Sci Total Environ, 409(5): 883–891
https://doi.org/10.1016/j.scitotenv.2010.11.023 pmid: 21183205
4 M A Brown, F Southworth, A Sarzynski (2009). The geography of metropolitan carbon footprints. Policy Soc, 27(4): 285–304
https://doi.org/10.1016/j.polsoc.2009.01.001
5 D Browne, B O’Regan, R Moles (2009). Use of carbon footprinting to explore alternative household waste policy scenarios in an Irish city-region. Resour Conserv Recycling, 54(2): 113–122
https://doi.org/10.1016/j.resconrec.2009.07.003
6 A Burnham, M Q Wang, Y Wu (2006). Development and applications of GREET 2.7–The Transportation Vehicle-CycleModel. Energy
https://doi.org/10.2172/898530
7 J G Canadell, C Le Quéré, M R Raupach, C B Field, E T Buitenhuis, P Ciais, T J Conway, N P Gillett, R A Houghton, G Marland (2007). Contributions to accelerating atmospheric CO2 growth from economic activity, carbon intensity, and efficiency of natural sinks. Proc Natl Acad Sci USA, 104(47): 18866–18870
https://doi.org/10.1073/pnas.0702737104 pmid: 17962418
8 B Cao, J Lin, S Cui (2010). Scenario analysis of reduction potentials of energy demand and GHG emissions based on LEAP model in Xiamen City. Acta Ecol Sin, 30(12): 3358–3367.
9 S Chacko, C Ravichandran, S M Vairavel, J Mathew (2019). Employing measurers of spatial distribution of carbon storage in Periyar Tiger Reserve, Southern Western Ghats, India. Journal of Geovisualization and Spatial Analysis, 3(1): 1
https://doi.org/10.1007/s41651-018-0024-8
10 Z Chen, Z Wang, Y Sun (2015). Spatial changing pattern of carbon dioxide emissions per capita and club convergence in China. J Arid Land Resour Enviro, 29(4): 24–29
https://doi.org/10.13448/j.cnki.jalre.2015.111
11 A Cole (2009). More treatment in surgeries and at home will help cut NHS carbon footprint. BMJ, (338): b345
https://doi.org/10.1136/bmj.b345
12 R Crabtree, C Potter, R Mullen, J Sheldon, S Huang, J Harmsen, A Rodman, C Jean (2009). A modeling and spatio-temporal analysis framework for monitoring environmental change using NPP as an ecosystem indicator. Remote Sens Environ, 113(7): 1486–1496
https://doi.org/10.1016/j.rse.2008.12.014
13 H Danish, S T Hassan, M A Baloch, N Mahmood, J W Zhang (2019). Linking economic growth and ecological footprint through human capital and biocapacity. Sustain Cities Soc, 47: 10
https://doi.org/10.1016/j.scs.2019.101516
14 J Ding, J Yang (2017). Study on the ecological pressure of carbon footprint of energe in Fujian Province. Science Technology and Industry, 17(4): 16–20
https://doi.org/10.3969/j.issn.1671-1807.2017.04.004
15 A Druckman, T Jackson (2009). The carbon footprint of UK households 1990–2004: a socio-economically disaggregated, quasi-multi-regional input–output model. Ecol Econ, 68(7): 2066–2077
https://doi.org/10.1016/j.ecolecon.2009.01.013
16 S Fabricant (1952). The Structure of American Economy, 1919–1939: An Empirical Application of Equilibrium Analysis. 2nd ed. New York: Oxford University Press
17 K Fang (2014). Multidimensional assessment of national environmental sustainability based on footprint family and planetary boundaries. Ecology and Environmental Sciences, 23(11): 1868–1875
https://doi.org/CNKI:SUN:TRYJ.0.2014-11-022
18 C B Field, J T Randerson, C M Malmström (1995). Global net primary production: combining ecology and remote sensing. Remote Sens Environ, 51(1): 74–88
https://doi.org/10.1016/0034-4257(94)00066-V
19 M Finkbeiner (2009). Carbon footprinting—opportunities and threats. Int J Life Cycle Assess, 14(2): 91–94
https://doi.org/10.1007/s11367-009-0064-x
20 Y Geng, H Dong, F Xi, Z Liu (2010). A review of the research on carbon footprint responding to climate change. China Population·Resources and Environment, 20(10): 6–12
21 D Giurco, J G Petrie (2007). Strategies for reducing the carbon footprint of copper: new technologies, more recycling or demand management? Miner Eng, 20(9): 842–853
https://doi.org/10.1016/j.mineng.2007.04.014
22 M Gocic, S Trajkovic (2013). Analysis of changes in meteorological variables using Mann-Kendall and Sen’s slope estimator statistical tests in Serbia. Global Planet Change, 100: 172–182
https://doi.org/10.1016/j.gloplacha.2012.10.014
23 C L Gu, Z B Tan, W Liu, T F Yu, Q Han, H Liu, Y X Dai, Z L Liu, S Q Zheng (2009). A study on climate change, carbon emissions and lowcarbon city planning. Urban Planning Forum, 22(3): 38–45
https://doi.org/10.1007/978-3-540-85168-4_52
24 G Hammond (2007). Time to give due weight to the ‘carbon footprint’ issue. Nature, 445(7125): 256
https://doi.org/10.1038/445256b pmid: 17230169
25 E G Hertwich, G P Peters (2009). Carbon footprint of nations: a global, trade-linked analysis. Environ Sci Technol, 43(16): 6414–6420
https://doi.org/10.1021/es803496a pmid: 19746745
26 T Hillman, A Ramaswami (2010). Greenhouse gas emission footprints and energy use benchmarks for eight US cities. Environ Sci Technol, 44(6): 1902–1910
https://doi.org/10.1021/es9024194 pmid: 20136120
27 S Hu, R Xiang, J Dong, Z Qi (2016). The sustainable development of vegetable production system from the carbon footprint perspective in Hubei Province. Research of Agricultural Modernization, 37(3): 460–467
https://doi.org/10.13872/j.1000-0275.2016.0029
28 Y A Huang, M Lenzen, C L Weber, J Murray, H S Matthews (2009). The role of input-output analysis for the screening of corporate carbon footprints. Econ Syst Res, 21(3): 217–242
https://doi.org/10.1080/09535310903541348
29 M Hulme (2017). Intergovernmental Panel on Climate Change (IPCC). New York: John Wiley & Sons
30 D Iribarren, A Hospido, M T Moreira, G Feijoo (2010). Carbon footprint of canned mussels from a business-to-consumer approach: a starting point for mussel processors and policy makers. Environ Sci Policy, 13(6): 509–521
https://doi.org/10.1016/j.envsci.2010.05.003
31 E Johnson (2008). Disagreement over carbon footprints: a comparison of electric and LPG forklifts. Energy Policy, 36(4): 1569–1573
https://doi.org/10.1016/j.enpol.2008.01.014
32 E Johnson (2009). Charcoal versus LPG grilling: a carbon-footprint comparison. Environ Impact Assess Rev, 29(6): 370–378
https://doi.org/10.1016/j.eiar.2009.02.004
33 M G Kendall (1990). Rank correlation methods. Br J Psychol, 25(1): 86–91
https://doi.org/10.1111/j.2044-8295.1934.tb00727.x
34 C Kennedy, J Steinberger, B Gasson, Y Hansen, T Hillman, M Havránek, D Pataki, A Phdungsilp, A Ramaswami, G V Mendez (2010). Methodology for inventorying greenhouse gas emissions from global cities. Energy Policy, 38(9): 4828–4837
https://doi.org/10.1016/j.enpol.2009.08.050
35 T Kenny, N F Gray (2009). Comparative performance of six carbon footprint models for use in Ireland. Environ Impact Assess Rev, 29(1): 1–6
https://doi.org/10.1016/j.eiar.2008.06.001
36 B Kim, R Neff (2009). Measurement and communication of greenhouse gas emissions from US food consumption via carbon calculators. Ecol Econ, 69(1): 186–196
https://doi.org/10.1016/j.ecolecon.2009.08.017
37 R Lal (2004). Carbon emission from farm operations. Environ Int, 30(7): 981–990
https://doi.org/10.1016/j.envint.2004.03.005 pmid: 15196846
38 J Li, Y Cui, J Liu, W Shi, Y Qin (2013). Estimation and analysis of net primary productivity by integrating MODIS remote sensing data with a light use efficiency model. Ecol Modell, 252(1): 3–10
https://doi.org/10.1016/j.ecolmodel.2012.11.026
39 H B Mann (1945). Nonparametric tests against trend. Econometrica, 13(3): 245–259
https://doi.org/10.2307/1907187
40 V Nourani, A D Mehr, N Azad (2018). Trend analysis of hydroclimatological variables in Urmia lake basin using hybrid wavelet Mann-Kendall and Sen tests. Environ Earth Sci, 77(5): 207
https://doi.org/10.1007/s12665-018-7390-x
41 H Pathak, N Jain, A Bhatia, J Patel, P K Aggarwal (2010). Carbon footprints of Indian food items. Agric Ecosyst Environ, 139(1–2): 66–73
https://doi.org/10.1016/j.agee.2010.07.002
42 C Y Qi, Y S Dong (2004). Emission of greenhouse gases from energy field and mitigation countermeasures in China. Scientia Geographica Sinica, 24(5): 528–534
https://doi.org/10.1117/12.528072
43 L Qiang, Z Xing, K J Jiang, W K Han (2008). Energy and carbon embodied in main exporting goods of China. China Industrial Economics, 22(8): 46–55
https://doi.org/10.3724/SP.J.1005.2008.01003
44 D Qin, T Stocker (2014). Highlights of the IPCC working group I fifth assessment report. Advances in Climate Change Research, 10(1): 1–6
https://doi.org/CNKI:SUN:QHBH.0.2014-01-001
45 R Quadrelli, S Peterson (2007). The energy-climate challenge: recent trends in CO emissions from fuel combustion. Energy Policy, 35(11): 5938–5952
https://doi.org/10.1016/j.enpol.2007.07.001
46 A Ramaswami, T Hillman, B Janson, M Reiner, G Thomas (2008). A demand-centered, hybrid life-cycle methodology for city-scale greenhouse gas inventories. Environ Sci Technol, 42(17): 6455–6461
https://doi.org/10.1021/es702992q pmid: 18800514
47 W E Rees (1992). Ecological footprints and appropriated carrying capacity: what urban economics leaves out. Focus, 6(2): 121–130
https://doi.org/10.1177/095624789200400212
48 P Rong, Q Yang, Y Qin, X Li, T Zhang, S Zhang (2016). Energy-related carbon emission security at the provincial level in China. Progress in Geography, 35(4): 487–495
https://doi.org/10.18306/dlkxjz.2016.04.009
49 S W Running, R R Nemani, F A Heinsch, M S Zhao, M Reeves, H Hashimoto (2004). A continuous satellite-derived measure of global terrestrial primary production. Bioscience, 54(6): 547–560
https://doi.org/10.1641/0006-3568(2004)054[0547:ACSMOG]2.0.CO;2
50 M Shi, Y Wang, Z Zhang (2012). Regional carbon footprint and interregional transfer of carbon emissions in China. Acta Geogr Sin, 67(10): 1327–1338
https://doi.org/10.11821/xb201210004
51 S Solomon, G K Plattner, R Knutti, P Friedlingstein (2009). Irreversible climate change due to carbon dioxide emissions. Proc Natl Acad Sci USA, 106(6): 1704–1709
https://doi.org/10.1073/pnas.0812721106 pmid: 19179281
52 F Tosunoglu, O Kisi (2017). Trend analysis of maximum hydrologic drought variables using Mann-Kendall and Sen’s innovative trend method. River Res Appl, 33(4): 597–610
https://doi.org/10.1002/rra.3106
53 M Wackernagel, L Onisto, P Bello, A Callejas Linares, I Susana López Falfán, J Méndez García, A Isabel Suárez Guerrero, M Guadalupe Suárez Guerrero (1999). National natural capital accounting with the ecological footprint concept. Ecol Econ, 29(3): 375–390
https://doi.org/10.1016/S0921-8009(98)90063-5
54 M Wackernagel, W Rees (1997). Our ecological footprint. Green Teach (Tor), 45: 5–14
55 C J Wang, X L Zhang, F Wang, J Lei, L Zhang (2015a). Decomposition of energy-related carbon emissions in Xinjiang and relative mitigation policy recommendations. Front Earth Sci, 9(1): 65–76
https://doi.org/10.1007/s11707-014-0442-y
56 Q F Wang, P J Shi, T J Lei, G P Geng, J H Liu, X Y Mo, X H Li, H K Zhou, J J Wu (2015b). The alleviating trend of drought in the Huang-Huai-Hai Plain of China based on the daily SPEI. Int J Climatol, 35(13): 3760–3769
https://doi.org/10.1002/joc.4244
57 Q F Wang, J Tang, J Y Zeng, S Leng, W Shui (2019). Regional detectiong of multiple change points and workable application for precipitation by maximum likelihood approach. Arab J Geosci, 12(23): 745 ‬
https://doi.org/10.1007?/s12517-?019-4790-5
58 Q F Wang, J J Wu, T J Lei, B He, Z T Wu, M Liu, X Y Mo, G P Geng, X H Li, H K Zhou, D C Liu (2014). Temporal-spatial characteristics of severe drought events and their impact on agriculture on a global scale. Quat Int, 349: 10–21
https://doi.org/10.1016/j.quaint.2014.06.021
59 Q F Wang, J J Wu, X H Li, H K Zhou, J H Yang, G P Geng, X L An, L Z Liu, Z H Tang (2017). A comprehensively quantitative method of evaluating the impact of drought on crop yield using daily multi-scale SPEI and crop growth process model. Int J Biometeorol, 61(4): 685–699
https://doi.org/10.1007/s00484-016-1246-4 pmid: 27888338
60 Q F Wang, J Tang, J Y Zeng, Y P Qu, Q Zhang, W Shui, W L Wang, L Yi, S Leng (2018a). Spatial-temporal evolution of vegetation evapotranspiration in Hebei Province, China. J Integr Agric, 17(9): 2107–2117
https://doi.org/10.1016/S2095-3119(17)61900-2
61 Q F Wang, J Y Zeng, S Leng, B X Fan, J Tang, C Jiang, Y Huang, Q Zhang, Y P Qu, W L Wang, W Shui (2018b). The effects of air temperature and precipitation on the net primary productivity in China during the early 21st century. Front Earth Sci, 12(4): 818–833
https://doi.org/10.1007/s11707-018-0697-9
62 W Wang, J Lin, S Cui, T Lin (2010). An overview of carbon footprint analysis. Environ Sci Technol, 33(7): 71–78
63 C L Weber, H S Matthews (2008). Quantifying the global and distributional aspects of American household carbon footprint. Ecol Econ, 66(2–3): 379–391
https://doi.org/10.1016/j.ecolecon.2007.09.021
64 B Welch, M Iffert, M Skyllas-Kazacos (2008). Applying fundamental data to reduce the carbon dioxide footprint of aluminum smelters. JOM, 60(11): 17–24
https://doi.org/10.1007/s11837-008-0141-9
65 B Xie, Z Qin, Y Wang, Q Chang (2014). Spatial and temporal variation in terrestrial net primary productivity on Chinese Loess Plateau and its influential factors. Agr Eng and sustainability, 30(11): 244–253
https://doi.org/10.3969/j.issn.1002-6819.2014.11.030
66 S C Xie, C H Chen, L Li, C Huang, Z Cheng, P Dai, J Lu (2009). The energy related carbon dioxide emission inventory and carbon flow chart in Shanghai City. China Environmental Science, 29(11): 1215–1220.
https://doi.org/CNKI:SUN:ZGHJ.0.2009-11-022
67 X Xiu, Q Chen (2015). Analysis on correlation between economic development and carbon footprint in Fujian Province. Journal of Fujian Agriculture and Forestry University (Philosophy and Social Sciences), 18(6): 40–46
https://doi.org/10.13322/j.cnki.fjsk.2015.06.009
68 G Q Xu, Z Y Liu, Z H Jiang (2006). Decomposition model and empirical study of carbon emissions for China, 1995–2004. China Population Resources and Environment, 16(6): 158–161
69 R Zhang, X I Jianchao, G E Quansheng (2015). Life cycle of tourist carbon footprint(TCF-LCA): a “low carbon tourism” measurement method. Journal of Arid Land Resources and Environment, 29(6): 169–175
https://doi.org/10.13448/j.cnki.jalre.2015.206
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed