Please wait a minute...
Frontiers of Earth Science

ISSN 2095-0195

ISSN 2095-0209(Online)

CN 11-5982/P

邮发代号 80-963

2019 Impact Factor: 1.62

Frontiers of Earth Science  2023, Vol. 17 Issue (4): 1049-1058   https://doi.org/10.1007/s11707-023-1090-x
  本期目录
Vegetation stability during the last two centuries on the western Tibetan Plateau: a palynological evidence
Yanrong ZHANG1, Nannan WANG1,2, Lina LIU1,2, Mingda WANG3, Xiaoshan YU1, Xianyong CAO1()
1. Alpine Paleoecology and Human Adaptation Group (ALPHA), State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
2. University of Chinese Academy of Science, Beijing 100049, China
3. School of Geography, Liaoning Normal University, Dalian 116029, China
 全文: PDF(23571 KB)   HTML
Abstract

Investigating the dynamics of vegetation is an essential basis to know how to protect ecological environments and to help predict any changes in trend. Because of its fragile alpine ecosystem, the Tibetan Plateau is a particularly suitable area for studying vegetation changes and their driving factors. In this study, we present a high-resolution pollen record covering the last two centuries extracted from Gongzhu Co on the western Tibetan Plateau. Alpine steppe is the predominant vegetation type in the surrounding area throughout the past 250 years with stable vegetation composition and abundance, as revealed by pollen spectra dominated by Artemisia, Ranunculaceae, Cyperaceae, and Poaceae. Detrended canonical correspondence analysis (DCCA) of the pollen data reveals low turnover in compositional species (0.41 SD), suggesting that the vegetation in the Gongzhu catchment had no significant temporal change, despite climate change and population increases in recent decades. We additionally ran DCCA on ten other pollen records from the Tibetan Plateau with high temporal resolution (1–20 years) covering recent centuries, and the results also show that compositional species turnover (0.15–0.81 SD) is relatively low, suggesting that the vegetation stability may have prevailed across the Tibetan Plateau during recent centuries. More high-resolution pollen records and high taxonomic-resolution palaeo-vegetation records (such as sedaDNA), however, are needed to confirm the vegetation stability on the Tibetan Plateau.

Key wordspollen    compositional species turnover    vegetation change    ecological stability
收稿日期: 2023-06-11      出版日期: 2024-02-06
Corresponding Author(s): Xianyong CAO   
 引用本文:   
. [J]. Frontiers of Earth Science, 2023, 17(4): 1049-1058.
Yanrong ZHANG, Nannan WANG, Lina LIU, Mingda WANG, Xiaoshan YU, Xianyong CAO. Vegetation stability during the last two centuries on the western Tibetan Plateau: a palynological evidence. Front. Earth Sci., 2023, 17(4): 1049-1058.
 链接本文:  
https://academic.hep.com.cn/fesci/CN/10.1007/s11707-023-1090-x
https://academic.hep.com.cn/fesci/CN/Y2023/V17/I4/1049
Fig.1  
No.LakeLatitude/°NLongitude/°EElevation/(m.a.s.l.)Lake Area/km2Time span/yrTemporal resolution/yrSD unitsReference
Gongzhu Co30.3982.15478656.0024040.41Our study
1Tian’E Lake39.2497.9230120.0530070.53Wang et al. (2020)
2Hurleg Lake37.2896.90281852.001700180.17Zhao et al. (2010)
3Toson Lake37.1597.002808150.0099410?200.15Zhao et al. (2010)
4Gahai Lake37.1397.52285337.005010.30Zhao et al. (2008)
5Flower Swamp33.91102.813440?600150.43Sun et al. (2020)
6Xing Co33.86102.3634373.0014395?200.51Zhang et al. (2022)
7Dongerwuka33.22101.1243070.24600180.38Wischnewski et al. (2014)
8Wuxu Lake29.15101.4037050.502007?200.36Wischnewski et al. (2011)
9LC6 Lake29.8294.4541320.602005?120.81Wischnewski et al. (2011)
10Basomtso30.0093.91347926.50114370.76Li et al. (2017)
Tab.1  
Fig.2  
Fig.3  
Fig.4  
Depth/cmSample weight/g137Cs /(Bq·kg–1)210Pb /(Bq·kg–1)226Ra /(Bq·kg–1)210Pbex /(Bq·kg–1)Date
0.52.490.00227.6450.73176.922014.9
1.52.970.00188.9741.82147.152011.6
2.53.020.00201.8156.36145.452007.7
3.53.100.00257.4755.29202.192002.3
4.52.710.00223.0948.60174.491996.9
5.52.390.00201.4954.81146.681992.3
6.52.678.67159.6853.99105.691987.6
7.52.298.21159.3249.62109.701982.7
8.52.5119.65158.1646.39111.771977.3
9.52.548.72144.4652.8791.591971.2
10.52.347.46143.0746.0597.021964.7
11.52.660.00110.0945.8164.291958
12.51.890.00116.4948.5767.921951.3
13.51.830.00111.5255.9455.591944.2
14.51.970.0096.8644.8152.051936.8
16.51.960.0082.0244.4437.581929.1
17.52.020.00125.6046.7278.881920.8
18.52.460.0062.2257.075.151912.2
19.52.350.0088.9355.1533.781903.2
20.52.130.00110.2556.5453.711893.4
21.51.830.0085.5556.8328.721882.6
22.251.900.0071.7351.9019.831871.1
  
  
1 P G, Appleby W, Shotyk A Fankhauser (1997). Lead-210 age dating of three peat cores in the Jura mountains, Switzerland.Water Air Soil Pollut, 100: 223–231
https://doi.org/10.1023/A:1018380922280
2 M A, Aquino-López M, Blaauw J A, Christen N K Sanderson (2018). Bayesian analysis of 210Pb dating.J Agric Biol Environ Stat, 23(3): 317–333
https://doi.org/10.1007/s13253-018-0328-7
3 X, Cao F, Tian U, Herzschuh J, Ni Q, Xu W, Li Y, Zhang M, Luo F Chen (2022). Human activities have reduced plant diversity in eastern China over the last two millennia.Glob Chang Biol, 28: 4962–4976
https://doi.org/10.1111/gcb.16274
4 X, Cao F, Tian F, Li M J, Gaillard N, Rudaya Q, Xu U Herzschuh (2019). Pollen-based quantitative land-cover reconstruction for northern Asia covering the last 40 ka cal BP.Clim Past, 15(4): 1503–1536
https://doi.org/10.5194/cp-15-1503-2019
5 X Cao, F Tian, K Li, J Ni (2020). Atlas of pollen and spores for common plants from the east Tibetan Plateau. National Tibetan Plateau Data Center 10.11888/Paleoenv.tpdc.270735
6 X, Cao N, Wang Y, Cao L, Liu Y, Zhang X, Hou W, Zhao Y, Li F Tian (2023). Hostile climate during the Last Glacial Maximum caused sparse vegetation on the north-eastern Tibetan Plateau.Quat Sci Rev, 301(1): 107916
https://doi.org/10.1016/j.quascirev.2022.107916
7 A, Chao N J, Gotelli T C, Hsieh E L, Sander K H, Ma R K, Colwell A M Ellison (2014). Rarefaction and extrapolation with Hill numbers: a framework for sampling and estimation in species diversity studies.Ecol Monogr, 84: 45e67
https://doi.org/10.1890/13-0133.1
8 F, Chen J, Zhang J, Liu X, Cao J, Hou L, Zhu X, Xu X, Liu M, Wang D, Wu X, Huang T, Zeng S, Zhang W, Huang X, Zhang K Yang (2020). Climate change, vegetation history, and landscape responses on the Tibetan Plateau during the Holocene: a comprehensive review.Quat Sci Rev, 243: 106444
https://doi.org/10.1016/j.quascirev.2020.106444
9 H, Chen Q, Zhu C, Peng N, Wu Y, Wang X, Fang Y, Gao D, Zhu G, Yang J, Tian X, Kang S, Piao H, Ouyang W, Xiang Z, Luo H, Jiang X, Song Y, Zhang G, Yu X, Zhao P, Gong T, Yao J Wu (2013). The impacts of climate change and human activities on biogeochemical cycles on the Qinghai-Tibetan Plateau.Glob Change Biol, 19(10): 2940–2955
https://doi.org/10.1111/gcb.12277
10 J, Chen Y, Chi W, Zhou Y, Wang J, Zhuang N, Zhao J, Ding J, Song L Zhou (2021). Quantifying the dimensionalities and drivers of ecosystem stability at global scale.J Geophys Res Biogeosci, 126(4): e2020JG006041
https://doi.org/10.1029/2020JG006041
11 A, Cremers A, Elsen Preter P, De A Maes (1988). Quantitative analysis of radiocaesium retention in soils.Nature, 335(6187): 247–249
https://doi.org/10.1038/335247a0
12 A, Cui H, Lu X, Liu C, Shen D, Xu B, Xu , Wu N (2021). Tibetan Plateau precipitation modulated by the periodically coupled westerlies and Asian Monsoon.Geophys Res Lett, 48: e2020GL091543
https://doi.org/10.1029/2020GL091543
13 K Fægri, J Iversen (1989). Textbook of Pollen Analysis, 4th edition. London: John Wiley and Sons
14 V A, Felde S G A, Flantua C R, Jenks B M, Benito Beaulieu J L, de P, Kuneš D, Magri D, Nalepka B, Risebrobakken Braak C J F, ter J R M, Allen W, Granoszewski K F, Helmens B, Huntley , Kondratien , O. L, Kalniņa M, Kupryjanowicz M, Malkiewicz A M, Milner M, Nita B, Noryśkiewicz I A, Pidek M, Reille J S, Salonen V, Šeirienė H, Winter P C, Tzedakis H J B Birks (2020). Compositional turnover and variation in Eemian pollen sequences in Europe.Veg Hist Archaeobot, 29: 101e109
https://doi.org/10.1007/s00334-019-00726-5
15 S P, Gao J B, Wang B Q, Xu X L Zhang (2021). Application and problems of 210Pb and 137Cs dating techniques in lake sediments.J Lake Sci, 33(2): 622–631 (in Chinese)
https://doi.org/10.18307/2021.0226
16 E C Grimm (2004). TGview Version 2.0.2. Springfield: Illinois State Museum
17 Y, Han H, Liu L, Zhou Q, Hao Y Cheng (2020). Postglacial evolution of forest and grassland in southeastern Gobi (northern China).Quat Sci Rev, 248: 106611
https://doi.org/10.1016/j.quascirev.2020.106611
18 U Herzschuh (2007). Reliability of pollen ratios for environmental reconstructions on the Tibetan Plateau.J Biogeogr, 34(7): 1265–1273
https://doi.org/10.1111/j.1365-2699.2006.01680.x
19 U, Herzschuh K, Winter B, Wünnemann S Li (2006). A general cooling trend on the central Tibetan Plateau throughout the Holocene recorded by the Lake Zigetang pollen spectra.Quat Int, 154-155: 113–121
https://doi.org/10.1016/j.quaint.2006.02.005
20 M O Hill (1973). Diversity and evenness: a unifying notation and its consequences.Ecology, 54(2): 427–432
https://doi.org/10.2307/1934352
21 M O, Hill H G Jr Gauch (1980). Detrended correspondence analysis: an improved ordination technique.Vegetatio, 42(1–3): 47–58
https://doi.org/10.1007/BF00048870
22 W O, Hobbs R J, Telford H J B, Birks J E, Saros R R, Hazewinkel B B, Perren E, Saulnier-Talbot A P Wolfe (2010). Quantifying recent ecological changes in remote lakes of North America and Greenland using sediment diatom assemblages.PLoS One, 5(4): e10026
https://doi.org/10.1371/journal.pone.0010026
23 C S Holling (1973). Resilience and stability of ecological systems.Annu Rev Ecol Syst, 4(1): 1–23
https://doi.org/10.1146/annurev.es.04.110173.000245
24 T C, Hsieh K H, Ma A Chao (2016). iNEXT: an R package for rarefaction and extrapolation of species diversity (Hill numbers).Methods Ecol Evol, 7: 1451e1456
https://doi.org/10.1111/2041-210X.12613
25 S T, Jackson J L Blois (2015). Community ecology in a changing environment: perspectives from the Quaternary.Proc Natl Acad Sci USA, 112(16): 4915–4921
https://doi.org/10.1073/pnas.1403664111
26 Y, Jin H, Wang L, Wei Y, Hou J, Hu K, Wu H, Xia J, Xia B, Zhou K, Li J Ni (2022). A plot-based dataset of plant community on the Qingzang Plateau.Acta Phytoecol Sin, 46(7): 846–854
https://doi.org/10.17521/cjpe.2022.0174
27 L Jost (2007). Partitioning diversity into independent alpha and beta components.Ecology, 88(10): 2427–2439
https://doi.org/10.1890/06-1736.1
28 K, Li X, Liu Y, Wang U, Herzschuh J, Ni M, Liao X Xiao (2017). Late Holocene vegetation and climate change on the southeastern Tibetan Plateau: implications for the Indian Summer Monsoon and links to the Indian Ocean Dipole.Quat Sci Rev, 177: 235–245
https://doi.org/10.1016/j.quascirev.2017.10.020
29 M, Li J S, Wu Y F, Feng B, Niu Y T, He X Z Zhang (2021). Climate variability rather than livestock grazing dominates changes in Alpine Grassland productivity across Tibet.Front Ecol Evol, 9: 631024
https://doi.org/10.3389/fevo.2021.631024
30 L, Liu X, Hou X, Yu N, Wang Y, Zhang X Cao (2022). Vegetation and environmental changes since the Last Glacial Maximum inferred from a lake core from Saiyong Co, central Tibetan Plateau.Holocene, 32(6): 543–553
https://doi.org/10.1177/09596836221080763
31 X, Lü K N, Paudayal D, Uhl L, Zhu T, Yao V Mosbrugger (2020). Phenology and climatic regime inferred from airborne pollen on the northern slope of the Qomolangma (Everest) region.J Geophys Res Atmos, 125: e2020JD033405
https://doi.org/10.1029/2020JD033405
32 J G Luly (1997). Modern pollen dynamics and surficial sedimentary processes at Lake Tyrrell, semi-arid northwestern Victoria, Australia.Rev Palaeobot Palynol, 97(3–4): 301–318
https://doi.org/10.1016/S0034-6667(97)81533-3
33 Q, Ma L, Zhu X, Lü J, Wang J, Ju T, Kasper G, Daut T Haberzettl (2019). Late glacial and Holocene vegetation and climate variations at Lake Tangra Yumco, central Tibetan Plateau.Global Planet Change, 174: 16–25
https://doi.org/10.1016/j.gloplacha.2019.01.004
34 Q, Ma L, Zhu X, Lu Y, Wang Y, Guo J, Wang J, Ju P, Peng L Tang (2017). Modern pollen assemblages from surface lake sediments and their environmental implications on the southwestern Tibetan Plateau.Boreas, 46(2): 242–253
https://doi.org/10.1111/bor.12201
35 L J Jr Maher (1981). Statistics for microfossil concentration measurements employing samples spiked with marker grains.Rev Palaeobot Palynol, 32(2–3): 153–191
https://doi.org/10.1016/0034-6667(81)90002-6
36 G, Miehe K, Bach S, Miehe J, Kluge Y P, Yang L, Duo S, Co K Wesche (2011a). Alpine steppe plant communities of the Tibetan highlands.Appl Veg Sci, 14(4): 547–560
https://doi.org/10.1111/j.1654-109X.2011.01147.x
37 G, Miehe S, Miehe K, Bach J, Kluge K, Wesche Y, Yang J Liu (2011b). Ecological stability during the LGM and the mid-Holocene in the Alpine Steppes of Tiber?.Quat Res, 76(2): 243–252
https://doi.org/10.1016/j.yqres.2011.06.002
38 G, Miehe P M, Schleuss E, Seeber W, Babel T, Biermann M, Braendle F, Chen H, Coners T, Foken T, Gerken H F, Graf G, Guggenberger S, Hafner M, Holzapfel J, Ingrisch Y, Kuzyakov Z, Lai L, Lehnert C, Leuschner X, Li J, Liu S, Liu Y, Ma S, Miehe V, Mosbrugger H J, Noltie J, Schmidt S, Spielvogel S, Unteregelsbacher Y, Wang S, Willinghöfer X, Xu Y, Yang S, Zhang L, Opgenoorth K Wesche (2019). The Kobresia pygmaea ecosystem of the Tibetan highlands - Origin, functioning and degradation of the world’s largest pastoral alpine ecosystem: Kobresia pastures of Tibet.Sci Total Environ, 648: 754–771
https://doi.org/10.1016/j.scitotenv.2018.08.164
39 J Oksanen, G Simpson, F G Blanchet, R Kindt, P Legendre, P Minchin, R O’Hara, P Solymos, M Stevens, E Szoecs, H Wagner, M Barbour, M Bedward, B Bolker, D Borcard, G Carvalho, M Chirico, M De Caceres, S Durand, H Evangelista, R FitzJohn, M Friendly, B Furneaux, G Hannigan, M Hill, L Lahti, D McGlinn, M Ouellette, E Ribeiro Cunha, T Smith, A Stier, C Ter Braak, J Weedon (2022) vegan: Community Ecology Package, version 2.6–4
40 F, Pennekamp M, Pontarp A, Tabi F, Altermatt R, Alther Y, Choffat E A, Fronhofer P, Ganesanandamoorthy A, Garnier J I, Griffiths S, Greene K, Horgan T M, Massie E, Mächler G M, Palamara M, Seymour O L Petchey (2018). Biodiversity increases and decreases ecosystem stability.Nature, 563(7729): 109–112
https://doi.org/10.1038/s41586-018-0627-8
41 W Pennington (1979). The origin of pollen sediments: an enclosed lake compared with one receiving inflow streams.New Phytol, 83: 76–86
42 S, Piao X, Zhang T, Wang E, Liang S, Wang J, Zhu B Niu (2019). Responses and feedback of the Tibetan Plateau’s alpine ecosystem to climate change.Chinese Sci Bull, 64(27): 2842–2855
https://doi.org/10.1360/TB-2019-0074
43 I C Prentice (1980). Multidimensional scaling as a research tool in Quaternary palynology: a review of theory and methods.Rev Palaeobot Palynol, 31: 71–104
https://doi.org/10.1016/0034-6667(80)90023-8
44 J Qiu (2008). China: the third pole.Nature, 454: 393e396
https://doi.org/10.1038/454393a
45 Core Team R (2022). R: A language and environment for statistical computing.R Foundation for Statistical Computing, Vienna: Austria
46 V, Radchuk F, Laender J S, Cabral I, Boulangeat M, Crawford F, Bohn J, Raedt C, Scherer J C, Svenning K, Thonicke F M, Schurr V, Grimm S Kramer-Schadt (2019). The dimensionality of stability depends on disturbance type.Ecol Lett, 22(4): 674–684
https://doi.org/10.1111/ele.13226
47 N, Rudaya S, Krivonogov M, Słowiński X, Cao S Zhilich (2020). Postglacial history of the Steppe Altai: climate, fire and plant diversity.Quat Sci Rev, 249: 106616
https://doi.org/10.1016/j.quascirev.2020.106616
48 M, Sano R, Ramesh M S, Sheshshayee R Sukumar (2012). Increasing aridity over the past 223 years in the Nepal Himalaya inferred from a tree-ring δ18O chronology.Holocene, 22(7): 809–817
https://doi.org/10.1177/0959683611430338
49 M G, Shen S L, Piao T, Dorji Q, Liu N, Cong X C, Chen S, An S P, Wang T, Wang G X Zhang (2015). Plant phenological responses to climate change on the Tibetan Plateau: research status and challenges.Natl Sci Rev, 2(4): 454–467
https://doi.org/10.1093/nsr/nwv058
50 J P, Smol A P, Wolfe H J B, Birks M S, Douglas V J, Jones A, Korhola R, Pienitz K, Rühland S, Sorvari D, Antoniades S J, Brooks M A, Fallu M, Hughes B E, Keatley T E, Laing N, Michelutti L, Nazarova M, Nyman A M, Paterson B, Perren R, Quinlan M, Rautio E, Saulnier-Talbot S, Siitonen N, Solovieva J Weckström (2005). Climate-driven regime shifts in the biological communities of arctic lakes.Proc Natl Acad Sci USA, 102(12): 4397–4402
https://doi.org/10.1073/pnas.0500245102
51 S Sugita (1993). A model of pollen source area for an entire lake surface.Quat Res, 39(2): 239–244
https://doi.org/10.1006/qres.1993.1027
52 S Sugita (1994). Pollen representation of vegetation in Quaternary sediments: theory and method in patchy vegetation.J Ecol, 82(4): 881–897
https://doi.org/10.2307/2261452
53 A, Sun Y, Yang H, Wu M Ran (2020). Climate change on the northeastern Tibetan Plateau during the past ~600 years inferred from peat pollen records.Rev Palaeobot Palynol, 276: 104194
https://doi.org/10.1016/j.revpalbo.2020.104194
54 L Y Tang, L M Mao, J W Shu, C H Li, C M Shen, Z Z Zhou (2016). An Illustrated Handbook of Quaternary Pollen and Spores in China. Beijing: Science Press
55 P, Tarasov E, Bezrukova E, Karabanov T, Nakagawa M, Wagner N, Kulagina P, Letunova A, Abzaeva W, Granoszewski F Riedel (2007). Vegetation and climate dynamics during the Holocene and Eemian interglacials derived from Lake Baikal pollen records.Palaeogeogr Palaeoclimatol Palaeoecol, 252: 440–457
https://doi.org/10.1016/j.palaeo.2007.05.002
56 C J F ter Braak, P Šmilauer (2012). CANOCO Reference Manual and User᾽s Guide: Software for Ordination. Version 5. Microcomputer Power Ithaca, New York
57 Braak C J, ter P F Verdonschot (1995). Canonical correspondence analysis and related multivariate methods in aquatic ecology.Aquat Sci, 57: 255–289
https://doi.org/10.1007/BF00877430
58 Braak C J, ter I C Prentice (2004). A theory of gradient analysis.Adv Ecol Res, 34: 235–282
https://doi.org/10.1016/S0065-2504(03)34003-6
59 F, Tian U, Herzschuh S, Mischke F Schlütz (2014). What drives the recent intensified vegetation degradation in Mongolia-Climate change or human activity?.Holocene, 24(10): 1206–1215
https://doi.org/10.1177/0959683614540958
60 F X Wang, N F Qian, Y L Zhang, H Q Yang (1995). Pollen Flora of China. Beijing: Science Press (in Chinese)
61 J, Wang X, Huang J, Zhang L, Xiang Y, Xiao L, Fontana X, Ren Z Wang (2020). Pollen record of humidity changes in the arid western Qilian mountains over the past 300 years and Comparison with tree-ring reconstructions.Front Earth Sci (Lausanne), 8: 562426
https://doi.org/10.3389/feart.2020.562426
62 N, Wang L, Liu Y, Zhang X Cao (2022). A modern pollen data set for the forest–meadow–steppe ecotone from the Tibetan Plateau and its potential use in past vegetation reconstruction.Boreas, 51(4): 847–858
https://doi.org/10.1111/bor.12589
63 P, Wang J P, Lassoie S J, Morreale S Dong (2015). A critical review of socioeconomic and natural factors in ecological degradation on the Qinghai-Tibetan Plateau, China.Rangeland J, 37(1): 1–9
https://doi.org/10.1071/RJ14094
64 Y B, Wang U Herzschuh (2011). Reassessment of Holocene vegetation change on the upper Tibetan Plateau using the pollen-based REVEALS model.Rev Palaeobot Palynol, 168(1): 31–40
https://doi.org/10.1016/j.revpalbo.2011.09.004
65 Y B, Wang U, Herzschuh L S, Shumilovskikh S, Mischke H J B, Birks J, Wischnewski J, Böhner F, Schlütz F, Lehmkuhl B, Diekmann B, Wünnemann C Zhang (2014). Quantitative reconstruction of precipitation changes on the NE Tibetan Plateau since the Last Glacial Maximum–extending the concept of pollen source area to pollen-based climate reconstructions from large lakes.Clim Past, 10(1): 21–39
https://doi.org/10.5194/cp-10-21-2014
66 Y, Wang G, Heberling E, Görzen G, Miehe E, Seeber K Wesche (2017). Combined effects of livestock grazing and abiotic environment on vegetation and soils of grasslands across Tibet.Appl Veg Sci, 20(3): 327–339
https://doi.org/10.1111/avsc.12312
67 J, Wilmshurst S McGlone (2005). Origin of pollen and spores in surface lake sediment: comparison of modern palynomorph assemblages in moss cushions, surface soil and surface lake sediment.Rev Palaeobot Palynol, 136(1–2): 1–15
https://doi.org/10.1016/j.revpalbo.2005.03.007
68 J, Wischnewski U, Herzschuh K, Ruhland A, Brauning S, Mischke J, Smol L Wang (2014). Recent ecological responses to climate variability and human impacts in the Nianbaoyeze Mountains (eastern Tibetan Plateau) inferred from pollen, diatom and tree-ring data.J Paleolimnol, 51(2): 287–302
https://doi.org/10.1007/s10933-013-9747-1
69 J, Wischnewski A, Kramer Z, Kong A, Mackay G, Simpson S, Mischke U Herzschuh (2011). Terrestrial and aquatic responses to climate change and human impact on the southeastern Tibetan Plateau during the past two centuries.Glob Change Biol, 17(11): 3376–3391
https://doi.org/10.1111/j.1365-2486.2011.02474.x
70 Q, Xu F, Tian M J, Bunting Y, Li W, Ding X, Cao Z He (2012). Pollen source area of lake with inflowing rivers: modern pollen influx data from Lake Baiyangdian, China.Quat Sci Rev, 37: 81–91
https://doi.org/10.1016/j.quascirev.2012.01.019
71 Q, Xu S Zhang (2013). Advances in pollen source area.Adv Earth Sci, 28(9): 968–975 (in Chinese)
72 Y, Zhang Y, Li L, Liu N, Wang X Cao (2022). No evidence of human disturbance to vegetation in the Zoige Region (north-eastern Tibetan Plateau) in the last millennium until recent decades.Palaeogeogr Palaeoclimatol Palaeoecol, 589: 110843
https://doi.org/10.1016/j.palaeo.2022.110843
73 Y, Zhao U Herzschuh (2009). Modern pollen representation of source vegetation in the Qaidam Basin and surrounding mountains, north-eastern Tibetan Plateau.Veg Hist Archaeobot, 18(3): 245–260
https://doi.org/10.1007/s00334-008-0201-7
74 Y, Zhao Z, Yu F, Chen X, Liu E Ito (2008). Sensitive response of desert vegetation to moisture change based on a near-annual resolution pollen record from Gahai Lake in the Qaidam Basin, northwest China.Global Planet Change, 62(1–2): 107–114
https://doi.org/10.1016/j.gloplacha.2007.12.003
75 Y, Zhao Z, Yu X, Liu C, Zhao F, Chen K Zhang (2010). Late Holocene vegetation and climate oscillations in the Qaidam Basin of the northeastern Tibetan Plateau.Quat Res, 73(1): 59–69
https://doi.org/10.1016/j.yqres.2008.11.007
76 L, Zhu X, Lü J, Wang P, Peng T, Kasper G, Daut T, Haberzettl P, Frenzel Q, Li R, Yang A, Schwalb R Mäusbacher (2015). Climate change on the Tibetan Plateau in response to shifting atmospheric circulation since the LGM.Sci Rep, 5(1): 13318
https://doi.org/10.1038/srep13318
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed