Please wait a minute...
Frontiers of Earth Science

ISSN 2095-0195

ISSN 2095-0209(Online)

CN 11-5982/P

邮发代号 80-963

2019 Impact Factor: 1.62

Frontiers of Earth Science  2023, Vol. 17 Issue (4): 1059-1069   https://doi.org/10.1007/s11707-023-1095-5
  本期目录
Spatial distribution of charcoal in topsoil and its potential determinants on the Tibetan Plateau
Yixuan WANG1,2, Chaoqun CAO1,2, Yanrong ZHANG1, Lina LIU3(), Nannan WANG1,2, Wenjia LI1,2, Xianyong CAO1()
1. Alpine Paleoecology and Human Adaptation Group (ALPHA), State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
2. University of the Chinese Academy of Sciences, Beijing 100049, China
3. College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China
 全文: PDF(20838 KB)   HTML
Abstract

As an important proxy for investigating past fire activities, charcoal is often used to explore the characteristics of fire distribution and its relationships with vegetation, climate, and human activities. Research into the spatial distribution and environmental determinants for charcoal, however, is still limited. In this study, we identified and counted charcoal from topsoil samples covering the Tibetan Plateau using the pollen methodology, and investigated its relationships with vegetation net primary production (NPP), elevation, climate (precipitation, mean temperature of the coldest month and warmest month) and human population by boosted regression trees (BRT). Results reveal that the concentration of microscopic charcoal, macroscopic charcoal, and total charcoal all increase from south-west to north-east, which is consistent with the trend that the population density on the Tibetan Plateau is high in the east and low in the west, suggesting that an increase in human activity is likely to promote the occurrence of fire. The BRT modeling reveals that NPP, elevation, and mean temperature of the coldest month are important factors for total charcoal concentration on the Tibetan Plateau, and the frequency and intensity of fires further increase with increasing vegetation biomass, decreasing elevation, and decreasing mean temperature of the coldest month. The spatial variation characteristics of charcoal from topsoil on the Tibetan Plateau not only reflect well the spatial fire situation in the region, but also have a good indicative significance for vegetation, climate, and human activities.

Key wordsBRT    charcoal    fire regime    climate    vegetation    human activities
收稿日期: 2023-02-27      出版日期: 2024-02-06
Corresponding Author(s): Lina LIU,Xianyong CAO   
 引用本文:   
. [J]. Frontiers of Earth Science, 2023, 17(4): 1059-1069.
Yixuan WANG, Chaoqun CAO, Yanrong ZHANG, Lina LIU, Nannan WANG, Wenjia LI, Xianyong CAO. Spatial distribution of charcoal in topsoil and its potential determinants on the Tibetan Plateau. Front. Earth Sci., 2023, 17(4): 1059-1069.
 链接本文:  
https://academic.hep.com.cn/fesci/CN/10.1007/s11707-023-1095-5
https://academic.hep.com.cn/fesci/CN/Y2023/V17/I4/1059
Fig.1  
Fig.2  
Fig.3  
Fig.4  
Fig.5  
Rank Var1 names Var2 names Interaction size
1 Mtco Elevation 1 503 203 118
2 NPP Elevation 234 732 614
3 Pann NPP 75 449 068
4 Mtco NPP 41 438 745
5 Mtwa Mtco 9 375 674
6 Population Mtco 6 864 452
7 Mtwa NPP 6 513 899
8 Population NPP 5 760 146
9 Mtwa Elevation 5 060 027
10 Mtco Pann 3 088 945
11 Pann Elevation 2 990 156
12 Population Elevation 2 134 957
13 Mtwa Pann 1 167 605
14 Population Mtwa 418 278
15 Population Pann 143 250
Tab.1  
1 N, Andela D C, Morton L, Giglio Y, Chen der Werf G R, van P S, Kasibhatla R S, DeFries G J, Collatz S, Hantson S, Kloster D, Bachelet M, Forrest G, Lasslop F, Li S, Mangeon J R, Melton C, Yue J T Randerson (2017). A human-driven decline in global burned area.Science, 356(6345): 1356–1362
https://doi.org/10.1126/science.aal4108
2 D M J S, Bowman C A, Kolden J T, Abatzoglou F H, Johnston der Werf G R, van M Flannigan (2020). Vegetation fires in the Anthropocene.Nat Rev Earth Environ, 1(10): 500–515
https://doi.org/10.1038/s43017-020-0085-3
3 X Y, Cao F, Tian K, Li J, Ni X S, Yu L N, Liu N N Wang (2021). Lake surface sediment pollen dataset for the alpine meadow vegetation type from the eastern Tibetan Plateau and its potential in past climate reconstructions.Earth Syst Sci Data, 13(7): 3525–3537
https://doi.org/10.5194/essd-13-3525-2021
4 J S Clark (1988). Particle motion and the theory of charcoal analysis: source area, transport, deposition and sampling.Quat Res, 30(1): 67–80
https://doi.org/10.1016/0033-5894(88)90088-9
5 J S, Clark J, Lynch B J, Stocks J G Goldammer (1998). Relationships between charcoal particles in air and sediments in west-central Siberia.Holocene, 8(1): 19–29
https://doi.org/10.1191/095968398672501165
6 R L Clark (1982). Point count estimation of charcoal in pollen preparations and thin sections of sediments.Pollen Spores, 24: 523–535
7 A L, Daniau S P, Harrison P J Bartlein (2010). Fire regimes during the last glacial.Quat Sci Rev, 29(21–22): 2918–2930
https://doi.org/10.1016/j.quascirev.2009.11.008
8 G H, Dong X, Jia C B, An F H, Chen Y, Zhao S C, Tao M M Ma (2012). Mid-Holocene climate change and its effect on prehistoric cultural evolution in eastern Qinghai Province, China.Quat Res, 77(1): 23–30
https://doi.org/10.1016/j.yqres.2011.10.004
9 G H, Dong X, Jia R, Elston F H, Chen S C, Li L, Wang L H, Cai C B An (2013). Spatial and temporal variety of prehistoric human settlement and its influencing factors in the upper Yellow River valley, Qinghai Province, China.J Archaeol Sci, 40(5): 2538–2546
https://doi.org/10.1016/j.jas.2012.10.002
10 C A Froyd (2006). Holocene fire in the Scottish Highlands: evidence from macroscopic charcoal records.Holocene, 16(2): 235–249
https://doi.org/10.1191/0959683606hl910rp
11 R, Glückler U, Herzschuh S, Kruse A, Andreev S A, Vyse B, Winkler B K, Biskaborn L, Pestryakova E Dietze (2021). Wildfire history of the boreal forest of south-western Yakutia (Siberia) over the last two millennia documented by a lake-sediment charcoal record.Biogeosciences, 18(13): 4185–4209
https://doi.org/10.5194/bg-18-4185-2021
12 X L Guo, W W Zhao, J H Sun, F R Li, K Zhang, Y Zhao (2011). Advances of charcoal study for paleoenvironment in China. J Glaciol Geocryol, 33(02): 342–348 (in Chinese)
13 R, Hayashi H, Takahara A, Hayashida K Takemura (2010). Millennial-scale vegetation changes during the last 40,000 yr based on a pollen record from Lake Biwa, Japan.Quat Res, 74(1): 91–99
https://doi.org/10.1016/j.yqres.2010.04.008
14 J, He K, Yang W, Tang H, Lu J, Qin Y, Chen X Li (2020). The first high-resolution meteorological forcing dataset for land process studies over China.Sci Data, 7(1): 25
https://doi.org/10.1038/s41597-020-0369-y
15 R J Hijmans, S Phillips, J Leathwick, J Elith (2015). Dismo: Species Distribution Modeling, version 1.0–12. Available at CRAN website
16 L Jiang, S Yu, L T Y Wu, W L Du (2018). Summary of grassland fire research. Acta Agrestia Sin, 26(04): 791–803 (in Chinese)
17 S M Jin, G L Hou, C J Xu, D Z M Wen, J Y Gao (2022). Extreme environmental risk assessment of human activities on the Qinghai-Tibet Plateau. Resources and Environment in the Yangtze Basin, 31(09): 2048–2059 (in Chinese)
18 K, Kaiser Z P, Lai B, Schneider W H, Schoch X H, Shen G, Miehe H Bruckner (2009). Sediment sequences and paleosols in the Kyichu Valley, southern Tibet (China), indicating Late Quaternary environmental changes.Isl Arc, 18(3): 404–427
https://doi.org/10.1111/j.1440-1738.2008.00629.x
19 J Y, Li N L Wang (2020). Holocene grassland fire dynamics and forcing factors in continental interior of China.Geophys Res Lett, 47(13): e2020GL088049
https://doi.org/10.1029/2020GL088049
20 S F, Li A C, Hughes T, Su J L, Anberree A A, Oskolski M, Sun D K, Ferguson Z K Zhou (2017). Fire dynamics under monsoonal climate in Yunnan, SW China: past, present and future.Palaeogeogr Palaeoclimatol Palaeoecol, 465: 168–176
https://doi.org/10.1016/j.palaeo.2016.10.028
21 S, Li J, Chen C, Liu Y Wang (2021b). Mineral prospectivity prediction via convolutional neural networks based on geological big data.J Earth Sci, 32(2): 327–347
https://doi.org/10.1007/s12583-020-1365-z
22 W J, Li P, Li Z M, Feng Z, You C W Xiao (2021a). Spatial definition of “Unpopulated Areas (UPAs)” based on the characteristics of human settlements in the Qinghai-Tibet Plateau, China.Acta Geogr Sin, 76(09): 2118–2129
23 X Q, Li X Y, Zhou X, Shang J Dodson (2006). Different-(kPa/°C) size method of charcoal analysis in loess and its significance in the study of fire variation.J Lake Sci, 18(5): 540–544
https://doi.org/10.18307/2006.0517
24 Y Y Li, S F Hou, P F Zhao (2010). Comparison of different quantification methods for microfossil charcoal concentration and the implication for human activities. Quat Sci, 30(02): 356–363 (in Chinese)
25 Z, Li Y, Saito P X, Dang E, Matsumoto Q L Vu (2009). Warfare rather than agriculture as a critical influence on fires in the late Holocene, inferred from northern Vietnam.Proc Natl Acad Sci USA, 106(28): 11490–11495
https://doi.org/10.1073/pnas.0813258106
26 L N, Liu W, Wang D X, Chen Z M, Niu Y, Wang X Y, Cao Y Z Ma (2020). Soil-surface pollen assemblages and quantitative relationships with vegetation and climate from the Inner Mongolian Plateau and adjacent mountain areas of northern China.Palaeogeogr Palaeoclimatol Palaeoecol, 543: 109600
https://doi.org/10.1016/j.palaeo.2020.109600
27 X Y, Ma D, Wu Y, Liang Z J, Yuan T, Wang Y M, Li N N Gyatso (2023). Changes in regional religious activities in the last millennium recorded by black carbon in Lake Dalzong, northeastern Tibetan Plateau.Sci China Earth Sci, 66(2): 303–315
https://doi.org/10.1007/s11430-022-9982-1
28 Y L Ma, W M Ma, C Wang, S Y Fu, M X Ma (2020). Study on the occurrence and prevention and control of forest fires in the Marco River Forest region of Qinghai Province. Sci and Techn Qinghai Agri Forest, (01): 37–41 (in Chinese)
29 J R, Marlon P J, Bartlein C, Carcaillet D G, Gavin S P, Harrison P E, Higuera F, Joos M J, Power I C Prentice (2008). Climate and human influences on global biomass burning over the past two millennia.Nature Geosci, 1: 697–702
https://doi.org/10.1038/ngeo313
30 J R, Marlon P J, Bartlein A L, Daniau S P, Harrison S Y, Maezumi M J, Power W, Tinner B Vannière (2013). Global biomass burning: a synthesis and review of Holocene paleofire records and their controls.Quat Sci Rev, 65: 5–25
https://doi.org/10.1016/j.quascirev.2012.11.029
31 J R, Marlon R, Kelly A L, Daniau B, Vanniere M J, Power P, Bartlein P, Higuera O, Blarquez S, Brewer T, Brucher A, Feurdean G G, Romera V, Iglesias S Y, Maezumi B, Magi Mustaphi C J, Courtney T Zhihai (2016). Reconstructions of biomass burning from sediment-charcoal records to improve data-model comparisons.Biogeosciences, 13(11): 3225–3244
https://doi.org/10.5194/bg-13-3225-2016
32 Y F, Miao M, Herrmann F L, Wu X L, Yan S L Yang (2012). What controlled Mid–Late Miocene long-term aridification in Central Asia?—Global cooling or Tibetan Plateau uplift: a review..Earth Sci Rev, 112(3–4): 155–172
https://doi.org/10.1016/j.earscirev.2012.02.003
33 Y F, Miao F L, Wu S, Warny X M, Fang H J, Lu B H, Fu C H, Song X L, Yan G, Escarguel Y B, Yang Q Q, Meng P L Shi (2019). Miocene fire intensification linked to continuous aridification on the Tibetan Plateau.Geology, 47(4): 303–307
https://doi.org/10.1130/G45720.1
34 Y F, Miao D J, Zhang X M, Cai F, Li H L, Jin Y P, Wang B Liu (2017). Holocene fire on the northeast Tibetan Plateau in relation to climate change and human activity.Quat Int, 443: 124–131
https://doi.org/10.1016/j.quaint.2016.05.029
35 M A, Moritz M A, Parisien E, Batllori M A, Krawchuk Dorn J, Van D J, Ganz K Hayhoe (2012). Climate change and disruptions to global fire activity.Ecosphere, 3(6): 49
https://doi.org/10.1890/ES11-00345.1
36 D Nychka, R Furrer, J Paige, S Sain (2021). “Fields: Tools for spatial data.” R package version 14.1
37 W A III, Patterson K J, Edwards D J Maguire (1987). Microscopic charcoal as a fossil indicator of fire.Quat Sci Rev, 6(1): 3–23
https://doi.org/10.1016/0277-3791(87)90012-6
38 M J, Power J, Marlon N, Ortiz P J, Bartlein S P, Harrison F E, Mayle A, Ballouche R H W, Bradshaw C, Carcaillet C, Cordova S, Mooney P I, Moreno I C, Prentice K, Thonicke W, Tinner C, Whitlock Y, Zhang Y, Zhao A A, Ali R S, Anderson R, Beer H, Behling C, Briles K J, Brown A, Brunelle M, Bush P, Camill G Q, Chu J, Clark D, Colombaroli S, Connor A L, Daniau M, Daniels J, Dodson E, Doughty M E, Edwards W, Finsinger D, Foster J, Frechette M J, Gaillard D G, Gavin E, Gobet S, Haberle D J, Hallett P, Higuera G, Hope S, Horn J, Inoue P, Kaltenrieder L, Kennedy Z C, Kong C, Larsen C J, Long J, Lynch E A, Lynch M, McGlone S, Meeks S, Mensing G, Meyer T, Minckley J, Mohr D M, Nelson J, New R, Newnham R, Noti W, Oswald J, Pierce P J H, Richard C, Rowe Goñi M F, Sanchez B N, Shuman H, Takahara J, Toney C, Turney D H, Urrego-Sanchez C, Umbanhowar M, Vandergoes B, Vanniere E, Vescovi M, Walsh X, Wang N, Williams J, Wilmshurst J H Zhang (2008). Changes in fire regimes since the Last Glacial Maximum: an assessment based on a global synthesis and analysis of charcoal data.Clim Dyn, 30(7–8): 887–907
https://doi.org/10.1007/s00382-007-0334-x
39 W, Qi S H, Liu L Zhou (2020). Regional differentiation of population in Tibetan Plateau: insight from the “Hu Line”.Acta Geogr Sin, 75(02): 255–267
40 D Qin, C M Shen, H W Meng, L P Huang (2018). Relationship between modern pollen/charcoal assemblages and vegetation/fire in northeast Yunnan. J Yunnan Normal U (Nat Sci Ed), 38(03): 70–78 (in Chinese)
41 Core Team R (2022). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria
42 S Running, M Zhao (2019). MOD17A3HGF MODIS/Terra Net Primary Production Gap-Filled Yearly L4 Global 500 m SIN Grid V006 [Data set]. NASA EOSDIS Land Processes DAAC. Accessed 2023–01–28 from
https://doi.org/10.5067/MODIS/MOD17A3HGF.006
43 J S, Salonen M, Luoto T, Alenius M, Heikkila H, Seppa R J, Telford H J B Birks (2014). Reconstructing palaeoclimatic variables from fossil pollen using boosted regression trees: comparison and synthesis with other quantitative reconstruction methods.Quat Sci Rev, 88: 69–81
https://doi.org/10.1016/j.quascirev.2014.01.011
44 D A Singer (2021). How deep learning networks could be designed to locate mineral deposits.J Earth Sci, 32(2): 288–292
https://doi.org/10.1007/s12583-020-1399-2
45 Z H, Tan Y M, Han J J, Cao C C, Huang Z S An (2015). Holocene wildfire history and human activity from high-resolution charcoal and elemental black carbon records in the Guanzhong Basin of the Loess Plateau, China.Quat Sci Rev, 109: 76–87
https://doi.org/10.1016/j.quascirev.2014.11.013
46 Z H, Tan C C, Huang J L, Pang Y L Zhou (2013). Wildfire history and climatic change in the semi-arid loess tableland in the middle reaches of the Yellow River of China during the Holocene: evidence from charcoal records.Holocene, 23(10): 1466–1476
https://doi.org/10.1177/0959683613493936
47 F, Tian X Y, Cao A, Dallmeyer Y, Zhao J, Ni U Herzschuh (2017). Pollen-climate relationships in time (9 ka, 6 ka, 0 ka) and space (upland vs. lowland) in eastern continental Asia.Quat Sci Rev, 156: 1–11
https://doi.org/10.1016/j.quascirev.2016.11.027
48 B, Vannière O, Blarquez D, Rius E, Doyen T, Brücher D, Colombaroli S, Connor A, Feurdean T, Hickler P, Kaltenrieder C, Lemmen B, Leys C, Massa J Olofsson (2016). 7000-year human legacy of elevation-dependent European fire regimes.Quat Sci Rev, 132: 206–212
https://doi.org/10.1016/j.quascirev.2015.11.012
49 B, Vannière D, Colombaroli E, Chapron A, Leroux W, Tinner M Magny (2008). Climate versus human-driven fire regimes in Mediterranean landscapes: the Holocene record of Lago dell’Accesa (Tuscany, Italy).Quat Sci Rev, 27(11–12): 1181–1196
https://doi.org/10.1016/j.quascirev.2008.02.011
50 W, Wang Z D Feng (2013). Holocene moisture evolution across the Mongolian Plateau and its surrounding areas: a synthesis of climatic records.Earth Sci Rev, 122: 38–57
https://doi.org/10.1016/j.earscirev.2013.03.005
51 Z S, Wang Y F, Miao Y T, Zhao F, Li Y, Lei M X, Xiang Y G Zou (2020). Characteristics of microcharcoal in the lake surface sediments in the northern margin of Qaidam Basin of China and its environmental significance.J Desert Res, 40(04): 10–17
52 A L, Westerling H G, Hidalgo D R, Cayan T W Swetnam (2006). Warming and earlier spring increase western U.S. forest wildfire activity.Science, 313(5789): 940–943
https://doi.org/10.1126/science.1128834
53 C, Whitlock S H Millspaugh (1996). Testing the assumptions of fire-history studies: an examination of modern charcoal accumulation in Yellowstone National Park.Holocene, 6(1): 7–15
https://doi.org/10.1177/095968369600600102
54 S H, Wu Y H, Yin D, Zhen Q Y Yang (2005). Climate changes in the Tibetan Plateau during the last three decades.Acta Geogr Sin, 60(1): 3–11
55 B Xian (2005). About the Tibetan energy culture in the vision of ecology. Qinghai J Ethno, 16(03): 42–47 (in Chinese)
56 X Xu, Y Y Li (2015). Comparison of the fire history reconstructions from three different kinds of charcoal data on the same site, Daxing’an Mountain. Quat Sci, 35(4): 960–966 (in Chinese)
57 T D Yao, F H Chen, P Cui, Y M Ma, B Q Xu, L P Zhu, F Zhan, W C Wang, L S Ai, X X Yang (2017). From Tibetan Plateau to Third Pole and Pan-Third Pole. Bull Chinese Academy Sci, 32(09): 924–931 (in Chinese)
58 T, Ye N, Zhao X, Yang Z, Ouyang X, Liu Q, Chen K, Hu W, Yue J, Qi Z, Li P Jia (2019). Improved population mapping for China using remotely sensed and points-of-interest data within a random forests model.Sci Total Environ, 658: 936–946
https://doi.org/10.1016/j.scitotenv.2018.12.276
59 Z J, Yuan D, Wu T, Wang X Y, Ma Y M, Li S, Shao Y, Zhang A F Zhou (2022). Holocene fire history in southwestern China linked to climate change and human activities.Quat Sci Rev, 289: 107615
https://doi.org/10.1016/j.quascirev.2022.107615
60 C L, Zhan J J, Cao Y M, Han Z S An (2011). Research progress on reconstruction of paleofire history.Adv Earth Sci, 26(12): 1248–1259
61 D, Zhang X, Huang Q, Liu X, Chen Z Feng (2022). Holocene fire records and their drivers in the westerlies-dominated Central Asia.Sci Total Environ, 833: 155153
https://doi.org/10.1016/j.scitotenv.2022.155153
62 J Zhang, G Y Bao, J H Zhang (2013). Characteristic analysis of grassland fire meteorological factor in Haidong Area of Qinghai. Sci Techn Qinghai Agri Fores, 90(02): 17–20 (in Chinese)
63 M, Zhao S W Running (2010). Drought-induced reduction in global terrestrial net primary production from 2000 through 2009.Science, 329(5994): 940–943
https://doi.org/10.1126/science.1192666
64 Y J Zhao, G L Hou, E C Y, Yang L, Wang Q B (2016). Charcoal concentration reflect of environment change and human activities in Xiadawu Relic, Qinghai-Tibet Plateau. J Earth Environ, 7(01): 19–26 (in Chinese)
65 X W Zhou, X Wei, P Chen, T Y Shi, Z C Hui (2022). Charcoal records during the Middle Miocene and its paleoclimatic significance in the Wushan Basin, northeastern Tibetan Plateau. Arid Land Geogr, 45(03): 826–835 (in Chinese)
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed