Please wait a minute...
Frontiers of Earth Science

ISSN 2095-0195

ISSN 2095-0209(Online)

CN 11-5982/P

邮发代号 80-963

2019 Impact Factor: 1.62

Frontiers of Earth Science  2023, Vol. 17 Issue (4): 981-996   https://doi.org/10.1007/s11707-022-1049-3
  本期目录
Detecting the spatial-temporal pattern of moisture evolution on the Tibetan Plateau during the Holocene by model-proxy comparison
Zeyu ZHENG1, Liya JIN2,1(), Jinjian LI2,1, Xiaojian ZHANG3, Jie CHEN1
1. MOE Key Laboratory of Western China’s Environmental System, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
2. School of Atmospheric Sciences, Chengdu University of Information Technology, Chengdu 610225, China
3. School of Geographic and Oceanographic Sciences, Nanjing University, Nanjing 210023, China
 全文: PDF(35749 KB)   HTML
Abstract

The Tibetan Plateau (TP) is a key region for environmental and climatic research due to its significant linkages with large-scale atmospheric circulation. Understanding the long-term moisture evolution pattern and its forcing mechanisms on the TP during the Holocene may provide insights into the interaction between low-latitude climate systems and midlatitude westerlies. Here, we synthesized 27 paleoclimate proxy records covering the past 9500 years. The results of the rotated empirical orthogonal function analysis of the moisture variation revealed spatial-temporal heterogeneity, which was classified into 5 subregions. Proxy records were then compared with the results from the Kiel Climate Model and other paleorecords. The results showed that moisture evolution on the western-southern-central TP was controlled by the Indian summer monsoon (ISM). On the south-eastern TP, moisture change was affected by the interplay between the East Asian summer monsoon (EASM) and the westerlies, as well as the ISM. With diverse patterns of circulation system precipitation, moisture changes recorded in the paleorecords showed spatial-temporal discrepancies, especially during the early to middle Holocene. Moreover, given the anti-phase pattern of summer precipitation in the EASM area under El Niño/Southern Oscillation (ENSO) conditions and the unstable relationship between the ISM and ENSO, it is reasonable to conclude that relatively strong ENSO variability during the late Holocene has contributed to these discrepancies as Asian summer monsoon precipitation has declined.

Key wordsTibetan Plateau    Holocene    moisture evolution    model-proxy comparison
收稿日期: 2022-10-10      出版日期: 2024-02-06
Corresponding Author(s): Liya JIN   
 引用本文:   
. [J]. Frontiers of Earth Science, 2023, 17(4): 981-996.
Zeyu ZHENG, Liya JIN, Jinjian LI, Xiaojian ZHANG, Jie CHEN. Detecting the spatial-temporal pattern of moisture evolution on the Tibetan Plateau during the Holocene by model-proxy comparison. Front. Earth Sci., 2023, 17(4): 981-996.
 链接本文:  
https://academic.hep.com.cn/fesci/CN/10.1007/s11707-022-1049-3
https://academic.hep.com.cn/fesci/CN/Y2023/V17/I4/981
Fig.1  
No. Section N/(° ) E/(° ) Eleva. /m a.s.l Time/ cal. ka BP Dating No. Using proxies Dating method Reference
1 Lake TSO Kar 33.2 78 4527 15−0 32 P AMS Demske et al., 2009
2 TSO moriri 32.9 78.3 4512 12−0 6 P AMS Leipe et al., 2014
3 Bangong Co 33.4 79.8 4220 14.3−0 19 P AMS Van Campo et al., 1996
4 Sumxi Co 34.5 80.38 5058 13−0 6 P D AMS Van Campo and Gasse, 1993
5 Peiku Co 29.8 85.5 4595 15−0 8 Ca X AMS Du, 2012
6 Buruo Co 34.33 85.7 5170 5.2−0 15 E Gs AMS Xu et al., 2019
7 Silin Co 31.7 88.7 4552 5.33−0 13 P 137Cs, 210PbAMS Sun et al., 1993
8 Pumoyum Co 29.56 90.48 5030 19−0 60 P dC Ca AMS Nishimura et al., 2014
Pumoyum Co 28.5 90.5 5030 19−0 37 P 137Cs, 210Pb, AMS Lü et al., 2011
9 Chen Co 28.5 90.55 4420 10−3.7 17 S O C/N P Gs C E AMS Zhu et al., 2009
10 Nam Co 30.7 90.7 4718 12−0 15 E C/N Gs AMS Doberschutz et al., 2014
11 Lake Zigetang 32 90.9 4560 10.6–0 5 P AMS Herzschuh et al., 2006
12 Co Ngion 31 91 4515 5.8–0 12 P O C M AMS Shen et al., 2008
13 Cuoe Lake 31.5 91.5 4532 10.5–1.6 13 S Gs O dC E C/N AMS Wu et al., 2006
14 Ahung Co 31.62 92.06 4575 9.5–4 62 S Gs O dC E C/N AMS Morrill et al., 2006
15 Paru Co 29.796 92.352 4845 11−0 7 O L Li AMS Bird et al., 2014
16 Hidden Lake 29.8 92.53 4980 12.4−0 4 P AMS Tang et al., 2004
17 Sugan Lake 38.85 93.9 2797 7.5−0 8 E O AMS Zhang et al., 2022
18 Ren Co 30.01 96.01 4450 20−0 7 P AMS Tang et al., 2004
19 Hurleg Lake 37.32 96.9 2817 14.0–0 7 P AMS Zhao et al., 2007
20 Koucha Lake 34 97.2 4540 16.4–0 5 P AMS Herzschuh et al., 2009
21 Caka Salt Lake 36.7 99.15 3200 17.2–0 10 S M O AMS Liu et al., 2008
22 Lake Kuhai 35.3 99.2 4150 18−0 17 P AMS Wischnewski et al., 2011
23 Yidun Lake 30.3 99.55 4470 17.3−0 3 P AMS Shen et al., 2006
24 Lake Naleng 31.1 99.75 4200 17.6–0 10 S P AMS Kramer et al., 2010a, 2010b
25 Lake Qinghai 36.6 100.5 3200 18.0−0 10 P AMS Shen et al., 2005
26 Lake Ximencuo 33.38 101.1 4030 13.5−0 13 Gs dC O C/N E AMS Zhang and Mischke, 2009
27 Hongyuan Peat 32.7 102.5 3527 11.5−0 11 Gr H AMS Yu et al., 2006
Tab.1  
Fig.2  
Fig.3  
Fig.4  
Fig.5  
Fig.6  
Fig.7  
Fig.8  
Fig.9  
Fig.10  
Fig.11  
1 C, An Z, Feng L Barton (2006). Dry or humid?.Mid-Holocene humidity changes in arid and semi-arid China. Quat Sci Rev, 25(3–4): 351–361
https://doi.org/10.1016/j.quascirev.2005.03.013
2 Z, An S M, Colman W, Zhou X, Li E T, Brown A J T, Jull Y, Cai Y, Huang X, Lu H, Chang Y, Song Y, Sun H, Xu W, Liu Z, Jin X, Liu P, Cheng Y, Liu L, Ai X, Li X, Liu L, Yan Z, Shi X, Wang F, Wu X, Qiang J, Dong F, Lu X Xu (2012). Interplay between the Westerlies and Asian monsoon recorded in Lake Qinghai sediments since 32 ka.Sci Rep, 2(1): 619
https://doi.org/10.1038/srep00619
3 Z, An S C, Porter J E, Kutzbach X, Wu S, Wang X, Liu X, Li W Zhou (2000). Asynchronous Holocene optimum of the East Asian monsoon.Quat Sci Rev, 19(8): 743–762
https://doi.org/10.1016/S0277-3791(99)00031-1
4 A, Berger M F Loutre (1991). Insolation values for the climate of the last 10 million years.Quat Sci Rev, 10(4): 297–317
https://doi.org/10.1016/0277-3791(91)90033-Q
5 B W, Bird P J, Polissar Y, Lei L G, Thompson T, Yao B P, Finney D J, Bain D P, Pompeani B A Steinman (2014). A Tibetan lake sediment record of Holocene Indian summer monsoon variability.Earth Planet Sci Lett, 399: 92–102
https://doi.org/10.1016/j.epsl.2014.05.017
6 W C Chao (2000). Multiple quasi equilibria of the ITCZ and the origin of monsoon onset.J Atmos Sci, 57(5): 641–652
https://doi.org/10.1175/1520-0469(2000)057<0641:MQEOTI>2.0.CO;2
7 F, Chen D, Wu J, Chen A, Zhou J, Yu J, Shen S, Wang X Huang (2016). Holocene moisture and East Asian summer monsoon evolution in the northeastern Tibetan Plateau recorded by Lake Qinghai and its environs: a review of conflicting proxies.Quat Sci Rev, 154: 111–129
https://doi.org/10.1016/j.quascirev.2016.10.021
8 F, Chen Z, Yu M, Yang E, Ito S, Wang D B, Madsen X, Huang Y, Zhao T, Sato H J B, Birks I, Boomer J, Chen C, An B Wünnemann (2008). Holocene moisture evolution in arid central Asia and its out-of-phase relationship with Asian monsoon history.Quat Sci Rev, 27(3–4): 351–364
https://doi.org/10.1016/j.quascirev.2007.10.017
9 J, Chen F, Chen S, Feng W, Huang J, Liu A Zhou (2015). Hydroclimatic changes in China and surroundings during the Medieval Climate Anomaly and Little Ice Age: spatial patterns and possible mechanisms.Quat Sci Rev, 107: 98–111
https://doi.org/10.1016/j.quascirev.2014.10.012
10 B, Cheng F, Chen J Zhang (2013). Palaeovegetational and palaeoenvironmental changes since the last deglacial in Gonghe Basin, northeast Tibetan Plateau.J Geogr Sci, 23(1): 136–146
https://doi.org/10.1007/s11442-013-0999-5
11 J L, Conroy J T Overpeck (2011). Regionalization of present-day precipitation in the greater monsoon region of Asia.J Clim, 24(15): 4073–4095
https://doi.org/10.1175/2011JCLI4033.1
12 D, Demske P E, Tarasov B, Wünnemann F Riedel (2009). Late glacial and Holocene vegetation, Indian monsoon and westerlies circulation in the Trans-Himalaya recorded in the lacustrine pollen sequence from Tso Kar, Ladakh, NW India.Palaeogeogr Palaeoclimatol Palaeoecol, 279(3–4): 172–185
https://doi.org/10.1016/j.palaeo.2009.05.008
13 Y, Ding J C L Chan (2005). The East Asian summer monsoon: an overview.Meteorol Atmos Phys, 89(1): 117–142
14 S, Doberschütz P, Frenzel T, Haberzettl T, Kasper J B, Wang L P, Zhu G, Daut A, Schwalb R Mausbacher (2014). Monsoonal forcing of Holocene paleoenvironmental change on the central Tibetan Plateau inferred using a sediment record from Lake Nam Co (Xizang, China).J Paleolimnol, 51(2): 253–266
https://doi.org/10.1007/s10933-013-9702-1
15 W, Dong Y, Lin J S, Wright Y, Xie F, Xu W, Xu Y Wang (2017). Indian monsoon low-pressure systems feed up-and-over moisture transport to the southwestern Tibetan Plateau.J Geophys Res Atmos, 122(22): 12140–12151
https://doi.org/10.1002/2017JD027296
16 M Du (2012). A multiproxy record of Asian monsoon variations during the last 15,000 years from Peiku Co, Tibetan plateau. Dissertation for Master Degree. Minneapolis: The University of Minnesota
17 D, Fleitmann S J, Burns A, Mangini M, Mudelsee J, Kramers I, Villa U, Neff A, Al-Subbary A, Buettner D, Hippler A Matter (2007). Holocene ITCZ and Indian monsoon dynamics recorded in stalagmites from Oman and Yemen (Socotra).Quat Sci Rev, 26(1–2): 170–188
https://doi.org/10.1016/j.quascirev.2006.04.012
18 H (1957) Flohn . Large-scale aspects of the “Summer Monsoon” in South and East Asia. J Meteor Soc Japan. 35A: 180–186
19 Y, Gao L, Cuo Y Zhang (2014). Changes in moisture flux over the Tibetan Plateau during 1979–2011 and possible mechanisms.J Clim, 27(5): 1876–1893
https://doi.org/10.1175/JCLI-D-13-00321.1
20 Y, He W H, Theakstone Z, Zhang D, Zhang T, Yao T, Chen Y, Shen H Pang (2004). Asynchronous Holocene climatic change across China.Quat Res, 61(1): 52–63
https://doi.org/10.1016/j.yqres.2003.08.004
21 U Herzschuh (2006). Palaeo-moisture evolution in monsoonal Central Asia during the last 50000 years.Quat Sci Rev, 25(1–2): 163–178
https://doi.org/10.1016/j.quascirev.2005.02.006
22 U, Herzschuh A, Kramer S, Mischke C Zhang (2009). Quantitative climate and vegetation trends since the late glacial on the northeastern Tibetan Plateau deduced from Koucha Lake pollen spectra.Quat Res, 71(2): 162–171
https://doi.org/10.1016/j.yqres.2008.09.003
23 U, Herzschuh K, Winter B, Wünnemann S Li (2006). A general cooling trend on the central Tibetan Plateau throughout the Holocene recorded by the Lake Zigetang pollen spectra.Quat Int, 154–155: 113–121
https://doi.org/10.1016/j.quaint.2006.02.005
24 J, Hou W J, D’Andrea Z Liu (2012). The influence of 14C reservoir age on interpretation of paleolimnological records from the Tibetan Plateau.Quat Sci Rev, 48: 67–79
https://doi.org/10.1016/j.quascirev.2012.06.008
25 J, Hou Q, Tian J, Liang M, Wang Y He (2017). Climatic implications of hydrologic changes in two lake catchments on the central Tibetan Plateau since the last glacial.J Paleolimnol, 58(2): 257–273
https://doi.org/10.1007/s10933-017-9976-9
26 A M, Hudson J Quade (2013). Long-term east-west asymmetry in monsoon rainfall on the Tibetan Plateau.Geology, 41(3): 351–354
https://doi.org/10.1130/G33837.1
27 L, Jin B, Schneider W, Park M, Latif V, Khon X Zhang (2014). The spatial–temporal patterns of Asian summer monsoon precipitation in response to Holocene insolation change: a model-data synthesis.Quat Sci Rev, 85: 47–62
https://doi.org/10.1016/j.quascirev.2013.11.004
28 M Jin (2006). MODIS observed seasonal and interannual variations of atmospheric conditions associated with hydrological cycle over Tibetan Plateau.Geophys Res Lett, 33(19): L19707
https://doi.org/10.1029/2006GL026713
29 A, Kramer U, Herzschuh S, Mischke C Zhang (2010a). Late glacial vegetation and climate oscillations on the southeastern Tibetan Plateau inferred from the Lake Naleng pollen profile.Quat Res, 73(2): 324–335
https://doi.org/10.1016/j.yqres.2009.12.003
30 A, Kramer U, Herzschuh S, Mischke C Zhang (2010b). Holocene treeline shifts and monsoon variability in the Hengduan Mountains (southeastern Tibetan Plateau), implications from palynological investigations.Palaeogeogr Palaeoclimatol Palaeoecol, 286(1–2): 23–41
https://doi.org/10.1016/j.palaeo.2009.12.001
31 J E Kutzbach (1981). Monsoon climate of the early Holocene: climate experiment with the earth’s orbital parameters for 9000 years ago.Science, 214(4516): 59–61
https://doi.org/10.1126/science.214.4516.59
32 C, Leipe D, Demske P E Tarasov (2014). A Holocene pollen record from the northwestern Himalayan lake Tso Moriri: implications for palaeoclimatic and archaeological research.Quat Int, 348: 93–112
https://doi.org/10.1016/j.quaint.2013.05.005
33 Q, Li H, Lu L, Zhu N, Wu J, Wang X Lu (2011). Pollen-inferred climate changes and vertical shifts of alpine vegetation belts on the northern slope of the Nyainqentanglha Mountains (Central Tibetan Plateau) since 8.4 kyr BP.Holocene, 21(6): 939–950
https://doi.org/10.1177/0959683611400218
34 X, Li X Liu (2015). Numerical simulation of Tibetan Plateau heating anomaly influence on westerly jet in spring.J Earth Syst Sci, 124(8): 1599–1607
https://doi.org/10.1007/s12040-015-0630-5
35 Y, Li L Xu (2016). Asynchronous Holocene Asian monsoon vapor transport and precipitation.Palaeogeography Palaeoclimatology Palaeoecology, 461: 195–200
https://doi.org/10.1016/j.palaeo.2016.08.024
36 X Liang, Y Liu, G Wu (2006). Roles of tropical and subtropical land-sea distribution and the Qinghai-Xizang Plateau in the formation of the Asian summer monsoon. Chin J Geophys-Ch, 49(4): 983–992 (in Chinese)
37 X, Liu H, Dong J A, Rech R, Matsumoto B, Yang Y Wang (2008). Evolution of Chaka Salt Lake in NW China in response to climatic change during the Latest Pleistocene–Holocene.Quat Sci Rev, 27(7–8): 867–879
38 S J, Lorenz G Lohmann (2004). Acceleration technique for Milankovitch type forcing in a coupled atmosphere-ocean circulation model: method and application for the Holocene.Clim Dyn, 23(7–8): 727–743
https://doi.org/10.1007/s00382-004-0469-y
39 F, Lu C, Ma C, Zhu H, Lu X, Zhang K, Huang T, Guo K, Li L, Li B, Li W Zhang (2019). Variability of East Asian summer monsoon precipitation during the Holocene and possible forcing mechanisms.Clim Dyn, 52(1): 969–989
40 X, Lü L, Zhu M, Nishimura Y, Morita T, Watanabe T, Nakamura Y Wang (2011). A high-resolution environmental change record since 19 cal ka BP in Pumoyum Co, southern Tibet.Chin Sci Bull, 56(27): 2931–2940
https://doi.org/10.1007/s11434-011-4656-z
41 S, Mischke M, Kramer C, Zhang H, Shang U, Herzschuh J Erzinger (2008). Reduced early Holocene moisture availability in the Bayan Har Mountains, northeastern Tibetan Plateau, inferred from a multiproxy lake record.Palaeogeogr Palaeoclimatol Palaeoecol, 267(1–2): 59–76
https://doi.org/10.1016/j.palaeo.2008.06.002
42 S, Mischke M, Weynell C, Zhang U Wiechert (2013). Spatial variability of 14C reservoir effects in Tibetan Plateau lakes.Quat Int, 313–314: 147–155
https://doi.org/10.1016/j.quaint.2013.01.030
43 S, Mischke C, Zhang A, Börner U Herzschuh (2010). Lateglacial and Holocene variation in aeolian sediment flux over the northeastern Tibetan Plateau recorded by laminated sediments of a saline meromictic lake.J Quaternary Sci, 25(2): 162–177
https://doi.org/10.1002/jqs.1288
44 C, Morrill J T, Overpeck J E, Cole K B, Liu C, Shen L Tang (2006). Holocene variations in the Asian monsoon inferred from the geochemistry of lake sediments in central Tibet.Quat Res, 65(2): 232–243
https://doi.org/10.1016/j.yqres.2005.02.014
45 C M, Moy G O, Seltzer D T, Rodbell D M Anderson (2002). Variability of El Niño/Southern Oscillation activity at millennial timescales during the Holocene epoch.Nature, 420(6912): 162–165
https://doi.org/10.1038/nature01194
46 I, Mügler G, Gleixner F, Günther R, Maüsbacher G, Daut B, Schütt J, Berking A, Schwalb L, Schwark B, Xu T, Yao L, Zhu C Yi (2010). A multi-proxy approach to reconstruct hydrological changes and Holocene climate development of Nam Co, Central Tibet.J Paleolimnol, 43(4): 625–648
https://doi.org/10.1007/s10933-009-9357-0
47 M, Nishimura T, Matsunaka Y, Morita T, Watanabe T, Nakamura L, Zhu F W, Nara A, Imai Y, Izutsu K Hasuike (2014). Paleoclimatic changes on the southern Tibetan Plateau over the past 19000 years recorded in Lake Pumoyum Co, and their implications for the southwest monsoon evolution.Palaeogeogr Palaeoclimatol Palaeoecol, 396: 75–92
https://doi.org/10.1016/j.palaeo.2013.12.015
48 F Oldfield (1999). The Past Global Changes (PAGES) project: a personal perspective.Quat Sci Rev, 18(3): 317–320
https://doi.org/10.1016/S0277-3791(98)00114-0
49 L A, Owen R C, Finkel P L, Barnard H, Ma K, Asahi M W, Caffee E Derbyshire (2005). Climatic and topographic controls on the style and timing of late Quaternary glaciation throughout Tibet and the Himalaya defined by 10Be cosmogenic radionuclide surface exposure dating.Quat Sci Rev, 24(12–13): 1391–1411
https://doi.org/10.1016/j.quascirev.2004.10.014
50 W, Park N, Keenlyside M, Latif A, Ströh R, Redler E, Roeckner G Madec (2009). Tropical pacific climate and its response to global warming in the Kiel climate model.J Clim, 22(1): 71–92
https://doi.org/10.1175/2008JCLI2261.1
51 P R, Peres-Neto D A Jackson (2001). How well do multivariate data sets match? The advantages of a Procrustean superimposition approach over the Mantel test.Oecologia, 129(2): 169–178
https://doi.org/10.1007/s004420100720
52 M B Richman (1986). Rotation of principal components.J Climatol, 6(3): 293–335
https://doi.org/10.1002/joc.3370060305
53 C, Shen K B, Liu C, Morrill J T, Overpeck J, Peng L Tang (2008). Ecotone shift and major droughts during the mid-late Holocene in the central Tibetan Plateau.Ecology, 89(4): 1079–1088
https://doi.org/10.1890/06-2016.1
54 C, Shen K, Liu L, Tang J T Overpeck (2006). Quantitative relationships between modern pollen rain and climate in the Tibetan Plateau.Rev Palaeobot Palynol, 140(1–2): 61–77
https://doi.org/10.1016/j.revpalbo.2006.03.001
55 J, Shen X, Liu S, Wang R Matsumoto (2005). Palaeoclimatic changes in the Qinghai Lake area during the last 18000 years.Quat Int, 136(1): 131–140
https://doi.org/10.1016/j.quaint.2004.11.014
56 Z, Shi X, Liu X Cheng (2012). Anti-phased response of northern and southern East Asian summer precipitation to ENSO modulation of orbital forcing.Quat Sci Rev, 40: 30–38
https://doi.org/10.1016/j.quascirev.2012.02.019
57 X, Sun N, Du Y, Chen Z, Gu J, Liu B Yuan (1993). Holocene palynological records in lake Selincuo, northern Xizang.Acta Bot Sin, 35(12): 943–950
58 R, Tada H, Zheng P D Clift (2016). Evolution and variability of the Asian monsoon and its potential linkage with uplift of the Himalaya and Tibetan Plateau.Prog Earth Planet Sci, 3(1): 4
https://doi.org/10.1186/s40645-016-0080-y
59 L Tang, C Shen, J Liao, S Yu, C Li (2004). Climate change on the southeastern Xizang since last glacial maximum. Sci China Ser D Earth Sci, 34: 436–442 (in Chinese)
60 L, Tian V, Masson‐Delmotte M, Stievenard T, Yao J Jouzel (2001). Tibetan Plateau summer monsoon northward extent revealed by measurements of water stable isotopes.J Geophys Res, 106(D22): 28081–28088
https://doi.org/10.1029/2001JD900186
61 S, Tschudi J M, Schafer Z, Zhao X, Wu S, Ivy-Ochs P W, Kubik C Schluchter (2003). Glacial advances in Tibet during the Younger Dryas? Evidence from cosmogenic 10Be, 26Al, and 21Ne.J Asian Earth Sci, 22(4): 301–306
https://doi.org/10.1016/S1367-9120(03)00035-X
62 Campo E, Van P, Cour S Hang (1996). Holocene environmental changes in Bangong Co basin (Western Tibet). Part 2: The pollen record.Palaeogeogr Palaeoclimatol Palaeoecol, 120(1–2): 49–63
https://doi.org/10.1016/0031-0182(95)00033-X
63 Campo E, Van F Gasse (1993). Pollen- and diatom-inferred climatic and hydrological changes in Sumxi Co Basin (Western Tibet) since 13000 yr B.P.Quat Res, 39(3): 300–313
https://doi.org/10.1006/qres.1993.1037
64 N Wang, L Jin, X Zhang (2015). The spatial and temporal variation characteristics of the South Asia high and Western Pacific Subtropical High on millennial time scale. Quaternary Sciences, 35(6): 1425–1436 (in Chinese)
65 Y, Wang B, Bekeschus D, Handorf X, Liu A, Dallmeyer U Herzschuh (2017). Coherent tropical-subtropical Holocene see-saw moisture patterns in the Eastern Hemisphere monsoon systems.Quat Sci Rev, 169(1): 231–242
https://doi.org/10.1016/j.quascirev.2017.06.006
66 Y, Wang X, Liu U Herzschuh (2010). Asynchronous evolution of the Indian and East Asian Summer Monsoon indicated by Holocene moisture patterns in monsoonal central Asia.Earth Sci Rev, 103(3–4): 135–153
https://doi.org/10.1016/j.earscirev.2010.09.004
67 R, Wilson R, Cook N, D’Arrigo M N, Riedwyl M N, Evans A, Tudhope R Allan (2010). Reconstructing ENSO: the influence of method, proxy data, climate forcing and teleconnections.J Quaternary Sci, 25(1): 62–78
https://doi.org/10.1002/jqs.1297
68 J, Wischnewski S, Mischke Y, Wang U Herzschuh (2011). Reconstructing climate variability on the northeastern Tibetan Plateau since the last Lateglacial - a multi-proxy, dual-site approach comparing terrestrial and aquatic signals.Quat Sci Rev, 30(1–2): 82–97
https://doi.org/10.1016/j.quascirev.2010.10.001
69 D, Wu X, Ma Z, Yuan A L, Hillman J, Zhang J, Chen A Zhou (2022). Holocene hydroclimatic variations on the Tibetan Plateau: an isotopic perspective.Earth Sci Rev, 233: 104169
https://doi.org/10.1016/j.earscirev.2022.104169
70 G, Wu Y, Liu B, Dong X, Liang A, Duan Q, Bao J Yu (2012). Revisiting Asian monsoon formation and change associated with Tibetan Plateau forcing: I. Formation.Clim Dyn, 39(5): 1169–1181
https://doi.org/10.1007/s00382-012-1334-z
71 Y, Wu A, Lücke Z, Jin S, Wang G H, Schleser R W, Battarbee W Xia (2006). Holocene climate development on the central Tibetan Plateau: a sedimentary record from Cuoe Lake.Palaeogeogr Palaeoclimatol Palaeoecol, 234(2–4): 328–340
72 C, Xu M, Sano T Nakatsuka (2013). A 400-year record of hydroclimate variability and local ENSO history in northern Southeast Asia inferred from tree-ring δ18O.Palaeogeogr Palaeoclimatol Palaeoecol, 386: 588–598
https://doi.org/10.1016/j.palaeo.2013.06.025
73 T, Xu L, Zhu X, Lü Q, Ma J, Wang J, Ju L Huang (2019). Mid-to late-Holocene paleoenvironmental changes and glacier fluctuations reconstructed from the sediments of proglacial lake Buruo Co, northern Tibetan Plateau.Palaeogeogr Palaeoclimatol Palaeoecol, 517: 74–85
https://doi.org/10.1016/j.palaeo.2018.12.023
74 F, Yang K M Lau (2004). Trend and variability of China precipitation in spring and summer: linkage to sea-surface temperatures.Int J Climatol, 24(13): 1625–1644
https://doi.org/10.1002/joc.1094
75 X, Yang B, Zhu X, Wang C, Li Z, Zhou J, Chen X, Wang J, Yin Y Lu (2008). Late Quaternary environmental changes and organic carbon density in the Hunshandake Sandy Land, eastern Inner Mongolia, China.Global Planet Change, 61(1–2): 70–78
https://doi.org/10.1016/j.gloplacha.2007.08.007
76 X, Yu W, Zhou L G, Franzen F, Xian P, Cheng A J T Jull (2006). High-resolution peat records for Holocene monsoon history in the eastern Tibetan Plateau.Sci China Ser D Earth Sci, 49(6): 615–621
https://doi.org/10.1007/s11430-006-0615-y
77 C, Zhang S Mischke (2009). A Lateglacial and Holocene lake record from the Nianbaoyeze Mountains and inferences of lake, glacier and climate evolution on the eastern Tibetan Plateau.Quat Sci Rev, 28(19–20): 1970–1983
https://doi.org/10.1016/j.quascirev.2009.03.007
78 C, Zhang W, Zhang D, Cheng N, Yang X, Hou H, Li X, Zhang A Ramamoorthy (2022). Hydrochemical characteristics and paleoclimate changes recorded from Sugan Lake on the northern boundary of Tibetan Plateau since mid-Holocene.Catena, 217: 106527
https://doi.org/10.1016/j.catena.2022.106527
79 J, Zhang F, Chen J A, Holmes H, Li X, Guo J, Wang S, Li Y, Lü Y, Zhao M Qiang (2011). Holocene monsoon climate documented by oxygen and carbon isotopes from lake sediments and peat bogs in China: a review and synthesis.Quat Sci Rev, 30(15–16): 1973–1987
https://doi.org/10.1016/j.quascirev.2011.04.023
80 X, Zhang L, Jin J, Chen H, Lu F Chen (2018). Lagged response of summer precipitation to insolation forcing on the northeastern Tibetan Plateau during the Holocene.Clim Dyn, 50(9–10): 3117–3129
https://doi.org/10.1007/s00382-017-3784-9
81 X, Zhang L, Jin W Jia (2016). Centennial-scale teleconnection between North Atlantic sea surface temperatures and the Indian summer monsoon during the Holocene.Clim Dyn, 46(9–10): 3323–3336
https://doi.org/10.1007/s00382-015-2771-2
82 Y, Zhang B, Li L, Liu D Zheng (2021). Redetermine the region and boundaries of Tibetan Plateau.Geogr Res, 40(6): 1543–1553
83 Y, Zhang B, Li D Zheng (2002). Adiscussion on the boundary and area of the Tibetan Plateau in China.Geogr Res, 21(1): 1–8
84 Y, Zhao Z, Yu F Chen (2009a). Spatial and temporal patterns of Holocene vegetation and climate changes in arid and semi-arid China.Quat Int, 194(1–2): 6–18
https://doi.org/10.1016/j.quaint.2007.12.002
85 Y, Zhao Z, Yu F, Chen E, Ito C Zhao (2007). Holocene vegetation and climate history at Hurleg Lake in the Qaidam Basin, northwest China.Rev Palaeobot Palynol, 145(3–4): 275–288
https://doi.org/10.1016/j.revpalbo.2006.12.002
86 Y, Zhao Z, Yu F, Chen J, Zhang B Yang (2009b). Vegetation response to Holocene climate change in monsoon-influenced region of China.Earth Sci Rev, 97(1–4): 242–256
https://doi.org/10.1016/j.earscirev.2009.10.007
87 L, Zhu X, Lü J, Wang P, Peng T, Kasper G, Daut T, Haberzettl P, Frenzel Q, Li R, Yang A, Schwalb R Mäusbacher (2015). Climate change on the Tibetan Plateau in response to shifting atmospheric circulation since the LGM.Sci Rep, 5: 13318
https://doi.org/10.1038/srep13318
88 L, Zhu X, Zhen J, Wang H, Lü M, Xie H, Kitagawa G Possnert (2009). A ~30,000-year record of environmental changes inferred from Lake Chen Co, Southern Tibet.J Paleolimnol, 42(3): 343–358
https://doi.org/10.1007/s10933-008-9280-9
[1] FES-22049-OF-ZZY_suppl_1 Download
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed