Please wait a minute...
Frontiers of Earth Science

ISSN 2095-0195

ISSN 2095-0209(Online)

CN 11-5982/P

邮发代号 80-963

2019 Impact Factor: 1.62

Frontiers of Earth Science  2024, Vol. 18 Issue (3): 598-610   https://doi.org/10.1007/s11707-022-0978-1
  本期目录
Storage, pattern and driving factors of soil organic carbon in the desert rangelands of northern Xinjiang, north-west China
Huixia LIU1, Zongjiu SUN1,2,3(), Yuxuan CUI1, Yiqiang DONG1,2,3, Panxing HE1, Shazhou AN1,2,3, Xianhua ZHANG1,2,3
1. College of Grassland Sciences, Xinjiang Agricultural University, Urumqi 830052, China
2. Ministry of Education Key Laboratory for Western Arid Region Grassland Resources and Ecology, Urumqi 830052, China
3. Xinjiang Key Laboratory of Grassland Resources and Ecology, Urumqi 830052, China
 全文: PDF(8371 KB)   HTML
Abstract

Soil organic carbon (SOC) is a critical variable used to determine the carbon balance. However, large uncertainties arise when predicting the SOC stock in soil profiles in Chinese grasslands, especially on desert rangelands. Recent studies have shown that desert ecosystems may be potential carbon sinks under global climate change. Because of the high spatial heterogeneity, time-consuming sampling methods, and difficult acquisition process, the relationships the SOC storage and distribution have with driving factors in desert rangelands remain poorly understood. Here, we investigated and developed an SOC database from 3162 soil samples (collected at depths of 0−10 cm and 10−20 cm) across 527 sites, as well as the climate conditions, vegetation types, and edaphic factors associated with the sampling sites in the desert rangelands of northern Xinjiang, north-west China. This study aims to determine the SOC magnitude and drivers in desert rangelands. Our findings demonstrate that the SOC and SOC density (SOCD) were 0.05−37.13 g·kg−1 and 19.23−9740.62 g·m−2, respectively, with average values of 6.81 ± 5.31 g·kg−1 and 1670.38 ± 1202.52 g·m−2, respectively. The spatial distributions of SOC and SOCD all showed gradually decreasing trends from south-west to north-east. High-SOC areas were mainly distributed in the piedmont lowlands of the Ili valley, while low-SOC regions were mainly concentrated in the north-west area of Altay. The redundancy analysis results revealed that all environmental factors accounted for approximately 37.6% of the spatial variability in SOC; climate factors, vegetation factors, and soil properties explained 15.0%, 1.7%, and 12.3%, respectively. The structural equation model (SEM) further indicated that evapotranspiration, average annual precipitation, and the SWC were the dominant factors affecting SOC accumulation, mainly through direct effects, although indirect effects were also delivered by the vegetation factors. Taken together, the results obtained herein updated the SOC data pool available for desert rangelands and clarified the main driving factors of SOC variations. This study provided supporting data for the sustainable use and management of desert rangelands and the global ecosystem carbon budget.

Key wordssoil organic carbon    desert rangeland    SEM analysis    driving factors    Xinjiang Uygur Autonomous Region of China
收稿日期: 2021-08-03      出版日期: 2024-09-29
Corresponding Author(s): Zongjiu SUN   
 引用本文:   
. [J]. Frontiers of Earth Science, 2024, 18(3): 598-610.
Huixia LIU, Zongjiu SUN, Yuxuan CUI, Yiqiang DONG, Panxing HE, Shazhou AN, Xianhua ZHANG. Storage, pattern and driving factors of soil organic carbon in the desert rangelands of northern Xinjiang, north-west China. Front. Earth Sci., 2024, 18(3): 598-610.
 链接本文:  
https://academic.hep.com.cn/fesci/CN/10.1007/s11707-022-0978-1
https://academic.hep.com.cn/fesci/CN/Y2024/V18/I3/598
Fig.1  
Soil layerVariableMeanMed.SD.Ske.Kur.Min.Max.CV/%
0?10 cmSOC (g·kg?1)7.626.185.831.583.570.1937.1376.50
SOCD (g·m?2)931.57774.97679.491.916.843.235749.6572.94
10?20 cmSOC (g·kg?1)6.134.974.831.936.000.0534.5578.87
SOCD (g·m?2)743.49609.26550.151.865.663.563990.9774.00
0?20 cmSOC (g·kg?1)6.815.495.311.744.630.0537.1377.96
SOCD (g·m?2)1670.381390.891202.521.866.2019.239740.6271.99
Tab.1  
Fig.2  
Fig.3  
Fig.4  
Fig.5  
Fig.6  
1 S, Acharya G, Charan N, Singh R B Srivastava (2012). Soil organic carbon sequestration of cold desert Ladakh.Range Manag Agrofor, 33(1): 79–82
2 E, Alidoust M, Afyuni M A, Hajabbasi M R Mosaddeghi (2018). Soil carbon sequestration potential as affected by soil physical and climatic factors under different land uses in a semiarid region.Catena, 171: 62–71
https://doi.org/10.1016/j.catena.2018.07.005
3 T Artiningsih (2006). Ligninolytic activity of ganoderma strains on different carbon sources.Biodiversitas (Surak), 7(4): 307–311
https://doi.org/10.13057/biodiv/d070402
4 S D Bao (2000). Agrochemical Analysis of Soil (3rd Edition). Beijing: China Agricultural Publishing House
5 M A, Bradford W R, Wieder G B, Bonan N, Fierer P A, Raymond T W Crowther (2016). Managing uncertainty in soil carbon feedbacks to climate change.Nat Clim Chang, 6(8): 751–758
https://doi.org/10.1038/nclimate3071
6 M, Brecht D G, Miralles H, Lievens Der Schalie R, Van Jeu R A M, De D, Fernández-Prieto H E, Beck W A, Dorigo N E Verhoest (2017). GLEAM v3: satellite-based land evaporation and root-zone soil moisture.Geosci Model Dev, 10(5): 1903–1925
https://doi.org/10.5194/gmd-10-1903-2017
7 T B, Bruun D E, Elberling M E, Neergaard J Magid (2015). Organic carbon dynamics in different soil types after conversion after conversion of forest to agriculture.Land Degrad Dev, 26(3): 272–283
https://doi.org/10.1002/ldr.2205
8 de Anta R, Calvo E, Luís M, Febrero-Bande J, Galiñanes F, Macías R, Ortíz F Casás (2020). Soil organic carbon in peninsular Spain: influence of environmental factors and spatial distribution.Geoderma, 370: 114365
https://doi.org/10.1016/j.geoderma.2020.114365
9 L F, Chen Z B, He J, Du J J, Yang X Zhu (2016). Patterns and environmental controls of soil organic carbon and total nitrogen in alpine ecosystems of northwestern China.Catena, 137: 37–43
https://doi.org/10.1016/j.catena.2015.08.017
10 S T, Chen J W, Zou Z H, Hu Y Y Lu (2020). Temporal and spatial variations in the mean residence time of soil organic carbon and their relationship with climatic, soil and vegetation drivers.Global Planet Change, 195: 103359
https://doi.org/10.1016/j.gloplacha.2020.103359
11 S, Chen W, Wang W, Xu Y, Wang H, Wan D, Chen Z, Tang X, Tang G, Zhou Z, Xie D, Zhou Z, Shangguan J, Huang J S, He Y, Wang J, Sheng L, Tang X, Li M, Dong Y, Wu Q, Wang Z, Wang J, Wu F S 3rd, Chapin Y Bai (2018a). Plant diversity enhances productivity and soil carbon storage.Proc Natl Acad Sci USA, 115(16): 4027–4032
https://doi.org/10.1073/pnas.1700298114
12 X, Chen L, Gong Y M, Li J J Zhao (2018b). Spatial variation of soil organic carbon and stable isotopes in different soil types of a typical oasis.Environ Sci, 39(10): 4735–4743
https://doi.org/10.13227/j.hjkx.201801290
13 S M, Crotty M D Bertness (2015). Positive interactions expand habitat use and the realized niches of sympatric species.Ecology, 96(10): 2575–2582
https://doi.org/10.1890/15-0240.1
14 M, Delgado-Baquerizo D J, Eldridge F T, Maestre S B, Karunaratne P, Trivedi P B, Reich B K Singh (2017). Climate legacies drive global soil carbon stocks in terrestrial ecosystems.Sci Adv, 3(4): e1602008
https://doi.org/10.1126/sciadv.1602008
15 N, Eisenhauer M A, Bowker J B, Grace J R Powell (2015). From patterns to causal understanding: structural equation modeling (SEM) in soil ecology.Pedobiologia (Jena), 58(2–3): 65–72
https://doi.org/10.1016/j.pedobi.2015.03.002
16 R D, Evans A, Koyama D L, Sonderegger T N, Charlet B A, Newingham L F, Fenstermaker B, Harlow V L, Jin K, Ogle S D, Smith R S Nowak (2014). Greater ecosystem carbon in the Mojave Desert after ten years exposure to elevated CO2.Nat Clim Chang, 4(5): 394–397
https://doi.org/10.1038/nclimate2184
17 J Y, Fang X P, Wang Z H, Shen Z Y, Tang J S, He D, Yu Y, Jiang Z H, Wang C Y, Zheng J L, Zhu Z D Guo (2007). Methods and protocols for plant community inventory.Biodiv Sci, 17(6): 533–548
https://doi.org/10.3724/sp.j.1003.2009.09253
18 D J, Germano G B, Rathbun L R, Saslaw B L, Cypher E A, Cypher L M Vredenburgh (2011). The San Joaquin Desert of California: ecologically misunderstood and overlooked.Nat Areas J, 31(2): 138–147
https://doi.org/10.3375/043.031.0206
19 R, Ghimire P, Bista S Machado (2019). Long-term management effects and temperature sensitivity of soil organic carbon in grassland and agricultural soils.Sci Rep, 9(1): 12151
https://doi.org/10.1038/s41598-019-48237-7
20 S, Guan N, An N, Zong Y, He P, Shi J, Zhang N P He (2018). Climate warming impacts on soil organic carbon fractions and aggregate stability in a Tibetan alpine meadow.Soil Biol Biochem, 116: 224–236
https://doi.org/10.1016/j.soilbio.2017.10.011
21 D, Hooper J, Coughlan M R Mullen (2008). Structural equation modelling: guidelines for determining model fit.Electron J Bus Res Methods, 6(1): 141–146
https://doi.org/10.21427/d7cf7
22 P L, Hu S J, Liu Y Y, Ye W, Zhang K L, Wang Y R Su (2018). Effects of environmental factors on soil organic carbon under natural or managed vegetation restoration.Land Degrad Dev, 29(3): 387–397
https://doi.org/10.1002/ldr.2876
23 J P, Huang H P, Yu X D, Guan G Y, Wang R X Guo (2015). Accelerated dryland expansion under climate change.Nat Clim Chang, 6(2): 166–171
https://doi.org/10.1038/nclimate2837
24 H, Huo J, Zhang A, Ma J Huo (2018). Progress and prospects of soil carbon cycle in arid desert.J Northwest Forestry U, 33(1): 98–104
25 P, Illiger G, Schmidt I, Walde S, Hese A E, Kudrjavzev N, Kurepina A, Mizgirev E, Stephan A, Bondarovich M Fruehauf (2019). Estimation of regional soil organic carbon stocks merging classified land-use information with detailed soil data.Sci Total Enviro, 695: 133755
https://doi.org/10.1016/j.scitotenv.2019.133755
26 A K, Knapp J M, Briggs S L, Collins S R, Archer M S, Bret-Harte B E, Ewers D P, Peters D R, Young G R, Shaver E, Pendall M B Cleary (2008). Shrub encroachment in north American rangelands: shifts in growth form dominance rapidly alters control of ecosystem carbon inputs.Glob Change Biol, 14(3): 615–623
https://doi.org/10.1111/j.1365-2486.2007.01512.x
27 G, Kušlienė J, Rasmussen Y, Kuzyakov J Eriksen (2014). Medium-term response of microbial community to rhizodeposits of white clover and ryegrass and tracing of active processes induced by 13C and 15N labelled exudates.Soil Biol Biochem, 76: 22–33
https://doi.org/10.1016/j.soilbio.2014.05.003
28 R Lal (2004). Soil carbon sequestration impacts on global climate change and food security.Science, 304(5677): 1623–1627
https://doi.org/10.1126/science.1097396
29 R Lal (2019). Carbon cycling in global drylands.Curr Clim Change Rep, 5(3): 221–232
https://doi.org/10.1007/s40641-019-00132-z
30 M, Lange N, Eisenhauer C A, Sierra H, Bessler C, Engels R I, Griffiths P G, Mellado-Vázquez A A, Malik J, Roy S, Scheu S, Steinbeiss B C, Thomson S E, Trumbore G Gleixner (2015). Plant diversity increases soil microbial activity and soil carbon storage.Nat Commun, 6(1): 6707
https://doi.org/10.1038/ncomms7707
31 T, Lei J, Feng C, Zheng S, Li Y, Wang Z, Wu J, Lu G, Kan C, Shao J, Jia H Cheng (2020). Review of drought impacts on carbon cycling in rangeland ecosystems.Front Earth Sci, 14(2): 462–478
https://doi.org/10.1007/s11707-019-0778-4
32 C, Li Y, Li L Tang (2010). Soil organic carbon stock and carbon efflux in deep soils of desert and oasis.Environ Earth Sci, 60(3): 549–557
https://doi.org/10.1007/s12665-009-0195-1
33 D, Li M A Shao (2014). Soil organic carbon and influencing factors in different landscapes in an arid region of northwestern China.Catena, 116: 95–104
https://doi.org/10.1016/j.catena.2013.12.014
34 K R, Li S Q, Wang M K Cao (2003). Vegetation and soil carbon storage in China.Sci China Ser D Earth Sci, 47(1): 49–57
35 X, Li J Xiao (2019). A Global, 0.05-degree product of solar-induced chlorophyll fluorescence derived from OCO-2, MODIS, and reanalysis data.Remote Sens (Basel), 11(5): 517
https://doi.org/10.3390/rs11050517
36 Y H, Li M L, Zhao F D Li (2018b). Soil respiration in typical plant communities in the wetland surrounding the high-salinity Ebinur Lake.Front Earth Sci, 12(3): 611–624
https://doi.org/10.1007/s11707-018-0687-y
37 Y Q, Li X Y, Wang Y Y, Niu J, Lian Y Q, Luo Y P, Chen X W, Gong H, Yang P D Yu (2018a). Spatial distribution of soil organic carbon in the ecologically fragile Horqin Rangeland of northeastern China.Geoderma, 325: 102–109
https://doi.org/10.1016/j.geoderma.2018.03.032
38 Y, Li Y G, Wang R A, Houghton L S Tang (2015). Hidden carbon sink beneath desert.Geophys Res Lett, 42(14): 5880–5887
https://doi.org/10.1002/2015GL064222
39 R T, Liu H L, Zhao X Y, Zhao F Zhu (2013). Effects of cultivation and grazing exclusion on the soil macro-faunal community of semiarid sandy rangelands in northern China.Arid Land Res Manage, 27(4): 377–393
https://doi.org/10.1080/15324982.2013.787470
40 W W, Ma G, Li J H, Wu G R, Xu J Q Wu (2020). Response of soil labile organic carbon fractions and carbon-cycle enzyme activities to vegetation degradation in a wet meadow on the Qinghai–Tibet Plateau.Geoderma, 377: 114565
https://doi.org/10.1016/j.geoderma.2020.114565
41 X, Ma Z Z, Jin Y J, Wang J Q Lei (2021). Effects of shelter forests on soil organic carbon of irrigated soils in the Taklimakan desert.Sustainability (Basel), 13(8): 4535
https://doi.org/10.3390/su13084535
42 B H, McArdle M J Anderson (2001). Fitting multivariate models to community data: a comment on distance–based redundancy analysis.Ecology, 82(1): 290–297
https://doi.org/10.1890/0012-9658(2001)082[0290:FMMTCD]2.0.CO;2
43 R, Michalet R W, Brooker L A, Cavieres Z, Kikvidze C J, Lortie F I, Pugnaire A, Valiente-Banuet R M Callaway (2006). Do biotic interactions shape both sides of the humped-back model of species richness in plant communities?.Ecol Lett, 9(7): 767–773
https://doi.org/10.1111/j.1461-0248.2006.00935.x
44 C, Nicolás T, Martin-Bertelsen D, Floudas J, Bentzer M, Smits T, Johansson C, Troein P, Persson A Tunlid (2019). The soil organic matter decomposition mechanisms in ectomycorrhizal fungi are tuned for liberating soil organic nitrogen.ISME J, 13(4): 977–988
https://doi.org/10.1038/s41396-018-0331-6
45 M D, Petrie S L, Collins A M, Swann P L, Ford M E Litvak (2015). Grassland to shrubland state transitions enhance carbon sequestration in the northern Chihuahuan Desert.Glob Change Biol, 21(3): 1226–1235
https://doi.org/10.1111/gcb.12743
46 J P, Scharlemann E V, Tanner R, Hiederer V Kapos (2014). Global soil carbon: understanding and managing the largest terrestrial carbon pool.Carbon Manag, 5(1): 81–91
https://doi.org/10.4155/cmt.13.77
47 C H, Sequeira S A, Wills C A, Seybold L T West (2014). Predicting soil bulk density for incomplete databases.Geoderma, 213: 64–73
https://doi.org/10.1016/j.geoderma.2013.07.013
48 Y F, Song Y J, Lu Z X, Guo X M, Xu T J, Liu J, Wang W J, Wang W G, Hao J Wang (2019). Variations in soil water content and evapotranspiration in relation to precipitation pulses within desert steppe in Inner Mongolia, China.Water, 11(2): 198
https://doi.org/10.3390/w11020198
49 R Stone (2008). Have desert researchers discovered a hidden loop in the carbon cycle?.Science, 320(5882): 1409–1410
https://doi.org/10.1126/science.320.5882.1409
50 Y Z, Su J Q, Wang R, Yang X, Yang G P Fan (2015). Soil texture controls vegetation biomass and organic carbon storage in arid desert rangeland in the middle of Hexi Corridor region in northwest China.Soil Res, 53(4): 366–376
https://doi.org/10.1071/SR14207
51 X, Tang X, Zhao Y, Bai Z, Tang W, Wang Y, Zhao H, Wan Z, Xie X, Shi B, Wu G, Wang J, Yan K, Ma S, Du S, Li S, Han Y, Ma H, Hu N, He Y, Yang W, Han H, He G, Yu J, Fang G Zhou (2018). Carbon pools in China’s terrestrial ecosystems: new estimates based on an intensive field survey.Proc Natl Acad Sci USA, 115(16): 4021–4026
https://doi.org/10.1073/pnas.1700291115
52 L, Tong B, Zhao L M Wu (2018). Effect of grazing on soil organic carbon fractions and soil physical-chemical properties in the desert steppe in Inner Mongolia.Ecolo and Environm Sci, 27(9): 1602–1609
53 A Tunlid, D Floudas, R Koide, F Rineau (2016). Soil organic matter decomposition mechanisms in ectomycorrhizal fungi. In: Marin F, eds. Molecular Mycorrhizal Symbiosis, 257–275
54 S Q, Wang S L Zhu (2000). Analysis on spatial distribution characteristics of soil organic carbon reservoir in China.Acta Geogr Sin, 67(5): 533–544
55 W F, Wang X, Chen G P, Luo L H Li (2014). Modeling the contribution of abiotic exchange to CO2 flux in alkaline soils of arid areas.J Arid Land, 6(1): 27–36
https://doi.org/10.1007/s40333-013-0187-6
56 X Y, Wang Y Q, Li X W, Gong Y Y, Niu Y P, Chen X P, Shi W Li (2019). Storage, pattern and driving factors of soil organic carbon in an ecologically fragile zone of northern China.Geoderma, 343: 155–165
https://doi.org/10.1016/j.geoderma.2019.02.030
57 Y H, Wang K X, Liu Z P, Wu L Jiao (2020). Comparison and analysis of three estimation methods for soil carbon sequestration potential in the Ebinur Lake Wetland, China.Front Earth Sci, 14(1): 13–24
https://doi.org/10.1007/s11707-019-0763-y
58 Y, Wang Y, Li X, Ye Y, Chu X Wang (2010). Profile storage of organic/inorganic carbon in soil: from forest to desert.Sci Total Environ, 408(8): 1925–1931
https://doi.org/10.1016/j.scitotenv.2010.01.015
59 J R, West A M, Cates M, Ruark L, Deiss T, Whitman Y Rui (2020). Winter rye does not increase microbial necromass contributions to soil organic carbon in continuous corn silage in North Central US.Soil Biol Biochem, 148: 107899
https://doi.org/10.1016/j.soilbio.2020.107899
60 L, Xiong X, Liu G, Vinci R, Spaccini M, Drosos L, Li A, Piccolo G Pan (2019). Molecular changes of soil organic matter induced by root exudates in a rice paddy under CO2 enrichment and warming of canopy air.Soil Biol Biochem, 137: 107544
https://doi.org/10.1016/j.soilbio.2019.107544
61 H J, Xu C Y, Zhao X P Wang (2019). Spatiotemporal differentiation of the terrestrial gross primary production response to climate constraints in a dryland mountain ecosystem of northwestern China.Agric For Meteorol, 276-277: 107628
https://doi.org/10.1016/j.agrformet.2019.107628
62 P Xu (1993). Rangeland Resources and Ation in Xinjiang. Urumqi: Xinjiang Science and Technology Health Press (in Chinese)
63 A, Yan B G, Li F, Huang W T, Zhang P A, Jiang J D Sheng (2019). Distribution and storage of soil organic and inorganic carbon under different ecological zones in Xinjiang, China.Int J Agric Biol Eng, 12(1): 116–125
https://doi.org/10.25165/j.ijabe.20191201.3872
64 H T, Yang Z R, Wang X J, Li Y H Gao (2019). Vegetation restoration drives the dynamics and distribution of nitrogen and phosphorous pools in a temperate desert soil-plant system.J Environ Manage, 245: 200–209
https://doi.org/10.1016/j.jenvman.2019.04.108
65 Q, Yang H M, Pu X C, Zhao Z W, Wang H, Chen R, Dong Y L, Chen B C Jin (2021). Comparison of field measurement methods for different vegetation coverage of three artificial rangelands.Chin J Appl Environ Biol, 27(1): 220–227
66 X H, Yang F, Yang C L, Zhou A, Mamtimin W, Huo Q He (2020). Improved parameterization for effect of soil moisture on threshold friction velocity for saltation activity based on observations in the Taklimakan Desert.Geoderma, 369: 114322
https://doi.org/10.1016/j.geoderma.2020.114322
67 Y, Yang B Liu (2019). Effects of planting Caragana shrubs on soil nutrients and stoichiometries in desert steppe of northwest China.Catena, 183: 104213
https://doi.org/10.1016/j.catena.2019.104213
68 X S Zhang, S Z Sun, S P Yong, Z D Zhuo, R Q Wang (2007). Vegetation Map of the People’s Republic of China (1:1,000,000). Beijing: Geological Publishing House
69 B H, Zhao Z B, Li P, Li G C, Xu H, Gao Y T, Cheng E H, Chang S L, Yuan Y, Zhang Z H Feng (2017). Spatial distribution of soil organic carbon and its influencing factors under the condition of ecological construction in a hilly-gully watershed of the Loess Plateau, China.Geoderma, 296: 10–17
https://doi.org/10.1016/j.geoderma.2017.02.010
70 C, Zhao Y, Miao C, Yu L, Zhu F, Wang L, Jiang D, Hui S Wan (2016). Soil microbial community composition and respiration along an experimental precipitation gradient in a semiarid steppe.Sci Rep, 6(1): 24317
https://doi.org/10.1038/srep24317
71 H L, Zhao X Y, Zhao T H, Zhang X Y, Zhang Y L, Li L Liu (2011). Desertification process and its spatial differentation in arid areas of northwest China.J Desert Res, 31(1): 1–8
72 H F, Zhu R T, Bi Y H, Duan Z J Xu (2017). Scale-location specific relations between soil nutrients and topographic factors in the Fen River Basin, Chinese Loess Plateau.Front Earth Sci, 11(2): 397–406
https://doi.org/10.1007/s11707-016-0587-y
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed