Please wait a minute...
Frontiers of Earth Science

ISSN 2095-0195

ISSN 2095-0209(Online)

CN 11-5982/P

邮发代号 80-963

2019 Impact Factor: 1.62

Frontiers of Earth Science  2023, Vol. 17 Issue (4): 933-944   https://doi.org/10.1007/s11707-022-1055-5
  本期目录
Alternating influences of the Westerlies and Indian Summer Monsoon on the hydroclimate of the source region of the Yarlung Tsangpo over past 4000 yr
Zhe SUN1,2(), Zirui HUANG1, Kejia JI2, Mingda WANG2,4, Juzhi HOU2,3()
1. Institute of Geography and Resources Science, Sichuan Normal University, Chengdu 610066, China
2. Group of Alpine Paleoecology and Human Adaptation (ALPHA), State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment (TPESER), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
3. CAS Center for Excellence in Tibetan Plateau Earth Sciences, Chinese Academy of Sciences (CAS), Beijing 100101, China
4. School of Geography, Liaoning Normal University, Dalian 116029, China
 全文: PDF(19627 KB)   HTML
Abstract

The Yarlung Tsangpo, the longest river in the southern Tibetan Plateau (TP), has attracted much research attention aimed at understanding the factors controlling its modern hydrology and possible future discharge in the context of ongoing climate change. However, partly due to the complex regional climatic background, no consistent conclusions have been reached, especially for its upper reaches. Paleohydrological reconstructions of the source region of the Yarlung Tsangpo can potentially improve our understanding of the history of humidity and its response to climatic variability. In this study, we used a 97 cm gravity core from Gongzhu Co to reconstruct the hydrology change during the late Holocene. The core was dated using AMS 14C and Pb/Cs methods, and we used measurements of element contents (determined by high-resolution XRF scanning), grain size, IC/TOC, and magnetic susceptibility to reconstruct hydroclimatic changes in the source of the Yarlung Tsangpo watershed since ~4000 yr ago. Combined with a modern meteorological data set, we found that PC1 of the XRF data, the Ca/(Fe + Ti) ratio, and EM1 of the grain size data were indicative of changes in humidity. Our records demonstrate a wet interval during ~4–1.7 ka BP (ka = 1000 yr, BP represents years before 1950 AD), followed by a dry period during since ~1 ka BP. Comparison with independent regional paleoclimatic records revealed shifts in the dominant factors controlling humidity. The wet interval during ~4–1.7 ka BP was coeval with a strengthened Westerlies, implying a dominant moisture supply from northern high latitudes. However, the extremely low values of Ca/(Fe + Ti) ratio during ~4–2.5 ka BP indicate potential glacial freshwater source, which is corroborated by the concurrent high magnetic susceptibility values and increased grain size. The rapid drying trend during ~1.7–1 ka BP suggests a switch in moisture supply from the Westerlies to the Indian Summer Monsoon (ISM). We attribute the drought conditions after ~1 ka BP to a weakened ISM, although a Westerlies influence and the potential effect of high temperatures on evaporation cannot be excluded. We suggest that future hydroclimatic research in this region should attempt to distinguish the individual moisture contributions of the ISM and the Westerlies during the last millennium.

Key wordslate Holocene    humidity changes    Westerlies    ISM    Yarluang Tsangpo
收稿日期: 2022-10-12      出版日期: 2024-02-06
Corresponding Author(s): Zhe SUN,Juzhi HOU   
 引用本文:   
. [J]. Frontiers of Earth Science, 2023, 17(4): 933-944.
Zhe SUN, Zirui HUANG, Kejia JI, Mingda WANG, Juzhi HOU. Alternating influences of the Westerlies and Indian Summer Monsoon on the hydroclimate of the source region of the Yarlung Tsangpo over past 4000 yr. Front. Earth Sci., 2023, 17(4): 933-944.
 链接本文:  
https://academic.hep.com.cn/fesci/CN/10.1007/s11707-022-1055-5
https://academic.hep.com.cn/fesci/CN/Y2023/V17/I4/933
Fig.1  
Fig.2  
Laboratory IDDepth/cmMaterial14C age/(yr BP)Error/yrRA* corrected 14C age/(yr BP)Cal age/(yr BP)Cal age error/yr
Beta-62480530TOC36603080070618.5
Beta-63509840TOC4050301190111661.5
Beta-63509950TOC3570301782164522
Beta-62480660TOC3710301922181877
Beta-63510070TOC4030302242221057.5
Beta-63510180TOC4470302682280048.5
Beta-62480790TOC5230303442367558.5
Tab.1  
Fig.3  
Fig.4  
Fig.5  
Fig.6  
1 E M, Aizen V B, Aizen N, Takeuchi P A, Mayewski B, Grigholm D R, Joswiak S A, Nikitin K, Fujita M, Nakawo A, Zapf M Schwikowski (2016). Abrupt and moderate climate changes in the mid-latitudes of Asia during the Holocene.J Glaciol, 62(233): 411–439
https://doi.org/10.1017/jog.2016.34
2 Z, An S M, Colman W, Zhou X, Li E T, Brown A J T, Jull Y, Cai Y, Huang X, Lu H, Chang Y, Song Y, Sun H, Xu W, Liu Z, Jin X, Liu P, Cheng Y, Liu L, Ai X, Li X, Liu L, Yan Z, Shi X, Wang F, Wu X, Qiang J, Dong F, Lu X Xu (2012). Interplay between the Westerlies and Asian monsoon recorded in Lake Qinghai sediments since 32 ka.Sci Rep, 2(1): 619
https://doi.org/10.1038/srep00619
3 P G, Appleby F Oldfield (1978). The calculation of lead-210 dates assuming a constant rate of supply of unsupported 210Pb to the sediment.Catena, 5(1): 1–8
https://doi.org/10.1016/S0341-8162(78)80002-2
4 M, Blaauw J A Christen (2011). Flexible paleoclimate age-depth models using an autoregressive gamma process.Bayesian Anal, 6(3): 457–474
https://doi.org/10.1214/ba/1339616472
5 E T, Brown T C, Johnson C A, Scholz A S, Cohen J W King (2007). Abrupt change in tropical African climate linked to the bipolar seesaw over the past 55000 years.Geophys Res Lett, 34(20): L20702
https://doi.org/10.1029/2007GL031240
6 Y J, Cai H W, Zhang H, Cheng Z S, An R L, Edwards X F, Wang L C, Tan F Y, Liang J, Wang M Kelly (2012). The Holocene Indian monsoon variability over the southern Tibetan Plateau and its teleconnections.Earth Planet Sci Lett, 335–336: 135–144
https://doi.org/10.1016/j.epsl.2012.04.035
7 F H, Chen Z C, Yu M L, Yang E, Ito S M, Wang D B, Madsen X Z, Huang Y, Zhao T, Sato H J B, Birks I, Boomer J H, Chen C B, An B Wünnemann (2008). Holocene moisture evolution in arid central Asia and its out-of-phase relationship with Asian monsoon history.Quat Sci Rev, 27(3–4): 351–364
https://doi.org/10.1016/j.quascirev.2007.10.017
8 F, Chen J L, Feng H P, Hu J F, Zhang S P, Gao X M Liu (2017). Potential forcing mechanisms of Holocene lake-level changes at Nam Co, Tibetan Plateau: inferred from the stable isotopic composition of shells of the gastropod Radix.Holocene, 27(4): 594–604
https://doi.org/10.1177/0959683616670247
9 J H, Chen Z G, Rao J B, Liu W, Huang S, Feng G H, Dong Y, Hu Q H, Xu F H Chen (2016). On the timing of the East Asian summer monsoon maximum during the Holocene–does the speleothem oxygen isotope record reflect monsoon rainfall variability?.Sci China Earth Sci, 59(12): 2328–2338
https://doi.org/10.1007/s11430-015-5500-5
10 A S Cohen (2003). Paleolimnology: the History and Evolution of Lake Systems. New York: Oxford University Press
11 D, Demske P E, Tarasov B, Wunnemann F Riedel (2009). Late glacial and Holocene vegetation, Indian monsoon and westerly circulation in the Trans-Himalaya recorded in the lacustrine pollen sequence from Tso Kar, Ladakh, NW India.Palaeogeogr Palaeoclimatol Palaeoecol, 279(3–4): 172–185
https://doi.org/10.1016/j.palaeo.2009.05.008
12 E, Dietze K, Hartmann B, Diekmann J, Ijmker F, Lehmkuhl S, Opitz G, Stauch B, Wünnemann A Borchers (2012). An end-member algorithm for deciphering modern detrital processes from lake sediments of Lake Donggi Cona, NE Tibetan Plateau, China.Sediment Geol, 243–244: 169–180
https://doi.org/10.1016/j.sedgeo.2011.09.014
13 E, Dietze F, Maussion M, Ahlborn B, Diekmann K, Hartmann K, Henkel T, Kasper G, Lockot S, Opitz T Haberzettl (2014). Sediment transport processes across the Tibetan Plateau inferred from robust grain-size end members in lake sediments.Clim Past, 10(1): 91–106
https://doi.org/10.5194/cp-10-91-2014
14 F, Gasse J C, Fontes E, VanCampo K Wei (1996). Holocene environmental changes in Bangong Co basin (western Tibet). 4. Discussion and conclusions.Palaeogeogr Palaeoclimatol Palaeoecol, 120(1–2): 79–92
https://doi.org/10.1016/0031-0182(95)00035-6
15 H, Guyard E, Chapron G, St-Onge F S, Anselmetti F, Arnaud O, Magand P, Francus M A Melieres (2007). High-altitude varve records of abrupt environmental changes and mining activity over the last 4000 years in the Western French Alps (Lake Bramant, Grandes Rousses Massif).Quat Sci Rev, 26(19–21): 2644–2660
https://doi.org/10.1016/j.quascirev.2007.07.007
16 J, He K, Yang W, Tang H, Lu J, Qin Y, Chen X Li (2020). The first high-resolution meteorological forcing dataset for land process studies over China.Sci Data, 7(1): 25
https://doi.org/10.1038/s41597-020-0369-y
17 Y X, He C, Zhao Z H, Liu H Y, Wang W G, Liu Z C, Yu Y, Zhao E Ito (2016). Holocene climate controls on water isotopic variations on the northeastern Tibetan Plateau.Chem Geol, 440: 239–247
https://doi.org/10.1016/j.chemgeo.2016.07.024
18 J Z, Hou W J, D’Andrea Z H Liu (2012). The influence of C-14 reservoir age on interpretation of paleolimnological records from the Tibetan Plateau.Quat Sci Rev, 48: 67–79
https://doi.org/10.1016/j.quascirev.2012.06.008
19 J Z, Hou W J, D’Andrea M D, Wang Y, He J Liang (2017a). Influence of the Indian monsoon and the subtropical jet on climate change on the Tibetan Plateau since the late Pleistocene.Quat Sci Rev, 163: 84–94
https://doi.org/10.1016/j.quascirev.2017.03.013
20 J Z, Hou Q, Tian J, Liang M D, Wang Y He (2017b). Climatic implications of hydrologic changes in two lake catchments on the central Tibetan Plateau since the last glacial.J Paleolimnol, 58(2): 257–273
https://doi.org/10.1007/s10933-017-9976-9
21 X Z, Huang F H, Chen Y X, Fan M L Yang (2009). Dry late-glacial and early Holocene climate in arid central Asia indicated by lithological and palynological evidence from Bosten Lake, China.Quat Int, 194(1–2): 19–27
https://doi.org/10.1016/j.quaint.2007.10.002
22 A M, Hudson J, Quade T E, Huth G L, Lei H, Cheng L R, Edwards J W, Olsen H C Zhang (2015). Lake level reconstruction for 12.8–2.3 ka of the Ngangla Ring Tso closed-basin lake system, southwest Tibetan Plateau.Quat Res, 83(1): 66–79
https://doi.org/10.1016/j.yqres.2014.07.012
23 T, Huth A M, Hudson J, Quade G L, Lei H C Zhang (2015). Constraints on paleoclimate from 11.5 to 5.0 ka from shoreline dating and hydrologic budget modeling of Baqan Tso, southwestern Tibetan Plateau.Quat Res, 83(1): 80–93
https://doi.org/10.1016/j.yqres.2014.07.011
24 Q, Jiang B, Meng Z, Wang P, Qian J, Zheng J, Jiang C, Zhao J, Hou G, Dong J, Shen W, Liu Z, Liu F Chen (2022). Exceptional terrestrial warmth around 4200–2800 years ago in northwest China.Sci Bull (Beijing), 67(4): 427–436
https://doi.org/10.1016/j.scib.2021.11.001
25 H L Jin, G R Dong, C L Zhang (2000). Deposition features and causes of loess in Yarlung Zangbo River Valley area . J Desert Res, 20: 14–19 (in Chinese)
26 Z D, Jin F C, Li J J, Cao S M, Wang J M Yu (2006). Geochemistry of Daihai Lake sediments, Inner Mongolia, north China: implications for provenance, sedimentary sorting, and catchment weathering.Geomorphology, 80(3–4): 147–163
https://doi.org/10.1016/j.geomorph.2006.02.006
27 T, Kasper J B, Wang A, Schwalb G, Daut B, Plessen L P, Zhu R, Mausbacher T Haberzettl (2021). Precipitation dynamics on the Tibetan Plateau during the Late Quaternary–Hydroclimatic sedimentary proxies versus lake level variability.Global Planet Change, 205: 103594
https://doi.org/10.1016/j.gloplacha.2021.103594
28 G, Kathayat H, Cheng A, Sinha L, Yi X, Li H, Zhang H, Li Y, Ning R L Edwards (2017). The Indian monsoon variability and civilization changes in the Indian subcontinent.Sci Adv, 3(12): e1701296
https://doi.org/10.1126/sciadv.1701296
29 M E, Kylander L, Ampel B, Wohlfarth D Veres (2011). High-resolution X-ray fluorescence core scanning analysis of Les Echets (France) sedimentary sequence: new insights from chemical proxies.J Quaternary Sci, 26(1): 109–117
https://doi.org/10.1002/jqs.1438
30 C, Leipe D, Demske P E Tarasov (2014). A Holocene pollen record from the northwestern Himalayan lake Tso Moriri: implications for palaeoclimatic and archaeological research.Quat Int, 348: 93–112
https://doi.org/10.1016/j.quaint.2013.05.005
31 C G, Li M D, Wang W G, Liu S Y, Lee F H, Chen J Z Hou (2021). Quantitative estimates of Holocene glacier meltwater variations on the Western Tibetan Plateau.Earth Planet Sci Lett, 559: 116766
https://doi.org/10.1016/j.epsl.2021.116766
32 X M, Li H, Yan B W, Fan C G, Zhang W Xing (2021). Climatic changes during the last two millennia on the southern Tibetan Plateau based on lake sediment and its forcing mechanisms.J Xinyang Normal U (Nat Sci Ed), 34(4): 584–588
https://doi.org/10.3969/j.issn.1003-0972.2021.04.013
33 Z Y, Ling J S, Li J H, Jin J P, Wang F C, Kong L Chen (2021). Geochemical characteristics and provenance of aeolian sediments in the Yarlung Tsangpo valley, southern Tibetan Plateau.Environ Earth Sci, 80(18): 623
https://doi.org/10.1007/s12665-021-09928-5
34 Z Y, Ling S L, Yang X, Wang J P, Wang D S, Xia F H Chen (2020). Spatial-temporal differentiation of eolian sediments in the Yarlung Tsangpo catchment, Tibetan Plateau, and response to global climate change since the Last Glaciation.Geomorphology, 357: 107104
https://doi.org/10.1016/j.geomorph.2020.107104
35 B, Liu H, Xu J H, Lan E G, Sheng S, Che X Y Zhou (2014). Biogenic silica contents of Lake Qinghai sediments and its environmental significance.Front Earth Sci, 8(4): 573–581
https://doi.org/10.1007/s11707-014-0440-0
36 X J, Liu Y X, Wang X D, Miao X J, Ou C Y, Zheng Y T, Xu Z P Lai (2022). Holocene lake level variations of Dagze Co in central Tibetan Plateau revealed by OSL dates on palaeoshorelines.Catena, 219: 106645
https://doi.org/10.1016/j.catena.2022.106645
37 Y B, Lu S C, Fritz J R, Stone T R, Krause C, Whitlock E T, Brown J V Benes (2017). Trends in catchment processes and lake evolution during the late-glacial and early- to mid-Holocene inferred from high-resolution XRF data in the Yellowstone region.J Paleolimnol, 58(4): 551–569
https://doi.org/10.1007/s10933-017-9991-x
38 A F, Lutz W W, Immerzeel A B, Shrestha M F P Bierkens (2014). Consistent increase in High Asia’s runoff due to increasing glacier melt and precipitation.Nat Clim Chang, 4(7): 587–592
https://doi.org/10.1038/nclimate2237
39 L F Ma (2002) Gological Atlas of China. Beijing: Geology Press (in Chinese)
40 Q F, Ma L P, Zhu X M, Lu Y, Guo J T, Ju J B, Wang Y, Wang L Y Tang (2014). Pollen-inferred Holocene vegetation and climate histories in Taro Co, southwestern Tibetan Plateau.Chin Sci Bull, 59(31): 4101–4114
https://doi.org/10.1007/s11434-014-0505-1
41 S, Mischke C J Zhang (2010). Holocene cold events on the Tibetan Plateau.Global Planet Change, 72(3): 155–163
https://doi.org/10.1016/j.gloplacha.2010.02.001
42 P K, Mishra A, Anoop G, Schettler S, Prasad A, Jehangir P, Menzel R, Naumann A R, Yousuf N, Basavaiah K, Deenadayalan M G, Wiesner B Gaye (2015). Reconstructed late Quaternary hydrological changes from Lake Tso Moriri, NW Himalaya.Quat Int, 371: 76–86
https://doi.org/10.1016/j.quaint.2014.11.040
43 A D, Mueller G A, Islebe M B, Hillesheim D A, Grzesik F S, Anselmetti D, Ariztegui M, Brenner J H, Curtis D A, Hodell K A Venz (2009). Climate drying and associated forest decline in the lowlands of northern Guatemala during the late Holocene.Quat Res, 71(2): 133–141
https://doi.org/10.1016/j.yqres.2008.10.002
44 M, Nishimura T, Matsunaka Y, Morita T, Watanabe T, Nakamura L P, Zhu F W, Nara A, Imai Y, Izutsu K Hasuike (2014). Paleoclimatic changes on the southern Tibetan Plateau over the past 19000 years recorded in Lake Pumoyum Co, and their implications for the southwest monsoon evolution.Palaeogeogr Palaeoclimatol Palaeoecol, 396: 75–92
https://doi.org/10.1016/j.palaeo.2013.12.015
45 B L, Pan C L, Yi T, Jiang G C, Dong G, Hu Y Jin (2012). Holocene lake-level changes of Linggo Co in central Tibet.Quat Geochronol, 10: 117–122
https://doi.org/10.1016/j.quageo.2012.03.009
46 G A, Paterson D Heslop (2015). New methods for unmixing sediment grain size data.Geochem Geophys Geosyst, 16(12): 4494–4506
https://doi.org/10.1002/2015GC006070
47 R, Schiemann D, Lüthi C Schär (2009). Seasonality and interannual variability of the westerly jet in the Tibetan Plateau region.J Clim, 22(11): 2940–2957
https://doi.org/10.1175/2008JCLI2625.1
48 I, Snowball P, Sandgren G Petterson (1999). The mineral magnetic properties of an annually laminated Holocene lake-sediment sequence in northern Sweden.Holocene, 9(3): 353–362
https://doi.org/10.1191/095968399670520633
49 F, Su L, Zhang T, Ou D, Chen T, Yao K, Tong Y Qi (2016). Hydrological response to future climate changes for the major upstream river basins in the Tibetan Plateau.Global Planet Change, 136: 82–95
https://doi.org/10.1016/j.gloplacha.2015.10.012
50 C, Wang H L, Wang G, Song M P Zheng (2019). Grain size of surface sediments in Selin Co (central Tibet) linked to water depth and offshore distance.J Paleolimnol, 61(2): 217–229
https://doi.org/10.1007/s10933-018-0054-8
51 R L, Wang S C, Scarpitta S C, Zhang M P Zheng (2002). Later Pleistocene/Holocene climate conditions of Qinghai–Xizhang Plateau (Tibet) based on carbon and oxygen stable isotopes of Zabuye Lake sediments.Earth Planet Sci Lett, 203(1): 461–477
https://doi.org/10.1016/S0012-821X(02)00829-4
52 R, Wang Y Z, Zhang B, Wünnemann B K, Biskaborn H, Yin F, Xia L F, Zhou B Diekmann (2015). Linkages between Quaternary climate change and sedimentary processes in Hala Lake, northern Tibetan Plateau, China.J Asian Earth Sci, 107: 140–150
https://doi.org/10.1016/j.jseaes.2015.04.008
53 S M Wang, H S Dou (1998). Lake in China. Beijing: Science Press (in Chinese)
54 T, Wang Y T, Zhao C Y, Xu P, Ciais D, Liu H, Yang S L, Piao T D Yao (2021). Atmospheric dynamic constraints on Tibetan Plateau freshwater under Paris climate targets.Nat Clim Chang, 11(3): 219–225
https://doi.org/10.1038/s41558-020-00974-8
55 B, Wünnemann D, Demske P, Tarasov B S, Kotlia C, Reinhardt J, Bloemendal B, Diekmann K, Hartmann J, Krois F, Riedel N Arya (2010). Hydrological evolution during the last 15 kyr in the Tso Kar lake basin (Ladakh, India), derived from geomorphological, sedimentological and palynological records.Quat Sci Rev, 29(9–10): 1138–1155
https://doi.org/10.1016/j.quascirev.2010.02.017
56 X D, Xu C G, Lu X H, Shi S T Gao (2008). World water tower: an atmospheric perspective.Geophys Res Lett, 35(20): L20815
https://doi.org/10.1029/2008GL035867
57 T D, Yao T, Bolch D L, Chen J, Gao W, Immerzeel S L, Piao F G, Su L, Thompson Y, Wada L, Wang T, Wang G J, Wu B Q, Xu W, Yang G Q, Zhang P Zhao (2022). The imbalance of the Asian water tower.Nat Rev Earth Environ, 3(10): 618–632
https://doi.org/10.1038/s43017-022-00299-4
58 L, Zhu X, Lü J, Wang P, Peng T, Kasper G, Daut T, Haberzettl P, Frenzel Q, Li R, Yang A, Schwalb R Mäusbacher (2015). Climate change on the Tibetan Plateau in response to shifting atmospheric circulation since the LGM.Sci Rep, 5(1): 13318
https://doi.org/10.1038/srep13318
59 S H Zhu, L P Zhu, J B Wang, J T Ju, Q F Ma, H Chen, T Xu, J L Kai (2019). Environmental changes reflected by core sediments since late glacial in Mapam Yumco, southwest Tibet of China. Quatern Sci, 39: 602–614 (in Chinese)
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed