Please wait a minute...
Frontiers of Earth Science

ISSN 2095-0195

ISSN 2095-0209(Online)

CN 11-5982/P

邮发代号 80-963

2019 Impact Factor: 1.62

Frontiers of Earth Science  2023, Vol. 17 Issue (3): 713-726   https://doi.org/10.1007/s11707-022-0987-0
  本期目录
Global and regional controls on carbon-sulfur isotope cycling during SPICE event in south China
Xianfeng TAN1,2, Long LUO1,2(), Hongjin CHEN3, Jon GLUYAS4, Zihu ZHANG5(), Chensheng JIN6, Lidan LEI7, Jia WANG2, Qing CHEN2, Meng LI2
1. State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 403374, China
2. Chongqing Key Laboratory of Complex Oil and Gas Exploration and Development, Chongqing University of Science and Technology, Chongqing 401331, China
3. Shunan Gas Field, PetroChina Southwest Oil and Gas Field Company, Luzhou 646000, China
4. Department of Earth Sciences, Durham University, Durham, DH1 3LE, UK
5. State Key Laboratory of Oil and Gas Reservior Geology and Exploration, Chengdu University of Technology, Chengdu 610059, China
6. Yunnan Key Laboratory for Paleobiology, Yunnan University, Kunming 650091, China
7. School of Geographical Sciences, Southwest University, Chongqing 400715, China
 全文: PDF(17041 KB)   HTML
Abstract

The positive S-isotopic excursion of carbonate-associated sulfate (δ34SCAS) is generally in phase with the Steptoean positive carbon isotope excursion (SPICE), which may reflect widespread, global, transient increases in the burial of organic carbon and pyrite sulfate in sediments deposited under large-scale anoxic and sulphidic conditions. However, carbon-sulfur isotope cycling of the global SPICE event, which may be controlled by global and regional events, is still poorly understood, especially in south China. Therefore, the δ13CPDB, δ18OPDB,δ34SCAS, total carbon (TC), total organic carbon (TOC) and total sulfate (TS) of Cambrian carbonate of Waergang section of Hunan Province were analyzed to unravel global and regional controls on carbon-sulfur cycling during SPICE event in south China.

The δ34SCAS values in the onset and rising limb are not obviously higher than that in the preceding SPICE, meanwhile sulfate (δ34SCAS) isotope values increase slightly with increasing δ13CPDB in rising limb and near peak of SPICE (130–160 m). The sulfate (δ34SCAS) isotope values gradually decrease from 48.6‰ to 18‰ in the peak part of SPICE and even increase from 18‰ to 38.5% in the descending limb of SPICE. The abnormal asynchronous C-S isotope excursion during SPICE event in the south China was mainly controlled by the global events including sea level change and marine sulfate reduction, and it was also influenced by regional events such as enhanced siliciclastic provenance input (sulfate), weathering of a carbonate platform and sedimentary environment. Sedimentary environment and lithology are not the main reason for global SPICE event but influence the δ13CPDB excursion-amplitude of SPICE. Sea level eustacy and carbonate platform weathering probably made a major contribution to the δ13CPDB excursion during the SPICE, in particularly, near peak of SPICE. Besides, the trilobite extinctions, anoxia, organic-matter burial and siliciclastic provenance input also play an important role in the onset, early and late stage of SPICE event.

Key wordssulfate isotope excursion    terrigenous matter    carbonate platform weathering    sea level change    transitional slope environment    Waergang section
收稿日期: 2021-12-21      出版日期: 2023-12-12
Corresponding Author(s): Long LUO,Zihu ZHANG   
 引用本文:   
. [J]. Frontiers of Earth Science, 2023, 17(3): 713-726.
Xianfeng TAN, Long LUO, Hongjin CHEN, Jon GLUYAS, Zihu ZHANG, Chensheng JIN, Lidan LEI, Jia WANG, Qing CHEN, Meng LI. Global and regional controls on carbon-sulfur isotope cycling during SPICE event in south China. Front. Earth Sci., 2023, 17(3): 713-726.
 链接本文:  
https://academic.hep.com.cn/fesci/CN/10.1007/s11707-022-0987-0
https://academic.hep.com.cn/fesci/CN/Y2023/V17/I3/713
Fig.1  
Fig.2  
Fig.3  
Fig.4  
Number Sample No. Lithology δ13CPDB/‰ δ18OPDB/‰ δ34SCAS/(‰ VCDT) TOC/wt.% TC/wt.% TS/wt.%
1 W-0 Limestone 3.93 ?11.54 /
2 W-1 Limestone 2.55 ?12.15 38.7 0.06 11.91 0.25
3 W-2 Limestone ?0.79 ?10.29 18.5 0.48 5.82 0.46
4 W-3 Limestone 0.23 ?9.68 / 0.39 8.72 0.26
5 W-4 Limestone 0.95 ?9.93 37.0 0.24 9.78 0.25
6 W-5 Limestone 0.55 ?10 / 0.38 9.65 0.26
7 W-6 Limestone 0.23 ?9.83 46.3 0.21 9.24 0.26
8 W-7 Limestone 0.33 ?9.65 32.5 0.36 7.48 0.26
9 W-8 Limestone 0.26 ?10.25 34.7 0.23 11.61 0.27
10 W-9 Limestone ?0.13 ?9.45 / 0.28 7.4 0.50
11 W-10 Limestone ?0.38 ?10.61 51.0 0.17 11.69 0.26
12 W-11 Limestone ?0.06 ?9.98 / 0.40 4.66 0.52
13 W-12 Limestone 0.47 ?9.95 / 0.32 6.24 0.37
14 W-13 Limestone 0.89 ?10.28 31.4 0.20 9.21 0.28
15 W-14 Limestone 0.54 ?9.85 30.4 0.34 6.37 0.52
16 W-15 Limestone 0.93 ?10.08 39.5 0.08 11.28 0.26
17 W-16 Limestone 1.37 ?10.11 / 0.35 6.21 0.45
18 W-17 Limestone 1.83 ?11.5 / 0.12 11.84 0.24
19 W-18 Limestone 2.57 ?11.53 47.7 0.10 11.24 0.24
20 W-19 Limestone 0.01 ?11.01 27.7 0.26 8.77 0.26
21 W-20 Limestone 2.6 ?12.04 32.0 0.08 11.01 0.25
22 W-21 Limestone 3.26 ?11.74 / 0.12 10.32 0.28
23 W-22 Limestone 3.54 ?11.87 / 0.99 10.71 0.21
24 W-23 Limestone 3.6 ?10.78 35.3 0.21 10.2 0.27
25 W-24 Limestone 4.34 ?11.82 41.9 0.17 10.35 0.25
26 W-25 Limestone 3.84 ?11.39 48.6 0.15 11.14 0.26
27 W-26 Limestone 3.91 ?10.46 / 0.17 10.79 0.26
28 W-27 Limestone 3.64 ?10.94 41.9 0.09 10.9 0.26
29 W-28 Limestone 3.81 ?10.97 / 0.15 10.94 0.25
30 W-29 Limestone 3.89 ?10.99 / 0.08 11.16 0.25
31 W-30 Limestone 4.53 ?10.18 / 0.22 11.66 0.26
32 W-31 Limestone 4.48 ?11.01 / 0.14 11.67 0.25
33 W-32 Limestone 3.61 ?12.04 27.8 0.09 11.93 0.25
34 W-34 Limestone 3.98 ?11.14 38.4 0.28 11.17 0.23
35 W-35 Limestone 3.52 ?10.47 31.0 0.09 11.32 0.27
36 W-36 Limestone 3.46 ?11.73 / 0.28 9.63 0.48
37 W-37 Limestone 3.99 ?11 34.1 0.12 10.13 0.26
38 W-38 Limestone 3.45 ?10.22 / 0.14 10.11 0.28
39 W-39 Limestone 3.54 ?11.19 / 0.09 10.9 0.24
40 W-40 Limestone 3.28 ?11.38 / 0.21 10.3 0.23
41 W-41 Limestone 2.79 ?11.35 18.2 0.15 7.36 1.34
42 W-42 Limestone 1.84 ?11.18 25.4 0.37 7.47 0.20
43 W-43 Limestone 1.7 ?10.96 / 0.16 11.06 0.26
44 W-44 Limestone 1.75 ?11.51 36.3 0.11 10.95 0.25
45 W-45 Limestone 0.41 ?13.44 38.5 0.11 11.64 0.25
46 W-46 Limestone 1.78 ?10.88 / 0.12 10.83 0.26
47 W-47 Limestone 2.09 ?9.83 18.1 0.29 7.56 0.26
48 W-48 Limestone 1.27 ?11.42 26.6 0.33 11.60 0.25
49 W-49 Limestone 1.37 ?11.5 23.5 0.13 9.7 0.26
50 W-50 Limestone 1.23 ?11.15 29.6 0.21 8.54 0.24
51 W-51 Limestone 1.34 ?11.45 15.3 0.21 6.32 0.48
52 W-52 Limestone 0.65 ?11.22 / 0.41 7.47 0.27
53 W-53 Limestone 0.35 ?11.1 30.4 0.21 8.65 0.25
54 W-54 Limestone 1.96 ?11.32 19.8 0.37 6.68 0.43
55 W-55 Limestone 1.67 ?11.31 28.0 0.09 10.70 0.24
56 W-56 Limestone 2.02 ?9.59 / 0.58 8.20 0.41
57 W-57 Limestone 2.18 ?11.06 19.9 0.26 6.94 0.35
58 W-58 Limestone 2.56 ?10.84 / 0.24 8.86 0.29
59 W-59 Limestone 2.67 ?11.37 29.0 0.24 7.31 0.34
60 W-60 Limestone 1.91 ?11.41 23.5 0.54 4.76 0.59
61 W-61 Limestone 1.7 ?10.19 / 0.19 9.1 0.25
62 W-62 Limestone 1.36 ?9.82 / 0.17 8.48 0.27
63 W-63 Limestone 1.49 ?10.29 / 0.12 9.6 0.23
64 W-64 Limestone 1.21 ?10.19 38.1 0.22 10.22 0.25
Tab.1  
Fig.5  
Fig.6  
Fig.7  
1 P, Ahlberg, N, Axheimer, L E, Babcock, M E, Eriksson, B, Schmitz, F Terfelt. ( 2009). Cambrian high-resolution biostratigraphy and carbon isotope chemostratigraphy in Scania, Sweden: first record of the SPICE and DICE excursions in Scandinavia. Lethaia, 42( 1): 2– 16
https://doi.org/10.1111/j.1502-3931.2008.00127.x
2 M A, Arthur, S O, Schlanger, H Jenkyns. ( 1987). The Genomanian-Turonian oceanic anoxic event, II. Palaeoceanographic controls on organic-matter production and preservation. Spec Publ Geol Soc Lond, 26( 1): 401– 420
https://doi.org/10.1144/GSL.SP.1987.026.01.25
3 R G C Bathurst ( 1975). Carbonate Sediments and Their Diagenesis (2nd ed). Amsterdam: Elsevier
4 Z, Chen, X, Wang, J, Hu, S, Yang, M, Zhu, X, Dong, Z, Tang, P, Peng, Z Ding. ( 2014). Structure of the carbon isotope excursion in a high-resolution lacustrine Paleocene–Eocene Thermal Maximum record from central China. Earth Planet Sci Lett, 408: 331– 340
https://doi.org/10.1016/j.epsl.2014.10.027
5 Z, Chen, Z, Ding, S, Yang, C, Zhang, X Wang. ( 2016). Increased precipitation and weathering across the Paleocene-Eocene Thermal Maximum in central China. Geochem Geophys Geosyst, 17( 6): 2286– 2297
https://doi.org/10.1002/2016GC006333
6 T W, Dahl, R A, Boyle, D E, Canfield, J N, Connelly, B C, Gill, T M, Lenton, M Bizzarro. ( 2014). Uranium isotopes distinguish two geochemically distinct stages during the later Cambrian SPICE event. Earth Planet Sci Lett, 401: 313– 326
https://doi.org/10.1016/j.epsl.2014.05.043 pmid: 25684783
7 L A Derry. ( 2010). On the significant of δ13C correlations in ancient sediments. Earth Planet Sci Lett, 296( 3–4): 497– 501
https://doi.org/10.1016/j.epsl.2010.05.035
8 M, Elrick, S, Rieboldt, M, Saltzman, R M McKay. ( 2011). Oxygen-isotope trends and seawater temperature changes across the Late Cambrian Steptoean positive carbon-isotope excursion (SPICE event). Geology, 39( 10): 987– 990
https://doi.org/10.1130/G32109.1
9 Z Feng, Y Peng, Z Jin, P Jiang, Z Bao, Z Luo, T Ju, H Tian, H Wang ( 2001). Lithofacies palaeogeography of the Cambrian in South China. J Palaeogeogr, 3( 1): 1– 14 (in Chinese)
10 Z Feng, Y Peng, Z Jin, P Jiang, Z Bao ( 2002). Lithofacies palaeogeography of the Late Cambrian in China. J Palaeogeogr, 4( 3): 1– 10 (in Chinese)
11 B C, Gill, T W, Lyons, M R Saltzman. ( 2007). Parallel, high-resolution carbon and sulfur isotope records of the evolving Paleozoic marine sulfur reservoir. Palaeogeogr Palaeoclimatol Palaeoecol, 256( 3–4): 156– 173
https://doi.org/10.1016/j.palaeo.2007.02.030
12 B C, Gill, T W, Lyons, T D Frank. ( 2008). Behavior of carbonate-associated sulfate during meteoric diagenesis and implications for the sulfur isotope paleoproxy. Geochim Cosmochim Acta, 72( 19): 4699– 4711
https://doi.org/10.1016/j.gca.2008.07.001
13 B C, Gill, T W, Lyons, S A, Young, L R, Kump, A H, Knoll, M R Saltzman. ( 2011a). Geochemical evidence for widespread euxinia in the later Cambrian ocean. Nature, 469( 7328): 80– 83
https://doi.org/10.1038/nature09700 pmid: 21209662
14 B C, Gill, T W, Lyons, H C Jenkyns. ( 2011b). A global perturbation to the sulfur cycle during the Toarcian Oceanic Anoxic Event. Earth Planet Sci Lett, 312( 3–4): 484– 496
https://doi.org/10.1016/j.epsl.2011.10.030
15 W T, Holser M, Schidlowski F T, Mackenzie J B Maynard ( 1988). Geochemical cycles of carbon and sulfur. In: Gregor C B, Garrels R M, Mackenzie F T, Maynard J B, eds. Chemical Cycles in the Evolution of the Earth. New York: Wiley, 105– 173
16 M, Hurtgen, M, Arthur, N, Suits, A Kaufman. ( 2002). The sulfur isotopic composition of Neoproterozoic seawater sulfate: implications for snowball Earth?. Earth Planet Sci Lett, 203( 1): 413– 429
https://doi.org/10.1016/S0012-821X(02)00804-X
17 M T, Hurtgen, S B, Pruss, A H Knoll. ( 2009). Evaluating the relationship between the carbon and sulfur cycles in the later Cambrian ocean: an example from the Port au Port Group, western Newfoundland, Canada. Earth Planet Sci Lett, 281( 3–4): 288– 297
https://doi.org/10.1016/j.epsl.2009.02.033
18 D T, Johnston, S W, Poulton, C, Dehler, S, Porter, J, Husson, D E, Canfield, A H Knoll. ( 2010). An emerging picture of Neoproterozoic ocean chemistry: insights from the Chuar Group, Grand Canyon, USA. Earth Planet Sci Lett, 290( 1–2): 64– 73
https://doi.org/10.1016/j.epsl.2009.11.059
19 L P, Knauth, M J Kennedy. ( 2009). The late Precambrian greening of the Earth. Nature, 460( 7256): 728– 732
https://doi.org/10.1038/nature08213 pmid: 19587681
20 L R, Kump, M A, Arthur, M E, Patzkowsky, M T, Gibbs, D S, Pinkus, P M Sheehan. ( 1999). A weathering hypothesis for glaciation at high atmospheric pCO2 during the Late Ordovician. Palaeogeogr Palaeoclimatol Palaeoecol, 152( 1–2): 173– 187
https://doi.org/10.1016/S0031-0182(99)00046-2
21 L R, Kump, M A Arthur. ( 1999). Interpreting carbon-isotope excursions: carbonates and organic matter. Chem Geol, 111: 299– 302
22 C, Li, M, Cheng, T J, Algeo, S C Xie. ( 2015). A theoretical prediction of chemical zonation in early oceans (>520 Ma). Sci China Earth Sci, 58( 11): 1901– 1909
https://doi.org/10.1007/s11430-015-5190-7
23 C, Li, C, Jin, N J, Planavsky, T J, Algeo, M, Cheng, X, Yang, Y, Zhao, S Xie. ( 2017). Coupled oceanic oxygenation and metazoan diversification during the early–middle Cambrian?. Geology, 45( 8): 743– 746
https://doi.org/10.1130/G39208.1
24 D Li ( 2017). The interplay between Cambrian ocean chemistry changes and early animal evolution. Dissertation for the Doctoral Degree. Hefei: University of Science and Technology of China (in Chinese)
25 W Liang, C Mou, K Zhou, X Ge, C Chen, P Xu ( 2015). Palaeogeography of the Cambrian Epoch 3-Furongian in the Middle and Upper Yangtze region. J Palaeogeogr, 17( 2): 172– 185 (in Chinese)
26 Y, Liu, C, Li, T J, Algeo, J, Fan, P Peng. ( 2016). Global and regional controls on marine redox changes across the Ordovician-Silurian boundary in south China. Palaeogeogr Palaeoclimatol Palaeoecol, 463: 180– 191
https://doi.org/10.1016/j.palaeo.2016.10.006
27 C Lochman-Balk. ( 1970). Upper Cambrian faunal patterns on the craton. Geol Soc Am Bull, 81( 11): 3197– 3224
https://doi.org/10.1130/0016-7606(1970)81[3197:UCFPOT]2.0.CO;2
28 A A Öpik. ( 1966). The early Upper Cambrian crisis and its Petrocorrelation. J Proc R Soc N S W, 100: 9– 14
29 A R Palmer. ( 1965). Trilobites of the Late Cambrian Pterocephaliid Biomere in the Great Basin, United States. US Geol Surv Prof Pap, 493: 49– 49
30 A R Palmer. ( 1984). The biomere problem: evolution of an idea. J Paleontol, 58: 599– 611
31 C R C, Paul, S F Mitchell. ( 1994). Is famine a common factor in marine mass extinctions?. Geology, 22( 8): 679– 682
https://doi.org/10.1130/0091-7613(1994)022<0679:IFACFI>2.3.CO;2
32 S Peng. ( 1992). Upper Cambrian biostratigraphy and trilobite faunas of the Cili-Taoyuan area, northwestern Hunan, China. Memoir of the Association Australasian Palaeontologists, 13: 1– 119
33 S Peng ( 1990). The Upper Cambrian and trilobite succession in the Taoyuan-Cili area of Hunan Province. J Stratigraphy, 14( 4): 261– 276 (in Chinese)
34 S, Peng, L E, Babcock, R A, Robison, H, Lin, M N, Rees, M R Saltzman. ( 2004a). Global Standard Stratotype-section and Point (GSSP) of the Furongian Series and Paibian Stage (Cambrian). Lethaia, 37( 4): 365– 379
https://doi.org/10.1080/00241160410002081
35 S Peng, L E Babcock, H Lin, Y Chen, X Zhu, Y Qi ( 2004b). The Paibi Section in Hunan, n orthwestern Hunan: a global standard stratotype – section and point for Cambrian Furongian series and Paibi stage. Collection of Papers on Stratigraphic Paleontology, 28: 11– 25 (in Chinese)
36 S Peng, X Zhu, H Lin ( 2004c). The first global standard stratotype section and poin t of Cambrian System for Paibian Stage and Furongian Series in China. J Stratigraphy, 28( 1): 92– 94 (in Chinese)
37 S, Peng, R A Robison. ( 2000). Agnostoid biostratigraphy across the Middle-Upper Cambrian boundary in Hunan, China. J Paleontol, 74( sp53): 1– 10
https://doi.org/10.1666/0022-3360(2000)53[1:ABATMC]2.0.CO;2
38 S Peng ( 2009). The newly-developed Cambrian biostratigraphic succession and chronostratigraphic scheme for s outh China. Chin Sci Bull, 54( 18): 2691– 2698 (in Chinese)
39 Y, Peng, Y, Peng, X, Lang, H, Ma, K, Huang, F, Li, B Shen. ( 2016). Marine carbon-sulfur biogeochemical cycles during the Steptoean Positive Carbon Isotope Excursion (SPICE) in the Jiangnan Basin, south China. J Earth Sci, 27( 2): 242– 254
https://doi.org/10.1007/s12583-016-0694-4
40 S R, Poulson, B E John. ( 2003). Stable isotope and trace element geochemistry of the basal Bouse Formation carbonate, southwestern United States: implications for the Pliocene uplift history of the Colorado Plateau. Geol Soc Am Bull, 115: 434– 444
https://doi.org/10.1130/0016-7606(2003)115<0434:SIATEG>2.0.CO;2
41 Y Qi, Z Wang, G Bagnoli ( 2004). Conodont b iostratigraphy of the GSSP OF the b ase of the Furongian Series and Paibi Stage. J Stratigraphy, 28( 2): 114– 119 (in Chinese)
42 B, Runnegar, M R, Saltzman, A, Kouchinsky, S A, Young, L R, Kump, B, Gill, T, Lyons, E D Young. ( 2010). Cambrian SPICE (Steptoean Positive Carbon Isotope Excursion) as a model for Comparable Proterozoic high-amplitude isotopic events. GSA Abstracts with Programs, 42( 5): 398
43 M R, Saltzman, C A, Cowan, A C, Runkel, B, Runnegar, M C, Stewart, A R Palmer. ( 2004). The Late Cambrian SPICE (δ13C) event and the Sauk II-Sauk III regression: new evidence from Laurentian basins in Utah, Iowa, and Newfoundland. J Sediment Res, 74( 3): 366– 377
https://doi.org/10.1306/120203740366
44 M R, Saltzman, R L, Ripperdan, M D, Brasier, K C, Lohmann, R A, Robison, W T, Chang, S, Peng, E K, Ergaliev, B Runnegar. ( 2000). A global carbon isotope excursion (SPICE) during the Late Cambrian: relation to trilobite extinctions, organic-matter burial and sea level. Palaeogeogr Palaeoclimatol Palaeoecol, 162( 3–4): 211– 223
https://doi.org/10.1016/S0031-0182(00)00128-0
45 M R, Saltzman, B, Runnegar, K C Lohmann. ( 1998). Carbon isotope stratigraphy of Upper Cambrian (Steptoean Stage) sequences of the eastern Great Basin: record of a global oceanographic event. Geol Soc Am Bull, 110( 3): 285– 297
https://doi.org/10.1130/0016-7606(1998)110<0285:CISOUC>2.3.CO;2
46 J D, Schiffbauer, J W, Huntley, D A, Fike, M J, Jeffrey, J M, Gregg, K L Shelton. ( 2017). Decoupling biogeochemical records, extinction, and environmental change during the Cambrian SPICE event. Sci Adv, 3( 3): e1602158
https://doi.org/10.1126/sciadv.1602158 pmid: 28275734
47 M S, Sim, S H, Ono, M T Hurtgen. ( 2015). Sulfur isotope evidence for low and fluctuating sulfate levels in the Late Devonian ocean and the potential link with the mass extinction event. Earth Planet Sci Lett, 419: 52– 62
https://doi.org/10.1016/j.epsl.2015.03.009
48 J H Stitt. ( 1975). Adaptive radiation, trilobite paleoecology, and extinction, Ptychaspid biomere: Late Cambrian of Oklahoma. Fossils and Strata, 4: 381– 390
49 M E Taylor ( 1977). Late Cambrian of western North America: trilobite biofacies, environmental significance, and biostratigraphic implications. In: Kauffman E G, Hazel J E, eds. Concepts and Methods of Biostratigraphy. Stroudsburg: Dowden, Hutchinson and Ross, 397– 425
50 C K Thompson, L C Kah ( 2012). Sulfur isotope evidence for widespread euxinia and a fluctuating oxycline in Early to Middle Ordovician greenhouse oceans. Palaeogeogr Palaeoclimatol Palaeoecol, 313–314: 189– 214
https://doi.org/10.1016/j.palaeo.2011.10.020
51 C Wang, X Li, Y Bai, A Liu, X Zeng ( 2011). The Cambrian SPICE event in Yongshun area, Hunan Province, and its significance for stratigraphic correlation. Geol Chin, 38( 6): 1440– 1445 (in Chinese)
52 M A, Woods, P R, Wilby, M J, Leng, A W A, Rushton, M Williams. ( 2011). The Furongian (Late Cambrian) Steptoean Positive Carbon Isotope Excursion (SPICE) in Avalonia. J Geol Soc London, 168( 4): 851– 862
https://doi.org/10.1144/0016-76492010-111
53 S A, Young, B C, Gill, C T, Edwards, M R, Saltzman, S A Leslie. ( 2016). Middle–Late Ordovician (Darriwilian–Sandbian) decoupling of global sulfur and carbon cycles: isotopic evidence from eastern and southern Laurentia. Palaeogeogr Palaeoclimatol Palaeoecol, 458: 118– 132
https://doi.org/10.1016/j.palaeo.2015.09.040
54 J Zuo, S Peng, X Zhu ( 2008 a). Carbon isotope composition of Cambrian carbonate rocks in Yangtze Platform, south China and its geological implications. Geochemica, 37( 2): 118– 128 (in Chinese)
55 J Zuo, S Peng, X Zhu, Y Qi, H Lin, X Yang ( 2008 b). Evolution of carbon isotope composition in potential global stratotype section and point at Luoyixi, south China, for the Base of the Unnamed Global Seventh Stage of Cambrian System. Earth Science 19( 1): 9– 22 (in Chinese)
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed