Please wait a minute...
Frontiers of Earth Science

ISSN 2095-0195

ISSN 2095-0209(Online)

CN 11-5982/P

邮发代号 80-963

2019 Impact Factor: 1.62

Frontiers of Earth Science  2022, Vol. 16 Issue (1): 90-98   https://doi.org/10.1007/s11707-021-0887-8
  本期目录
High-resolution sea surface wind speeds of Super Typhoon Lekima (2019) retrieved by Gaofen-3 SAR
He FANG1,2, William PERRIE4, Gaofeng FAN1, Zhengquan LI1, Juzhen CAI1, Yue HE1, Jingsong YANG2, Tao XIE5, Xuesong ZHU3()
1. Zhejiang Climate Centre, Hangzhou 310017, China
2. State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China
3. Shanghai Typhoon Institute, and Key Laboratory of Numerical Modeling for Tropical Cyclone of China Meteorological Administration, Shanghai 200030, China
4. Fisheries & Oceans Canada, Bedford Institute of Oceanography, Dartmouth B2Y4A2, Canada
5. School of Remote Sensing and Geomatics Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China
 全文: PDF(1596 KB)   HTML
Abstract

Gaofen-3 (GF-3) is the first Chinese spaceborne multi-polarization synthetic aperture radar (SAR) instrument at C-band (5.43 GHz). In this paper, we use data collected from GF-3 to observe Super Typhoon Lekima (2019) in the East China Sea. Using a VH-polarized wide ScanSAR (WSC) image, ocean surface wind speeds at 100m horizontal resolution are obtained at 21:56:59 UTC on 8 August 2019, with the maximum wind speed, 38.9 m·s−1. Validating the SAR-retrieved winds with buoy-measured wind speeds, we find that the root mean square error (RMSE) is 1.86 m·s−1, and correlation coefficient, 0.92. This suggests that wind speeds retrieved from GF-3 SAR are reliable. Both the European Centre for Medium-Range Weather Forecasts (ECMWF) fine grid operational forecast products with spatial resolution, and China Global/Regional Assimilation and Prediction Enhance System (GRAPES) have good performances on surface wind prediction under weak wind speed condition (<24 m·s−1), but underestimate the maximum wind speed when the storm is intensified as a severe tropical storm (>24 m·s−1). With respect to SAR-retrieved wind speeds, the RMSEs are 5.24 m·s−1 for ECMWF and 5.17 m·s−1 for GRAPES, with biases of 4.16 m·s−1 for ECMWF and 3.84 m·s−1 for GRAPES during Super Typhoon Lekima (2019).

Key wordssynthetic aperture radar    wind speed    numerical weather predication (NWP)    typhoon
收稿日期: 2020-09-17      出版日期: 2022-03-04
Corresponding Author(s): Xuesong ZHU   
 引用本文:   
. [J]. Frontiers of Earth Science, 2022, 16(1): 90-98.
He FANG, William PERRIE, Gaofeng FAN, Zhengquan LI, Juzhen CAI, Yue HE, Jingsong YANG, Tao XIE, Xuesong ZHU. High-resolution sea surface wind speeds of Super Typhoon Lekima (2019) retrieved by Gaofen-3 SAR. Front. Earth Sci., 2022, 16(1): 90-98.
 链接本文:  
https://academic.hep.com.cn/fesci/CN/10.1007/s11707-021-0887-8
https://academic.hep.com.cn/fesci/CN/Y2022/V16/I1/90
Fig.1  
Fig.2  
Fig.3  
Data subset Acquired time (UTC) Spatial resolution Grid cells in SAR
GF-3 SAR 21:56:59 1km×1km /
Buoys 21:30 / 12
GRAPES 21:00:00 0.25º×0.25 278
ECMWF 0.125 º×0.125 º 1028
Tab.1  
Fig.4  
Fig.5  
Buoy ID Buoy wind SAR wind Bias Buoy ID Buoy wind SAR wind Bias
B1 13.2 15.84 2.64 B7 17.5 19.01 1.51
B2 20.11 17.23 2.88 B8 21.3 21.91 0.61
B3 22.45 21.21 1.24 B9 23.9 22.58 1.32
B4 20.61 18.26 2.35 B10 17.7 19.51 1.81
B5 16.7 18.51 1.81 B11 17.3 18.95 1.65
B6 6.64 8.95 2.31 B12 16.7 17.15 0.45
Tab.2  
Fig.6  
Fig.7  
1 R B Alley, K A Emanuel, F Zhang (2019). Advances in weather prediction. Science, 363(6425): 342–344
https://doi.org/10.1126/science.aav7274 pmid: 30679358
2 S Buchanan, V Misra, A Bhardwaj (2018). Integrated kinetic energy of Atlantic tropical cyclones in a global ocean surface wind analysis. Int J Climatol, 38(6): 2651–2661
https://doi.org/10.1002/joc.5450
3 J P Cangialosi, T B Kimberlain, J L Beven II, M Demaria (2015). The validity of dvorak intensity change constraints for tropical cyclones. Weather Forecast, 30(4): 1010–1015
https://doi.org/10.1175/WAF-D-15-0028.1
4 K H Chou, C C Wu, S Z Lin (2013). Assessment of the ASCAT wind error characteristics by global dropwindsonde observations. J Geophys Res Atmos, 118(16): 9011–9021
https://doi.org/10.1002/jgrd.50724
5 M Deng, G Zhang, R Zhao, S Li, J Li (2017). Improvement of gaofen-3 absolute positioning accuracy based on cross-calibration. Sensors (Basel), 17(12): 2903
https://doi.org/10.3390/s17122903 pmid: 29240675
6 H Fang, T Xie, W Perrie, G Zhang, J Yang, Y He (2018). Comparison of C-band quad-polarization synthetic aperture radar wind retrieval models. Remote Sens, 10(9): 1448
https://doi.org/10.3390/rs10091448
7 Y Gao, C Guan, J Sun, L Xie (2019). A wind speed retrieval model for Sentinel-1A EW mode cross-polarization images. Remote Sens, 11(2): 153
https://doi.org/10.3390/rs11020153
8 P A Hwang, A Stoffelen, G J van Zadelhoff, W Perrie, B Zhang, H Li, H Shen (2015). Cross-polarization geophysical model function for C-band radar backscattering from the ocean surface and wind speed retrieval. J Geophys Res Oceans, 120(2): 893–909
https://doi.org/10.1002/2014JC010439
9 X Huang, X Peng, J Fei, X Cheng, J Ding, D Yu (2021). Evaluation and error analysis of official tropical cyclone intensity forecasts during 2005–2018 for the western North Pacific. J Meteorol Soc Jpn, 99
https://doi.org/10.2151/jmsj.2021-008
10 Q Jin, X Fan, J Liu, Z Xue, H Jian (2020). Estimating tropical cyclone intensity in the South China Sea using the XGBoost Model and FengYun Satellite images. Atmosphere, 11(4): 423
https://doi.org/10.3390/atmos11040423
11 A S Komarov, V Zabeline, D G Barber (2014). Ocean surface wind speed retrieval from C-band SAR images without wind direction input. IEEE Trans Geosci Remote Sens, 52(2): 980–990
https://doi.org/10.1109/TGRS.2013.2246171
12 G C Leite, D M Ushizima, F N S Medeiros, G G de Lima (2010). Wavelet analysis for wind fields estimation. Sensors (Basel), 10(6): 5994–6016
https://doi.org/10.3390/s100605994 pmid: 22219699
13 M Lin, X Ye, X Yuan (2017). The first quantitative joint observation of typhoon by Chinese GF-3 SAR and HY-2A microwave scatterometer. Acta Oceanol Sin, 36(11): 1–3
https://doi.org/10.1007/s13131-017-1133-9
14 L Magnusson, J R Bidlot, M Bonavita, A R Brown, P A Browne, G De Chiara, M Dahoui, S T K Lang, T McNally, K S Mogensen, F Pappenberger, F Prates, F Rabier, D S Richardson, F Vitart, S Malardel (2019). ECMWF activities for improved hurricane forecasts. Bull Am Meteorol Soc, 100(3): 445–458
https://doi.org/10.1175/BAMS-D-18-0044.1
15 M T Montgomery, R K Smith (2017). Recent developments in the fluid dynamics of tropical cyclones. Annual Review of Fluid Mechanics, 49: 541–574
16 K J Mueller, M DeMaria, J Knaff, J P Kossin, T H Vonder Haar (2006). Objective estimation of tropical cyclone wind structure from infrared satellite data. Weather Forecast, 21(6): 990–1005
https://doi.org/10.1175/WAF955.1
17 L Ren, J Yang, A A Mouche, H Wang, G Zheng, J Wang, H Zhang, X Lou, P Chen (2019). Assessments of ocean wind retrieval schemes used for Chinese gaofen-3 synthetic aperture radar co-polarized data. IEEE Trans Geosci Remote Sens, 57(9): 7075–7085
https://doi.org/10.1109/TGRS.2019.2911325
18 S J Sangster, C W Landsea (2020). Constraints in dvorak wind speed estimates: how quickly can hurricanes intensify? Weather Forecast, 35(4): 1235–1241
https://doi.org/10.1175/WAF-D-19-0186.1
19 W Shao, Y Ding, J Li, S Gou, F Nunziata, X Yuan, L Zhao (2019). Wave retrieval under typhoon conditions using a machine learning method applied to Gaofen-3 SAR imagery. Can J Rem Sens, 45(6): 723–732
https://doi.org/10.1080/07038992.2019.1683444
20 W Shao, X Yuan, Y Sheng, J Sun, W Zhou, Q Zhang (2018). Development of wind speed retrieval from cross-polarization Chinese gaofen-3 synthetic aperture radar in typhoons. Sensors (Basel), 18(2): 412–427
https://doi.org/10.3390/s18020412 pmid: 29385068
21 H Shen, W Perrie, Y He (2016). Evaluation of hurricane wind speed retrieval from cross-dual-pol SAR. Int J Remote Sens, 37(3): 599–614
https://doi.org/10.1080/01431161.2015.1134845
22 H Shen, W Perrie, Y He, G Liu (2014). Wind speed retrieval from VH dual-polarization RADARSAT-2 SAR Images. IEEE Trans Geosci Remote Sens, 52(9): 5820–5826
https://doi.org/10.1109/TGRS.2013.2293143
23 A Stoffelen, J A Verspeek, J Vogelzang, A Verhoef (2017). The CMOD7 geophysical model function for ASCAT and ERS wind retrievals. IEEE J Sel Top Appl Earth Obs Remote Sens, 10(5): 2123–2134
https://doi.org/10.1109/JSTARS.2017.2681806
24 E W Uhlhorn, B W Klotz, T Vukicevic, P D Reasor, R F Rogers (2014). Observed hurricane wind speed asymmetries and relationships to motion and environmental shear. Mon Weather Rev, 142(3): 1290–1311
https://doi.org/10.1175/MWR-D-13-00249.1
25 H Wang, J Yang, A Mouche, W Shao, J Zhu, L Ren, C Xie (2017). GF-3 SAR oceanwind retrieval: the first view and preliminary assessment. Remote Sens, 9(7): 694–706
https://doi.org/10.3390/rs9070694
26 G J van Zadelhoff, A Stoffelen, P W Vachon, J Wolfe, J Horstmann, M Belmonte Rivas (2014). Retrieving hurricane wind speeds using cross-polarization C-band measurements. Atmos Meas Tech, 7(2): 437–449
https://doi.org/10.5194/amt-7-437-2014
27 B Zhang, W Perrie, J A Zhang, E W Uhlhorn, Y He (2014). High-resolution hurricane vector winds from C-band dual-polarization SAR observations. J Atmos Ocean Technol, 31(2): 272–286
https://doi.org/10.1175/JTECH-D-13-00006.1
28 G Zhang, X Li, W Perrie, P A Hwang, B Zhang, X Yang (2017a). A hurricane wind speed retrieval model for C-band RADARSAT-2 cross-polarization ScanSAR images. IEEE Trans Geosci Remote Sens, 55(8): 4766–4774
https://doi.org/10.1109/TGRS.2017.2699622
29 G Zhang, W Perrie, X Li, J A Zhang (2017b). A hurricane morphology and sea surface wind vector estimation model based on C-band cross-polarization SAR imagery. IEEE Trans Geosci Remote Sens, 55(3): 1743–1751
https://doi.org/10.1109/TGRS.2016.2631663
30 T Zhang, X M Li, Q Feng, Y Ren, Y Shi (2019). Retrieval of sea surface wind speeds from Gaofen-3 full polarimetric data. Remote Sens, 11(7): 813
https://doi.org/10.3390/rs11070813
31 R Zhong, S Xu, F Huang, X Wu (2020). Reasons for the weakening of tropical depressions in the South China Sea. Mon Weather Rev, 148(8): 3453–3469
https://doi.org/10.1175/MWR-D-19-0364.1
32 X S Zhu, H Yu, Z C Mao, M Xu, J G Tan (2016). Satellite-based analysis on the concentric eyewall replacement cycles of super Typhoon Muifa (1109). J Trop Meteorol, 22: 330–340
33 X S Zhu, H Yu (2019).Environmental influences on the intensity and configuration of tropical cyclone concentric eyewalls in the western North Pacific. J Meteor Soc Japan, 97: 153–173
https://doi.org/10.2151/jmsj
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed