Please wait a minute...
Frontiers of Earth Science

ISSN 2095-0195

ISSN 2095-0209(Online)

CN 11-5982/P

邮发代号 80-963

2019 Impact Factor: 1.62

Frontiers of Earth Science  2023, Vol. 17 Issue (4): 905-919   https://doi.org/10.1007/s11707-022-1084-0
  本期目录
A re-evaluation of the average chain length of lacustrine sedimentary n-alkanes as a paleoproxy on the Qinghai-Tibet Plateau
Mingda WANG1,2,3(), Qin LI1(), Jaime TONEY3, David HENDERSON3, Juzhi HOU2,4
1. School of Geography, Liaoning Normal University, Dalian 116029, China
2. Alpine Paleoecology and Human Adaptation (ALPHA) Group, State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
3. School of Geographical and Earth Sciences, University of Glasgow, Glasgow G12 8QQ, Scotland, UK
4. CAS Center for Excellence in Tibetan Plateau Earth Sciences, Beijing 100101, China
 全文: PDF(23016 KB)   HTML
Abstract

Long-chain n-alkanes are one of the most common organic compounds in terrestrial plants and they are well-preserved in various geological archives. n-alkanes are relatively resistant to degradation and thus they can provide high-fidelity records of past vegetation and climate changes. Nevertheless, previous studies have shown that the interpretation of n-alkane proxies, such as the average chain length (ACL), is often ambiguous since this proxy depends on more than one variable. Both vegetation and climate could exert controls on the n-alkane ACL, and hence its interpretation requires careful consideration, especially in regions like the Qinghai-Tibet Plateau (QTP) where topography, biome type and moisture source are highly variable. To further evaluate the influences of vegetation and climate on the ACL in high-elevation lakes, we examined the n-alkane distributions of the surface sediments of 55 lakes across the QTP. Our results show that the ACL across a climatic gradient is significantly affected by precipitation, rather than by temperature. The positive correlation between ACL and precipitation may be because of the effect of microbial degradation during deposition. Finally, we suggest that more caution is needed in the interpretation of ACL data in different regions.

Key wordsACL    average chain length    n-alkanes    leaf wax    lake sediments    Qinghai-Tibet Plateau
收稿日期: 2022-08-13      出版日期: 2024-02-06
Corresponding Author(s): Mingda WANG,Qin LI   
 引用本文:   
. [J]. Frontiers of Earth Science, 2023, 17(4): 905-919.
Mingda WANG, Qin LI, Jaime TONEY, David HENDERSON, Juzhi HOU. A re-evaluation of the average chain length of lacustrine sedimentary n-alkanes as a paleoproxy on the Qinghai-Tibet Plateau. Front. Earth Sci., 2023, 17(4): 905-919.
 链接本文:  
https://academic.hep.com.cn/fesci/CN/10.1007/s11707-022-1084-0
https://academic.hep.com.cn/fesci/CN/Y2023/V17/I4/905
Fig.1  
No. Lake Latitude/°N Longitude/°E Elevation/m Lake area/ km2 Salinity/(g·L−1) pH MAAT/°C MAP/mm Vegetation zone
1 Shen Co 30.9983 90.4792 4734 52 9.26 9.73 −1.45 350 steppe
2 Guozha Co 34.9791 80.9386 5086 245 2.98 9.20 −6.93 44 desert
3 Bamu Co 31.2634 90.5895 4565 255 7.51 9.70 −0.87 350 steppe
4 Gahai 37.1404 97.5304 2852 35 76−94* 8.40 4.73 197 desert
5 Zigetang Co 32.0729 90.8625 4573 238 13.5 10.00 −1.38 372 steppe
6 Rena Co 32.7328 84.2545 4599 21 15.2 9.25 −0.83 131 steppe
7 Xiaochaidan 37.4964 95.5019 3177 88 50* 8.30 2.29 88 desert
8 Bangong Co 33.5171 79.8252 4244 671 0.47 8.73 −0.59 88 desert
9 Yangnapeng Co 32.3409 89.7726 4634 17 30 9.92 −0.57 285 steppe
10 Cuoe-2 31.4606 91.4999 4528 85 3.63 9.51 −1.30 394 meadow
11 Bieruoze Co 32.4304 82.9228 4407 36 27.38 8.97 1.47 131 steppe
12 Gemang Co 31.5825 87.2822 4610 62 6.35 9.73 −1.25 219 steppe
13 Dasugan 38.8740 93.9036 2796 108 20 8.90 1.77 44 desert
14 Bangda Co 34.9420 81.4888 4909 143 35.11 8.50 −5.53 44 desert
15 Anggu Co 31.1997 85.4482 4665 33 1.89 9.10 −2.35 197 steppe
16 Jieze Chaka 33.9417 80.8814 4530 114 146* 9* −1.64 66 desert-steppe
17 Nairiping Co 31.2821 91.4713 4529 93 7.96 9.98 −1.22 394 steppe
18 Lagor Co 32.0506 84.1696 4472 96 40.27 8.94 −0.36 110 steppe
19 Pusaier Co 32.3147 89.4297 4593 34 5.3 9.66 −0.06 263 steppe
20 Aweng Co 32.7695 81.7193 4430 70 27.65 9.20 1.63 131 steppe
21 Dong Co 32.1752 84.7392 4399 105 46.25 8.82 −0.35 110 steppe
22 Angrenjin Co 29.3104 87.1997 4303 21 5.26 9.64 3.90 350 steppe
23 Cuona 32.0215 91.4819 4590 191 0.27 8.70 −1.54 372 meadow
24 Lang Co 29.2068 87.4050 4296 10 1.58 9.44 4.57 329 steppe
25 Zhangnai Co 31.5467 87.3852 4611 44 4.06 9.60 −1.13 241 steppe
26 Peng Co 31.4843 90.9576 4534 176 8.54 9.91 −1.29 372 steppe
27 Dawa Co 31.2371 84.9667 4628 118 18.58 9.30 −2.14 197 steppe
28 Selin Co 31.7675 88.7988 4544 2300 8.36 9.33 0.22 241 steppe
29 Qiagui Co 31.8153 88.2320 4558 89 0.22 8.83 −0.11 241 steppe
30 Kongmu Co 29.0128 90.4394 4450 37 0.23 8.55 2.02 416 steppe
31 Dongji Cona 35.3334 98.5351 4086 241 0.35 8.76 −2.30 219 steppe
32 Daru Co 31.6838 90.7440 4688 70 5.05 9.23 −2.13 350 steppe
33 Kuhai 35.3054 99.1753 4132 47 16.1 8.82 −2.89 263 steppe
34 Beng Co 31.2149 91.1654 4671 144 0.16 8.74 −2.14 394 steppe
35 Zhari Namco 30.9136 85.5945 4617 1001 10.6 9.49 −1.63 219 steppe
36 Ga'a Co 32.2090 88.9592 4620 13 3.38 9.68 −0.44 241 steppe
37 Xiada Co 33.3888 79.3618 4358 8 0.15 8.60 −2.29 110 desert
38 Gasikule 38.1209 90.7732 2857 116 333* 7.50 2.31 66 desert
39 Rebang Co 33.0377 80.5138 4326 46 53.6 9.19 −0.31 66 desert
40 Xitaijinaier 37.7175 93.3465 2689 NIA 336* 7.7* 3.99 44 desert
41 Ranwu (AMC) 29.4880 96.7010 3920 7 0.07* 8.13* 1.03 635 Conifer forest
42 Ranwu (AC) 29.4489 96.7921 3920 9 0.07* 8.13* 1.03 635 Conifer forest
43 Zongxiong Co 33.1032 80.1610 4351 6 0.15 9.34 −1.49 66 desert
44 Sumxi Co 34.5997 80.2496 5057 31 0.26 8.53 −5.86 44 desert
45 Longmu Co 34.5882 80.3677 5010 106 174* 7.8* −5.61 44 desert
46 Zhacang Chaka 32.5494 82.4297 4354 19 211* 8* 2.16 153 steppe
47 Darebu Co 32.4625 83.2161 4438 26 1.39 9.35 1.16 110 steppe
48 Qige Co 31.1957 85.5173 4667 20 0.18 10.46 −2.38 175 steppe
49 Cuoe-1 31.6655 88.7011 4568 268 0.21 8.84 0.11 241 steppe
50 Chen Co 28.9580 90.5174 4436 39 0.75 8.62 2.22 394 steppe
51 Tuosu Lake 37.1265 96.9176 2808 151 23.2 8.84 5.27 131 desert
52 Hurleg Lake 37.2868 96.8864 2817 55 0.66 8.49 5.39 131 desert
53 Dagze Co 31.8917 87.5235 4470 311 14.69 9.80 0.07 219 steppe
54 Jiang Co 31.5433 90.8179 4603 40 14.1 9.29 −1.71 372 steppe
55 Gongzhu Co 30.6436 82.1090 4789 56 4.95 9.20 −3.06 197 steppe
Tab.1  
Fig.2  
Fig.3  
Fig.4  
Fig.5  
1 B, Aichner U, Herzschuh H Wilkes (2010). Influence of aquatic macrophytes on the stable carbon isotopic signatures of sedimentary organic matter in lakes on the Tibetan Plateau.Org Geochem, 41(7): 706–718
https://doi.org/10.1016/j.orggeochem.2010.02.002
2 T, Badewien A, Vogts J Rullkötter (2015). n-Alkane distribution and carbon stable isotope composition in leaf waxes of C3 and C4 plants from Angola. Org Geochem, 89–90: 71–79
3 Y, Bai M, Azamdzhon S, Wang X, Fang H, Guo P, Zhou C, Chen X, Liu S, Jia Q Wang (2019). An evaluation of biological and climatic effects on plant n-alkane distributions and δ2Halk in a field experiment conducted in central Tibet.Org Geochem, 135: 53–63
https://doi.org/10.1016/j.orggeochem.2019.06.003
4 Y, Bai X, Fang J, Nie Y, Wang F Wu (2009). A preliminary reconstruction of the paleoecological and paleoclimatic history of the Chinese Loess Plateau from the application of biomarkers.Palaeogeogr Palaeoclimatol Palaeoecol, 271(1–2): 161–169
https://doi.org/10.1016/j.palaeo.2008.10.006
5 B W, Bird P J, Polisar Y, Lei L G, Thompson T, Yao B P, Finney D J, Bain D P, Pompeani B A Steinman (2014). A Tibetan lake sediment record of Holocene Indian summer monsoon variability.Earth Planet Sci Lett, 399: 92–102
https://doi.org/10.1016/j.epsl.2014.05.017
6 M, Bliedtner I K, Schäfer R, Zech Suchodoletz H von (2018). Leaf wax n-alkanes in modern plants and topsoils from eastern Georgia (Caucasus)–implications for reconstructing regional paleovegetation.Biogeosciences, 15(12): 3927–3936
https://doi.org/10.5194/bg-15-3927-2018
7 B R, Bondada D M, Oosterhuis J B, Murphy K S Kim (1996). Effect of water stress on the epicuticular wax composition and ultrastructure of cotton (Gossypium hirsutum L.) leaf, bract, and boll.Environ Exp Bot, 36(1): 61–69
https://doi.org/10.1016/0098-8472(96)00128-1
8 D, Brincat K, Yamada R, Ishiwatari H, Uemura H Naraoka (2000). Molecular-isotopic stratigraphy of long-chain n-alkanes in Lake Baikal Holocene and glacial age sediments.Org Geochem, 31(4): 287–294
https://doi.org/10.1016/S0146-6380(99)00164-3
9 R T, Bush F A McInerney (2013). Leaf wax n-alkane distributions in and across modern plants: implications for paleoecology and chemotaxonomy.Geochim Cosmochim Acta, 117: 161–179
https://doi.org/10.1016/j.gca.2013.04.016
10 R T, Bush F A McInerney (2015). Influence of temperature and C4 abundance on n-alkane chain length distributions across the central USA.Org Geochem, 79: 65–73
https://doi.org/10.1016/j.orggeochem.2014.12.003
11 A, Callegaro D, Battistel N M, Kehrwald Pereira F, Matsubara T, Kirchgeorg Hidalgo M D C, Villoslada B W, Bird C Barbante (2018). Fire, vegetation, and Holocene climate in a southeastern Tibetan lake: a multi-biomarker reconstruction from Paru Co.Clim Past, 14(10): 1543–1563
https://doi.org/10.5194/cp-14-1543-2018
12 A S, Carr A, Boom H L, Grimes B M, Chase M E, Meadows A Harris (2014). Leaf wax n-alkane distributions in arid zone South African flora: environmental controls, chemotaxonomy and palaeoecological implications.Org Geochem, 67: 72–84
https://doi.org/10.1016/j.orggeochem.2013.12.004
13 I S, Castañeda T, Caley L, Dupont J H, Kim B, Malaizé S Schouten (2016). Middle to Late Pleistocene vegetation and climate change in subtropical southern East Africa.Earth Planet Sci Lett, 450: 306–316
https://doi.org/10.1016/j.epsl.2016.06.049
14 I S, Castañeda S, Mulitza E, Schefuss dos Santos R A, Lopes Damsté J S, Sinninghe S Schouten (2009a). Wet phases in the Sahara/Sahel region and human migration patterns in North Africa.Proc Natl Acad Sci USA, 106(48): 20159–20163
https://doi.org/10.1073/pnas.0905771106
15 I S, Castañeda J P, Werne T C, Johnson T R Filley (2009b). Late Quaternary vegetation history of southeast Africa: the molecular isotopic record from Lake Malawi.Palaeogeogr Palaeoclimatol Palaeoecol, 275(1–4): 100–112
https://doi.org/10.1016/j.palaeo.2009.02.008
16 L, Chen W, Zhou Y, Zhang Y, Zheng X Huang (2020). Postglacial floral and climate changes in southeastern China recorded by distributions of n-alkan-2-ones in the Dahu sediment-peat sequence.Palaeogeogr Palaeoclimatol Palaeoecol, 538: 109448
https://doi.org/10.1016/j.palaeo.2019.109448
17 Y, Chen J, Cao J, Zhao H, Xu R, Arimoto G, Wang Y, Han Z, Shen G Li (2014). n-alkanes and polycyclic aromatic hydrocarbons in total suspended particulates from the southeastern Tibetan Plateau: concentrations, seasonal variations, and sources.Sci Total Environ, 470-471: 9–18
https://doi.org/10.1016/j.scitotenv.2013.09.033
18 J E, Cooper E E Bray (1963). A postulated role of fatty acids in petroleum formation.Geochim Cosmochim Acta, 27(11): 1113–1127
https://doi.org/10.1016/0016-7037(63)90093-0
19 A F, Diefendorf K H, Freeman S L, Wing H V Graham (2011). Production of n-alkyl lipids in living plants and implications for the geologic past.Geochim Cosmochim Acta, 75(23): 7472–7485
https://doi.org/10.1016/j.gca.2011.09.028
20 R S, Dodd Z Afzal-Rafii (2000). Habitat-related adaptive properties of plant cuticular lipids.Evolution, 54(4): 1438–1444
https://doi.org/10.1554/0014-3820(2000)054[1438:HRAPOP]2.0.CO;2
21 R S, Dodd M M Poveda (2003). Environmental gradients and population divergence contribute to variation in cuticular wax composition in Juniperus communis.Biochem Syst Ecol, 31(11): 1257–1270
https://doi.org/10.1016/S0305-1978(03)00031-0
22 P V Doskey (2000). The air–water exchange of C15–C31 n-alkanes in a precipitation-dominated seepage lake.Atmos Environ, 34(23): 3981–3993
https://doi.org/10.1016/S1352-2310(00)00165-5
23 Y I, Duan J He (2011). Distribution and isotopic composition of n-alkanes from grass, reed and tree leaves along a latitudinal gradient in China.Geochem J, 45(3): 199–207
https://doi.org/10.2343/geochemj.1.0115
24 G, Eglinton R J Hamilton (1967). Leaf epicuticular waxes.Science, 156(3780): 1322–1335
https://doi.org/10.1126/science.156.3780.1322
25 Y L, Eley M T Hren (2018). Reconstructing vapor pressure deficit from leaf wax lipid molecular distributions.Sci Rep, 8(1): 3967
https://doi.org/10.1038/s41598-018-21959-w
26 S J, Feakins P B, deMenocal T I Eglinton (2005). Biomarker records of late Neogene changes in northeast African vegetation.Geology, 33(12): 977–980
https://doi.org/10.1130/G21814.1
27 K H, Freeman R D Pancost (2014). Biomarkers for terrestrial plants and climate. In: Holland HD, Turekian K K, eds. Treatise on Geochemistry. Oxford: Elsevier
28 R B, Gagosian E T Peltzer (1986). The importance of atmospheric input of terrestrial organic material to deep sea sediments.Org Geochem, 10(4–6): 661–669
https://doi.org/10.1016/S0146-6380(86)80002-X
29 S M, Gaines G, Eglinton J Rullkötter (2009). Echoes of life: what fossil molecules reveal about Earth history. Now York: Oxford University Press
30 Y, Garcin E, Schefuß V F, Schwab V, Garreta G, Gleixner A, Vincens G, Todou O, Séné J M, Onana G, Achoundong D Sachse (2014). Reconstructing C3 and C4 vegetation cover using n-alkane carbon isotope ratios in recent lake sediments from Cameroon, Western Central Africa.Geochim Cosmochim Acta, 142: 482–500
https://doi.org/10.1016/j.gca.2014.07.004
31 P, Gong X, Wang T Yao (2011). Ambient distribution of particulate- and gas-phase n-alkanes and polycyclic aromatic hydrocarbons in the Tibetan Plateau.Environ Earth Sci, 64(7): 1703–1711
https://doi.org/10.1007/s12665-011-0974-3
32 F, Günther A, Thiele S, Biskop R, Mäusbacher T, Haberzettl T, Yao G Gleixner (2016). Late quaternary hydrological changes at Tangra Yumco, Tibetan Plateau: a compound-specific isotope-based quantification of lake level changes.J Paleolimnol, 55(4): 369–382
https://doi.org/10.1007/s10933-016-9887-1
33 Y, Guo N, Guo Y, He J Gao (2015). Cuticular waxes in alpine meadow plants: climate effect inferred from latitude gradient in Qinghai-Tibetan Plateau.Ecol Evol, 5(18): 3954–3968
https://doi.org/10.1002/ece3.1677
34 C, Häggi T I, Eglinton W, Zech P, Sosin R Zech (2019). A 250 ka leaf-wax δD record from a loess section in Darai Kalon, Southern Tajikistan.Quat Sci Rev, 208: 118–128
https://doi.org/10.1016/j.quascirev.2019.01.019
35 J, He K, Yang W, Tang H, Lu J, Qin Y, Chen X Li (2020). The first high-resolution meteorological forcing dataset for land process studies over China.Sci Data, 7(1): 25
https://doi.org/10.1038/s41597-020-0369-y
36 K, Hockun G, Mollenhauer S L, Ho J, Hefter C, Ohlendorf B, Zolitschka C, Mayr A, Lücke E Schefuß (2016). Using distributions and stable isotopes of n-alkanes to disentangle organic matter contributions to sediments of Laguna Potrok Aike, Argentina.Org Geochem, 102: 110–119
https://doi.org/10.1016/j.orggeochem.2016.10.001
37 B, Hoffmann A, Kahmen L A, Cernusak S K, Arndt D Sachse (2013). Abundance and distribution of leaf wax n-alkanes in leaves of Acacia and Eucalyptus trees along a strong humidity gradient in northern Australia.Org Geochem, 62: 62–67
https://doi.org/10.1016/j.orggeochem.2013.07.003
38 K V, Hollister E K, Thomas M K, Raynolds H, Bültmann J H, Raberg G H, Miller J Sepúlveda (2022). Aquatic and terrestrial plant contributions to sedimentary plant waxes in a modern Arctic lake setting.J Geophys Res: Biogeosci, 127: e2022JG006903
https://doi.org/10.1029/2022JG006903
39 X Hou (2001). Vegetation Atlas of China. Beijing: Science Press
40 S, Howard F A, McInerney S, Caddy-Retalic P A, Hall J W Andrae (2018). Modelling leaf wax n-alkane inputs to soils along a latitudinal transect across Australia.Org Geochem, 121: 126–137
https://doi.org/10.1016/j.orggeochem.2018.03.013
41 X, Hu L, Zhu Y, Wang J, Wang P, Peng Q, Ma J, Hu X Lin (2014). Climatic significance of n-alkanes and their compound-specific δD values from lake surface sediments on the southwestern Tibetan Plateau.Chin Sci Bull, 59(24): 3022–3033
https://doi.org/10.1007/s11434-014-0227-4
42 Y, Huang K H, Freeman T I, Eglinton Street-Perrott F Alayne (1999a). δ13C analyses of individual lignin phenols in Quaternary lake sediments: a novel proxy for deciphering past terrestrial vegetation changes.Geology, 27(5): 471–474
https://doi.org/10.1130/0091-7613(1999)027<0471:CAOILP>2.3.CO;2
43 Y, Huang F A, Street-Perrott R A, Perrott P, Metzger G Eglinton (1999b). Glacial–interglacial environmental changes inferred from molecular and compound-specific δ13C analyses of sediments from Sacred Lake, Mt. Kenya.Geochim Cosmochim Acta, 63(9): 1383–1404
https://doi.org/10.1016/S0016-7037(99)00074-5
44 W W, Immerzeel A F, Lutz M, Andrade A, Bahl H, Biemans T, Bolch S, Hyde S, Brumby B J, Davies A C, Elmore A, Emmer M, Feng A, Fernández U, Haritashya J S, Kargel M, Koppes P D A, Kraaijenbrink A V, Kulkarni P A, Mayewski S, Nepal P, Pacheco T H, Painter F, Pellicciotti H, Rajaram S, Rupper A, Sinisalo A B, Shrestha D, Viviroli Y, Wada C, Xiao T, Yao J E M Baillie (2020). Importance and vulnerability of the world’s water towers.Nature, 577(7790): 364–369
https://doi.org/10.1038/s41586-019-1822-y
45 W W, Immerzeel Beek L P, van M F Bierkens (2010). Climate change will affect the Asian water towers.Science, 328(5984): 1382–1385
https://doi.org/10.1126/science.1183188
46 B, Jalali M A, Sicre N, Kallel J, Azuara N, Combourieu-Nebout M A, Bassetti V Klein (2017). High-resolution Holocene climate and hydrological variability from two major Mediterranean deltas (Nile and Rhone).Holocene, 27(8): 1158–1168
https://doi.org/10.1177/0959683616683258
47 Q, Jia Q, Sun M, Xie Y, Shan Y, Ling Q, Zhu M Tian (2016). Normal alkane distributions in soil samples along a Lhasa-Bharatpur Transect.Acta Geol Sin, 90: 738–748
https://doi.org/10.1111/1755-6724.12701
48 W, Jiang H, Wu Q, Li Y, Lin Y Yu (2019). Spatiotemporal changes in C4 plant abundance in China since the Last Glacial Maximum and their driving factors.Palaeogeogr Palaeoclimatol Palaeoecol, 518: 10–21
https://doi.org/10.1016/j.palaeo.2018.12.021
49 C, Jin F, Günther S, Li G, Jia P, Peng G Gleixner (2016). Reduced early Holocene moisture availability inferred from δD values of sedimentary n-alkanes in Zigetang Co, Central Tibetan Plateau.Holocene, 26(4): 556–566
https://doi.org/10.1177/0959683615612568
50 J T, Ju L P, Zhu L, Huang R M, Yang Q F, Ma X, Hu Y J, Wang X L Zhen (2015). Ranwu Lake, a proglacial lake with the potential to reflect glacial activity in SE Tibet. Chin Sci Bull, 60(1): 16–26 (in Chinese)
51 K, Kawamura Y, Ishimura K Yamazaki (2003). Four years᾽ observations of terrestrial lipid class compounds in marine aerosols from the western North Pacific. Global Biogeochem Cycles, 17: 3–1-3–1
52 R R, Kuechler E, Schefuß B, Beckmann L, Dupont G Wefer (2013). NW African hydrology and vegetation during the Last Glacial cycle reflected in plant-wax-specific hydrogen and carbon isotopes.Quat Sci Rev, 82: 56–67
https://doi.org/10.1016/j.quascirev.2013.10.013
53 S, Kusch J, Rethemeyer E, Schefuß G Mollenhauer (2010). Controls on the age of vascular plant biomarkers in Black Sea sediments.Geochim Cosmochim Acta, 74(24): 7031–7047
https://doi.org/10.1016/j.gca.2010.09.005
54 A, Leider K U, Hinrichs E, Schefuß G J M Versteegh (2013). Distribution and stable isotopes of plant wax derived n-alkanes in lacustrine, fluvial and marine surface sediments along an Eastern Italian transect and their potential to reconstruct the hydrological cycle.Geochim Cosmochim Acta, 117: 16–32
https://doi.org/10.1016/j.gca.2013.04.018
55 L, Li Q, Li J, Li H, Wang L, Dong Y, Huang P Wang (2015). A hydroclimate regime shift around 270ka in the western tropical Pacific inferred from a late Quaternary n-alkane chain-length record.Palaeogeogr Palaeoclimatol Palaeoecol, 427: 79–88
https://doi.org/10.1016/j.palaeo.2015.03.025
56 Q, Li H, Wu Y, Yu A, Sun Y Luo (2019). Large-scale vegetation history in China and its response to climate change since the Last Glacial Maximum.Quat Int, 500: 108–119
https://doi.org/10.1016/j.quaint.2018.11.016
57 R, Li J, Fan J, Xue P A Meyers (2017). Effects of early diagenesis on molecular distributions and carbon isotopic compositions of leaf wax long chain biomarker n-alkanes: comparison of two one-year-long burial experiments.Org Geochem, 104: 8–18
https://doi.org/10.1016/j.orggeochem.2016.11.006
58 Y, Ling Q, Sun M, Zheng H, Wang Y, Luo X, Dai M, Xie Q Zhu (2017a). Alkenone-based temperature and climate reconstruction during the last deglaciation at Lake Dangxiong Co, southwestern Tibetan Plateau.Quat Int, 443: 58–69
https://doi.org/10.1016/j.quaint.2016.07.036
59 Y, Ling M, Zheng Q, Sun X Dai (2017b). Last deglacial climatic variability in Tibetan Plateau as inferred from n-alkanes in a sediment core from Lake Zabuye.Quat Int, 454: 15–24
https://doi.org/10.1016/j.quaint.2017.08.030
60 Y, Ling M, Zheng S, Wang Q, Sun B, Xie C Zhang (2021). The impact of climatic and environmental factors on n-alkanes indices in southwestern Tibetan Plateau.Acta Geol Sin, 95: 648–658
https://doi.org/10.1111/1755-6724.14376
61 H, Liu W Liu (2016). n-Alkane distributions and concentrations in algae, submerged plants and terrestrial plants from the Qinghai-Tibetan Plateau.Org Geochem, 99: 10–22
https://doi.org/10.1016/j.orggeochem.2016.06.003
62 J, Liu Z, Shen W, Chen J, Chen X, Zhang J, Chen F Chen (2021). Dipolar mode of precipitation changes between north China and the Yangtze River Valley existed over the entire Holocene: evidence from the sediment record of Nanyi Lake.Int J Climatol, 41(3): 1667–1681
https://doi.org/10.1002/joc.6906
63 W, Liu Z, Liu H, Wang Y, He Z, Wang L Xu (2011). Salinity control on long-chain alkenone distributions in lake surface waters and sediments of the northern Qinghai-Tibetan Plateau, China.Geochim Cosmochim Acta, 75(7): 1693–1703
https://doi.org/10.1016/j.gca.2010.10.029
64 W, Liu H, Yang H, Wang Z, An Z, Wang Q Leng (2015). Carbon isotope composition of long chain leaf wax n-alkanes in lake sediments: a dual indicator of paleoenvironment in the Qinghai-Tibet Plateau. Org Geochem, 83–84: 190–201
65 X, Liu Z, Cheng L, Yan Z Y Yin (2009). Elevation dependency of recent and future minimum surface air temperature trends in the Tibetan Plateau and its surroundings.Global Planet Change, 68(3): 164–174
https://doi.org/10.1016/j.gloplacha.2009.03.017
66 K E, McDuffee T I, Eglinton A L, Sessions S, Sylva T, Wagner J M Hayes (2004). Rapid analysis of 13C in plant-wax n-alkanes for reconstruction of terrestrial vegetation signals from aquatic sediments.Geochem Geophys Geosyst, 5(10): Q10004
67 P A Meyers (1997). Organic geochemical proxies of paleoceanographic, paleolimnologic, and paleoclimatic processes.Org Geochem, 27(5–6): 213–250
https://doi.org/10.1016/S0146-6380(97)00049-1
68 P A, Meyers R Ishiwatari (1995). Organic matter accumulation records in lake sediments. In: Lerman A, Imboden D M, Gat J R, eds. Physics and Chemistry of Lakes. Heidelberg: Springer Berlin
69 Research Initiative EDW Working Group Mountain (2015). Elevation-dependent warming in mountain regions of the world.Nat Clim Chang, 5(5): 424–430
https://doi.org/10.1038/nclimate2563
70 B D A, Naafs G N, Inglis J, Blewett E L, McClymont V, Lauretano S, Xie R P, Evershed R D Pancost (2019). The potential of biomarker proxies to trace climate, vegetation, and biogeochemical processes in peat: a review.Global Planet Change, 179: 57–79
https://doi.org/10.1016/j.gloplacha.2019.05.006
71 D B, Nelson S N, Ladd C J, Schubert A Kahmen (2018). Rapid atmospheric transport and large-scale deposition of recently synthesized plant waxes.Geochim Cosmochim Acta, 222: 599–617
https://doi.org/10.1016/j.gca.2017.11.018
72 J, Ni X, Cao F, Jeltsch U Herzschuh (2014). Biome distribution over the last 22,000yr in China.Palaeogeogr Palaeoclimatol Palaeoecol, 409: 33–47
https://doi.org/10.1016/j.palaeo.2014.04.023
73 J E, Nichols R K, Booth S T, Jackson E G, Pendall Y Huang (2006). Paleohydrologic reconstruction based on n-alkane distributions in ombrotrophic peat.Org Geochem, 37(11): 1505–1513
https://doi.org/10.1016/j.orggeochem.2006.06.020
74 E, Norström C, Katrantsiotis R H, Smittenberg K Kouli (2017). Chemotaxonomy in some Mediterranean plants and implications for fossil biomarker records.Geochim Cosmochim Acta, 219: 96–110
https://doi.org/10.1016/j.gca.2017.09.029
75 E, Norström F H, Neumann L, Scott R H, Smittenberg H, Holmstrand S, Lundqvist I, Snowball H S, Sundqvist J, Risberg M Bamford (2014). Late Quaternary vegetation dynamics and hydro-climate in the Drakensberg, South Africa.Quat Sci Rev, 105: 48–65
https://doi.org/10.1016/j.quascirev.2014.09.016
76 E, Norström G, Norén R H, Smittenberg E A, Massuanganhe A Ekblom (2018). Leaf wax δD inferring variable medieval hydroclimate and early initiation of Little Ice Age (LIA) dryness in southern Mozambique.Global Planet Change, 170: 221–233
https://doi.org/10.1016/j.gloplacha.2018.09.004
77 J G, Poynter P, Farrimond N, Robinson G Eglinton (1989). Aeolian-derived higher plant lipids in the marine sedimentary record: links with palaeoclimate. In: Leinen M, Sarnthein M, eds. Paleoclimatology and Paleometeorology: Modern and Past Patterns of Global Atmospheric Transport. Dordrecht: Springer
78 J, Poynter G Eglinton (1990). Molecular composition of three sediments from Hole 717 C: the Bengal fan. In: Proceedings of the Ocean Drilling Program, Scientific Results, 155–161
79 Y, Pu T, Nace P A, Meyers H, Zhang Y, Wang C L, Zhang X Shao (2013). Paleoclimate changes of the last 1000 yr on the eastern Qinghai–Tibetan Plateau recorded by elemental, isotopic, and molecular organic matter proxies in sediment from glacial Lake Ximencuo. Palaeogeogr Palaeoclimatol Palaeoecol, 379–380: 39–53
80 B, Qiao L, Zhu R Yang (2019). Temporal-spatial differences in lake water storage changes and their links to climate change throughout the Tibetan Plateau.Remote Sens Environ, 222: 232–243
https://doi.org/10.1016/j.rse.2018.12.037
81 F Qin (2021). Modern pollen assemblages of the surface lake sediments from the steppe and desert zones of the Tibetan Plateau.Sci China Earth Sci, 64(3): 425–439
https://doi.org/10.1007/s11430-020-9693-y
82 F, Qin Y, Zhao X Cao (2022). Biome reconstruction on the Tibetan Plateau since the Last Glacial Maximum using a machine learning method.Sci China Earth Sci, 65(3): 518–535
https://doi.org/10.1007/s11430-021-9867-1
83 Z, Rao G, Jia M, Qiang Y Zhao (2014). Assessment of the difference between mid- and long chain compound specific δD-alkanes values in lacustrine sediments as a paleoclimatic indicator.Org Geochem, 76: 104–117
https://doi.org/10.1016/j.orggeochem.2014.07.015
84 Z, Rao Z, Zhu G, Jia F, Chen L, Barton J, Zhang M Qiang (2010). Relationship between climatic conditions and the relative abundance of modern C3 and C4 plants in three regions around the North Pacific.Chin Sci Bull, 55(18): 1931–1936
https://doi.org/10.1007/s11434-010-3101-z
85 F Rojo (2009). Degradation of alkanes by bacteria.Environ Microbiol, 11(10): 2477–2490
https://doi.org/10.1111/j.1462-2920.2009.01948.x
86 F, Rommerskirchen A, Plader G, Eglinton Y, Chikaraishi J Rullkötter (2006). Chemotaxonomic significance of distribution and stable carbon isotopic composition of long-chain alkanes and alkan-1-ols in C4 grass waxes.Org Geochem, 37(10): 1303–1332
https://doi.org/10.1016/j.orggeochem.2005.12.013
87 D, Sachse I, Billault G J, Bowen Y, Chikaraishi T E, Dawson S J, Feakins K H, Freeman C R, Magill F A, McInerney der Meer M T J, van P, Polissar R J, Robins J P, Sachs H L, Schmidt A L, Sessions J W C, White J B, West A Kahmen (2012). Molecular paleohydrology: interpreting the hydrogen-isotopic composition of lipid biomarkers from photosynthesizing organisms.Annu Rev Earth Planet Sci, 40(1): 221–249
https://doi.org/10.1146/annurev-earth-042711-105535
88 J, Saini F, Günther B, Aichner S, Mischke U, Herzschuh C, Zhang R, Mäusbacher G Gleixner (2017). Climate variability in the past ∼19,000 yr in NE Tibetan Plateau inferred from biomarker and stable isotope records of Lake Donggi Cona.Quat Sci Rev, 157: 129–140
https://doi.org/10.1016/j.quascirev.2016.12.023
89 S, Sarkar S, Prasad H, Wilkes N, Riedel M, Stebich N, Basavaiah D Sachse (2015). Monsoon source shifts during the drying mid-Holocene: biomarker isotope based evidence from the core ‘monsoon zone’ (CMZ) of India.Quat Sci Rev, 123: 144–157
https://doi.org/10.1016/j.quascirev.2015.06.020
90 E, Schefuß V, Ratmeyer J B W, Stuut J H F, Jansen Damsté J S Sinninghe (2003). Carbon isotope analyses of n-alkanes in dust from the lower atmosphere over the central eastern Atlantic.Geochim Cosmochim Acta, 67(10): 1757–1767
https://doi.org/10.1016/S0016-7037(02)01414-X
91 E Leskovšek H, Šepič C Trier (1995). Aerobic bacterial degradation of selected polyaromatic compounds and n-alkanes found in petroleum.J Chromatogr A, 697(1–2): 515–523
https://doi.org/10.1016/0021-9673(94)01032-A
92 T, Shepherd Griffiths D Wynne (2006). The effects of stress on plant cuticular waxes.New Phytol, 171(3): 469–499
https://doi.org/10.1111/j.1469-8137.2006.01826.x
93 B R T, Simoneit R, Chester G Eglinton (1977). Biogenic lipids in particulates from the lower atmosphere over the eastern Atlantic.Nature, 267(5613): 682–685
https://doi.org/10.1038/267682a0
94 Damsté J S, Sinninghe D, Verschuren J, Ossebaar J, Blokker Houten R, van der Meer M T J, van B, Plessen S Schouten (2011). A 25,000-year record of climate-induced changes in lowland vegetation of eastern equatorial Africa revealed by the stable carbon-isotopic composition of fossil plant leaf waxes.Earth Planet Sci Lett, 302(1–2): 236–246
https://doi.org/10.1016/j.epsl.2010.12.025
95 C J, Still J A, Berry G J, Collatz R S Defries (2009). ISLSCP, II: C4 (Vegetation Percentage. In. ORNL Distributed Active Archive Center)
96 C J, Still J A, Berry G J, Collatz R S DeFries (2003). Global distribution of C3 and C4 vegetation: carbon cycle implications. Global Biogeochemical Cycles, 17: 6–1-6–1
97 H, Sun J, Bendle O, Seki A Zhou (2018). Mid- to- late Holocene hydroclimatic changes on the Chinese Loess Plateau: evidence from n-alkanes from the sediments of Tianchi Lake.J Paleolimnol, 60(4): 511–523
https://doi.org/10.1007/s10933-018-0037-9
98 L, Tian M, Wang X, Zhang X, Yang Y, Zong G, Jia Z, Zheng M Man (2019). Synchronous change of temperature and moisture over the past 50 ka in subtropical southwest China as indicated by biomarker records in a crater lake.Quat Sci Rev, 212: 121–134
https://doi.org/10.1016/j.quascirev.2019.04.003
99 B J, Tipple M Pagani (2013). Environmental control on eastern broadleaf forest species’ leaf wax distributions and D/H ratios.Geochim Cosmochim Acta, 111: 64–77
https://doi.org/10.1016/j.gca.2012.10.042
100 J L, Toney A, García-Alix G, Jiménez-Moreno R S, Anderson H, Moossen O Seki (2020). New insights into Holocene hydrology and temperature from lipid biomarkers in western Mediterranean alpine wetlands.Quat Sci Rev, 240: 106395
https://doi.org/10.1016/j.quascirev.2020.106395
101 A, Vogts H, Moossen F, Rommerskirchen J Rullkötter (2009). Distribution patterns and stable carbon isotopic composition of alkanes and alkan-1-ols from plant waxes of African rain forest and savanna C3 species.Org Geochem, 40(10): 1037–1054
https://doi.org/10.1016/j.orggeochem.2009.07.011
102 S G Wakeham (1996). Aliphatic and polycyclic aromatic hydrocarbons in Black Sea sediments.Mar Chem, 53(3–4): 187–205
https://doi.org/10.1016/0304-4203(96)00003-5
103 W, Wan D, Long Y, Hong Y, Ma Y, Yuan P, Xiao H, Duan Z, Han X Gu (2016). A lake data set for the Tibetan Plateau from the 1960s, 2005, and 2014.Sci Data, 3(1): 1–13
104 B, Wang Y, Ma Z, Su Y, Wang W Ma (2020). Quantifying the evaporation amounts of 75 high-elevation large dimictic lakes on the Tibetan Plateau.Sci Adv, 6(26): eaay8558
https://doi.org/10.1126/sciadv.aay8558
105 B, Wang J, Yang H, Jiang G, Zhang H Dong (2019). Chemical composition of n-alkanes and microbially mediated n-alkane degradation potential differ in the sediments of Qinghai-Tibetan lakes with different salinity.Chem Geol, 524: 37–48
https://doi.org/10.1016/j.chemgeo.2019.05.038
106 J, Wang E, Axia Y, Xu G, Wang L, Zhou Y, Jia Z, Chen J Li (2018a). Temperature effect on abundance and distribution of leaf wax n-alkanes across a temperature gradient along the 400 mm isohyet in China.Org Geochem, 120: 31–41
https://doi.org/10.1016/j.orggeochem.2018.03.009
107 J, Wang Y, Xu L, Zhou M, Shi E, Axia Y, Jia Z, Chen J, Li G Wang (2018b). Disentangling temperature effects on leaf wax n-alkane traits and carbon isotopic composition from phylogeny and precipitation.Org Geochem, 126: 13–22
https://doi.org/10.1016/j.orggeochem.2018.10.008
108 L, Wang H, Lü N, Wu D, Chu J, Han Y, Wu H, Wu Z Gu (2004). Discovery of C4 species at high altitude in Qinghai-Tibetan Plateau.Chin Sci Bull, 49(13): 1392–1396
https://doi.org/10.1007/BF03036887
109 M, Wang W, Zhang J Hou (2015). Is average chain length of plant lipids a potential proxy for vegetation, environment and climate changes?.Biogeosciences Discuss, 12: 5477–5501
https://doi.org/10.5194/bgd-12-5477-2015
110 R Z Wang (2003). C4 plants in the vegetation of Tibet, China: their natural occurrence and altitude distribution pattern.Photosynthetica, 41(1): 21–26
https://doi.org/10.1023/A:1025844009120
111 S, Wang H Dou (1998). Lakes in China. Beijing: Science Press
112 R, Witt F, Günther S, Lauterbach T, Kasper R, Mäusbacher T, Yao G Gleixner (2016). Biogeochemical evidence for freshwater periods during the Last Glacial Maximum recorded in lake sediments from Nam Co, south-central Tibetan Plateau.J Paleolimnol, 55(1): 67–82
https://doi.org/10.1007/s10933-015-9863-1
113 M S, Wu A J, West S J Feakins (2019a). Tropical soil profiles reveal the fate of plant wax biomarkers during soil storage.Org Geochem, 128: 1–15
https://doi.org/10.1016/j.orggeochem.2018.12.011
114 Y, Wu L, Guo H, Zheng B, Zhang M Li (2019b). Hydroclimate assessment of gridded precipitation products for the Tibetan Plateau.Sci Total Environ, 660: 1555–1564
https://doi.org/10.1016/j.scitotenv.2019.01.119
115 M, Xie Q, Sun H, Dong S, Liu W, Shang Y, Ling J, Zhao G Chu (2020). n-Alkanes and compound carbon isotope records from Lake Yiheshariwusu in the Hulun Buir sandy land, northeastern China.Holocene, 30(10): 1451–1461
https://doi.org/10.1177/0959683620932968
116 T, Yan J, He Z, Wang C, Zhang X, Feng X, Sun C, Leng C Zhao (2020). Glacial fluctuations over the last 3500 years reconstructed from a lake sediment record in the northern Tibetan Plateau.Palaeogeogr Palaeoclimatol Palaeoecol, 544: 109597
https://doi.org/10.1016/j.palaeo.2020.109597
117 T, Yao Y, Xue D, Chen F, Chen L, Thompson P, Cui T, Koike W K M, Lau D, Lettenmaier V, Mosbrugger R, Zhang B, Xu J, Dozier T, Gillespie Y, Gu S, Kang S, Piao S, Sugimoto K, Ueno L, Wang W, Wang F, Zhang Y, Sheng W, Guo , Ailikun X, Yang Y, Ma S S P, Shen Z, Su F, Chen S, Liang Y, Liu V P, Singh K, Yang D, Yang X, Zhao Y, Qian Y, Zhang Q Li (2019). Recent Third Pole’s rapid warming accompanies cryospheric melt and water cycle intensification and interactions between monsoon and environment: multidisciplinary approach with observations, modeling, and analysis.Bull Am Meteorol Soc, 100(3): 423–444
https://doi.org/10.1175/BAMS-D-17-0057.1
118 Y, Yokoyama T, Naruse N O, Ogawa R, Tada H, Kitazato N Ohkouchi (2006). Dust influx reconstruction during the last 26000 years inferred from a sedimentary leaf wax record from the Japan Sea.Global Planet Change, 54(3–4): 239–250
https://doi.org/10.1016/j.gloplacha.2006.06.022
119 M, Zech N, Pedentchouk B, Buggle K, Leiber K, Kalbitz S B, Marković B Glaser (2011). Effect of leaf litter degradation and seasonality on D/H isotope ratios of n-alkane biomarkers.Geochim Cosmochim Acta, 75(17): 4917–4928
https://doi.org/10.1016/j.gca.2011.06.006
120 R, Zech M, Zech S, Marković U, Hambach Y Huang (2013). Humid glacials, arid interglacials? Critical thoughts on pedogenesis and paleoclimate based on multi-proxy analyses of the loess–paleosol sequence Crvenka, Northern Serbia.Palaeogeogr Palaeoclimatol Palaeoecol, 387: 165–175
https://doi.org/10.1016/j.palaeo.2013.07.023
121 X, Zhang B, Xu F, Günther R, Witt M, Wang Y, Xie H, Zhao J, Li G Gleixner (2017). Rapid northward shift of the Indian Monsoon on the Tibetan Plateau at the end of the Little Ice Age.J Geophys Res Atmos, 122(17): 9262–9279
https://doi.org/10.1002/2017JD026849
122 Y, Zhang X, Liu Q, Lin C, Gao J, Wang G Wang (2014). Vegetation and climate change over the past 800 years in the monsoon margin of northeastern China reconstructed from n-alkanes from the Great Hinggan Mountain ombrotrophic peat bog.Org Geochem, 76: 128–135
https://doi.org/10.1016/j.orggeochem.2014.07.013
123 Z, Zhang M, Zhao G, Eglinton H, Lu C Huang (2006). Leaf wax lipids as paleovegetational and paleoenvironmental proxies for the Chinese Loess Plateau over the last 170 kyr.Quat Sci Rev, 25(5–6): 575–594
https://doi.org/10.1016/j.quascirev.2005.03.009
124 J, Zhao E K, Thomas Y, Yao J, DeAraujo Y Huang (2018). Major increase in winter and spring precipitation during the Little Ice Age in the westerly dominated northern Qinghai-Tibetan Plateau.Quat Sci Rev, 199: 30–40
https://doi.org/10.1016/j.quascirev.2018.09.022
125 B, Zhou H, Zheng W, Yang D, Taylor Y, Lu G, Wei L, Li H Wang (2012). Climate and vegetation variations since the LGM recorded by biomarkers from a sediment core in the northern South China Sea.J Quaternary Sci, 27(9): 948–955
https://doi.org/10.1002/jqs.2588
126 W, Zhou S, Xie P A, Meyers Y Zheng (2005). Reconstruction of late glacial and Holocene climate evolution in southern China from geolipids and pollen in the Dingnan peat sequence.Org Geochem, 36(9): 1272–1284
https://doi.org/10.1016/j.orggeochem.2005.04.005
127 W, Zhou Y, Zheng P A, Meyers A J T, Jull S Xie (2010). Postglacial climate-change record in biomarker lipid compositions of the Hani peat sequence, northeastern China.Earth Planet Sci Lett, 294(1–2): 37–46
https://doi.org/10.1016/j.epsl.2010.02.035
128 C S, Zhu L J, Li H, Huang W T, Dai Y L, Lei Y, Qu R J, Huang Q Y, Wang Z X, Shen J J Cao (2020). n-Alkanes and PAHs in the southeastern Tibetan Plateau: characteristics and correlations with brown carbon light absorption.J Geophys Res: Atmos, 125: e2020JD032666
https://doi.org/10.1029/2020JD032666
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed