Please wait a minute...
Frontiers of Earth Science

ISSN 2095-0195

ISSN 2095-0209(Online)

CN 11-5982/P

邮发代号 80-963

2019 Impact Factor: 1.62

Frontiers of Earth Science  2024, Vol. 18 Issue (3): 637-648   https://doi.org/10.1007/s11707-024-1107-0
  本期目录
The characteristics and future projections of fire danger in the areas around mega-city based on meteorological data–a case study of Beijing
Mengxin BAI1, Wupeng DU1(), Zhixin HAO2,3, Liang ZHANG2,3, Pei XING1
. Beijing Municipal Climate Center, Beijing Meteorological Service, Beijing 100089, China
. Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
. University of Chinese Academy of Sciences, Beijing 100049, China
 全文: PDF(4111 KB)   HTML
Abstract

It is crucial to investigate the characteristics of fire danger in the areas around Beijing to increase the accuracy of fire danger monitoring, forecasting, and management. Using meteorological data from 17 national meteorological stations in the areas around Beijing from 1981−2021, this study calculated the fire weather index (FWI) and analyzed its spatiotemporal characteristics. It was found that the high and low fire danger periods were in April−May and July−August, with spatial patterns of “decrease in the northwest−increase in the southeast” and a significant increase throughout the areas around Beijing, respectively. Next, the contributions of different meteorological factors were quantified by the multiple regression method. We found that during the high fire danger period, the northern and southern parts were affected by precipitation and minimum relative humidity, respectively. However, most areas were influenced by wind speed during the low fire danger period. Finally, comparing with the FWI characteristics under different SSP scenarios, we found that the FWI decreased during high fire danger period and increased during low fire danger period under different SSP scenarios (i.e., SSP245, SSP585) for periods of 2021−2050, 2071−2100, 2021−2100, except for SSP245 in 2071−2100 with an increasing trend both in high and low fire danger periods. This study implies that there is a higher probability of FWI in the low fire danger period, threatening the ecological environment and human health. Therefore, it is necessary to enhance research on fire danger during the low fire danger period to improve the ability to predict summer fire danger.

Key wordsmeteorological data-based fire danger    areas around Beijing    climate characteristics    SSP scenarios
收稿日期: 2023-02-22      出版日期: 2024-09-29
Corresponding Author(s): Wupeng DU   
 引用本文:   
. [J]. Frontiers of Earth Science, 2024, 18(3): 637-648.
Mengxin BAI, Wupeng DU, Zhixin HAO, Liang ZHANG, Pei XING. The characteristics and future projections of fire danger in the areas around mega-city based on meteorological data–a case study of Beijing. Front. Earth Sci., 2024, 18(3): 637-648.
 链接本文:  
https://academic.hep.com.cn/fesci/CN/10.1007/s11707-024-1107-0
https://academic.hep.com.cn/fesci/CN/Y2024/V18/I3/637
Fig.1  
ID Model name Institution and region Atmospheric resolution(lon × lat, vertical levels)
1 ACCESS-ESM1-5 Commonwealth Scientific and Industrial Research Organization, Australia ~1.88° × 1.25°, L38
2 CanESM5 Canadian Centre for Climate Modeling and Analysis, Canada ~2.81° × ~2.77°, L49
3 CMCC-ESM2 Euro-Mediterranean Centre for Climate Change Foundation, Italy 1.25° × ~0.94°, L30
4 EC-Earth3 EC-Earth Consortium, Europe ~0.71° × ~0.70°, L91
5 FGOALS-g3 Chinese Academy of Sciences, China 2° × ~5.18°, L26
6 GFDL-CM4 National Oceanic and Atmospheric Administration, Geophysical FluidDynamics Laboratory, USA 1.25° × 1°, L33
7 INM-CM5-0 Institute for Numerical Mathematics, Russia 2° × 1.5°, L73
8 MIROC6 Atmosphere and Ocean Research Institute, The University of Tokyo, Japan ~1.41° × ~1.39°, L81
9 MPI-ESM1-2-LR Max Planck Institute for Meteorology, Alfred Wegener Institute, Germany ~1.88° × ~1.85°, L47
10 MRI-ESM2-0 Meteorological Research Institute, Japan ~1.13° × ~1.11, L80
Tab.1  
Fig.2  
Fig.3  
Fig.4  
Fig.5  
Fig.6  
Fig.7  
Fig.8  
Scenario Period High fire danger period Low fire danger period
SSP245 2021?2050 ?0.0316 0.1084
2071?2100 0.2113 0.1348
SSP585 2021?2050 ?0.2709 0.1324
2071?2100 ?0.3157 0.3916
Tab.2  
1 M, Adámek P, Bobek V, Hadincova J, Wild M Kopecky (2015). Forest fires within a temperate landscape: a decadal and millennial perspective from a sandstone region in Central Europe.For Ecol Manage, 336: 81–90
https://doi.org/10.1016/j.foreco.2014.10.014
2 B D, Amiro K A, Logan B M, Wotton M D, Flannigan J B, Todd B J, Stocks D L Martell (2004). Fire weather index system components for large fires in the Canadian boreal forest.Int J Wildland Fire, 13(4): 391–400
https://doi.org/10.1071/WF03066
3 N V, Baranovskiy V A, Vyatkina A M Chernyshov (2023). Deterministic-probabilistic prediction of forest fires from lightning activity taking into account aerosol emissions.Atmosphere (Basel), 14(1): 29
https://doi.org/10.3390/atmos14010029
4 D J, Cai N J, Abram J J, Sharples S E Perkins-Kirkpatrick (2022). Increasing intensity and frequency of cold fronts contributed to Australia’s 2019–2020 Black Summer fire disaster.Environ Res Lett, 17(9): 094044
https://doi.org/10.1088/1748-9326/ac8e88
5 L L, Cheng Y, Zhang H Y Sun (2020). Vegetation cover change and relative contributions of associated driving factors in the ecological conservation and development zone of Beijing, China.Pol J Environ Stud, 29(1): 53–65
https://doi.org/10.15244/pjoes/102368
6 Groot W J, de R, Landry W A, Kurz K R, Anderson P, Englefield R H, Fraser R J, Hall E, Banfield D A, Raymond V, Decker T J, Lynham J M Pritchard (2007). Estimating direct carbon emissions from Canadian wildland fires.Int J Wildland Fire, 16(5): 593–606
https://doi.org/10.1071/WF06150
7 Sousa J A P, de Nascimento Lope E R, do M L, Duarte H, Ewbank R W Lourenço (2022). Forest fire risk indicator (FFRI) based on geoprocessing and multicriteria analysis.Nat Hazards, 114(2): 2311–2330
https://doi.org/10.1007/s11069-022-05473-x
8 Y H, Ding Y, Sun Z Y, Wang Y X, Zhu Y F Song (2009). Inter-decadal variation of the summer precipitation in China and its association with decreasing Asian summer monsoon Part II: possible causes.Int J Climatol, 29(13): 1926–1944
https://doi.org/10.1002/joc.1759
9 Y H, Ding Z Y, Wang Y Sun (2008). Inter-decadal variation of the summer precipitation in east China and its association with decreasing Asian summer monsoon. Part I: observed evidences.Int J Climatol, 28(9): 1139–1161
https://doi.org/10.1002/joc.1615
10 M, Esperson-Rodriguez M G, Tjoelker J, Lenoir J B, Baumgartner L J, Beaumont D A, Nipperess S A, Power B, Richard P D, Rymer R V Gallagher (2022). Climate change increases global risk to urban forests.Nat Clim Change, 12(10): 950–955
https://doi.org/10.1038/s41558-022-01465-8
11 M D, Flannigan M A, Krawchuk Groot W J, de B M, Wotton L M Gowman (2009). Implications of changing climate for global wildland fire.Int J Wildland Fire, 18(5): 483–507
https://doi.org/10.1071/WF08187
12 G, Guidolotti C, Calfapietra E, Pallozzi Simoni G, De R, Esposito M, Mattioni G, Nicolini G, Matteucci E Brugnoli (2017). Promoting the potential of flux-measuring stations in urban parks: an innovative case study in Naples, Italy.Agric For Meteorol, 233: 153–162
https://doi.org/10.1016/j.agrformet.2016.11.004
13 B S, Hardiman J A, Wang L R, Hutyra C K, Gately J M, Getson M A Friedl (2017). Accounting for urban biogenic fluxes in regional carbon budgets.Sci Total Environ, 592: 366–372
https://doi.org/10.1016/j.scitotenv.2017.03.028
14 M D, Hurteau M North (2010). Carbon recovery rates following different wildfire risk mitigation treatments.For Ecol Manage, 260(5): 930–937
https://doi.org/10.1016/j.foreco.2010.06.015
15 P C, Ibsen D, Borowy T, Dell H, Greydanus N, Gupta D M, Hondula T, Meixner M V, Santelmann S A, Shiflett M C, Sukop C M, Swan M L, Talal M, Valencia M K, Wright G D Jenerette (2021). Greater aridity increases the magnitude of urban nighttime vegetation-derived air cooling.Environ Res Lett, 16(3): 034011
https://doi.org/10.1088/1748-9326/abdf8a
16 P, Jain D, Castellanos-Acuna S C P, Coogan J T, Abatzoglou M D Flannigan (2022). Observed increases in extreme fire weather driven by atmospheric humidity and temperature.Nat Clim Chang, 12(1): 63–70
https://doi.org/10.1038/s41558-021-01224-1
17 P P, Jia D F, Zhuang Y Wang (2017). Impacts of temperature and precipitation on the spatiotemporal distribution of water resources in Chinese mega cities: the case of Beijing.J Water Clim Chang, 8(4): 593–612
https://doi.org/10.2166/wcc.2017.038
18 W M, Jolly M A, Cochrane P H, Freeborn Z A, Holden T J, Brown G J, Williamson D M J S Bowman (2015). Climate-induced variations in global wildfire danger from 1979 to 2013.Nat Commun, 6(1): 7537
https://doi.org/10.1038/ncomms8537
19 F, Justino Melo A S, de A, Setzer R, Sismanoglu G C, Sediyama G A, Ribeiro J P, Machado A Sterl (2011). Greenhouse gas induced changes in the fire risk in Brazil in ECHAM5/MPI-OM coupled climate model.Clim Change, 106(2): 285–302
https://doi.org/10.1007/s10584-010-9902-x
20 L T, Kelly K M, Giljohann A, Duane N, Aquilue S, Archibald E, Batllori A F, Bennett S T, Buckland Q, Canelles M F, Clarke M J, Fortin V, Hermoso S, Herrando R E, Keane F K, Lake M A, McCarthy A, Morán-Ordóñez C L, Parr J G, Pausas T D, Penman A, Regos L, Rumpff J L, Santos A L, Smith A D, Syphard M W, Tingley L Brotons (2020). Fire and biodiversity in the Anthropocene.Science, 370(6519): eabb0355
https://doi.org/10.1126/science.abb0355
21 S, Kloster N M, Mahowald J T, Randerson P J Lawrence (2012). The impacts of climate, land use, and demography on fires during the 21st century simulated by CLM-CN.Biogeosciences, 9(1): 509–525
https://doi.org/10.5194/bg-9-509-2012
22 N G, McDowell C D Allen (2015). Darcy’s law predicts widespread forest mortality under climate warming.Nat Clim Chang, 5(7): 669–672
https://doi.org/10.1038/nclimate2641
23 R H, Nolan M M, Boer L, Collins de Dios V R, Resco H, Clarke M, Jenkins B, Kenny R A Bradstock (2020). Causes and consequences of eastern Australia’s 2019–20 season of mega-fires.Glob Change Biol, 26(3): 1039–1041
https://doi.org/10.1111/gcb.14987
24 B C, O’Neill C, Tebaldi Vuuren D P, van V, Eyring P, Friedlingstein G, Hurtt R, Knutti E, Kriegler J F, Lamarque J, Lowe G A, Meehl R, Moss K, Riahi B M Sanderson (2016). The Scenario Model Intercomparison Project (ScenarioMIP) for CMIP6.Geosci Model Dev, 9(9): 3461–3482
https://doi.org/10.5194/gmd-9-3461-2016
25 D E, Pataki M, Alberti M L, Cadenasso A J, Felson M J, McDonnell S, Pincetl R V, Pouyat H, Setala T H Whitlow (2021). The benefits and limits of urban tree planting for environmental and human health.Front Ecol Evol, 9: 603757
https://doi.org/10.3389/fevo.2021.603757
26 K, Riahi Vuuren D P, van E, Kriegler J, Edmonds B C, O’Neill S, Fujimori N, Bauer K, Calvin R, Dellink O, Fricko W, Lutz A, Popp J C, Cuaresma S, Kc M, Leimbach L, Jiang T, Kram S, Rao J, Emmerling K, Ebi T, Hasegawa P, Havlik F, Humpenöder Silva L A, Da S, Smith E, Stehfest V, Bosetti J, Eom D, Gernaat T, Masui J, Rogelj J, Strefler L, Drouet V, Krey G, Luderer M, Harmsen K, Takahashi L, Baumstark J C, Doelman M, Kainuma Z, Klimont G, Marangoni H, Lotze-Campen M, Obersteiner A, Tabeau M Tavoni (2017). The shared socioeconomic pathways and their energy, land use, and greenhouse gas emissions implications: an overview.Glob Environ Change, 42: 153–168
https://doi.org/10.1016/j.gloenvcha.2016.05.009
27 D R, Richards R N, Belcher L R, Carrasco P J, Edwards S, Fatichi P, Hamel M, Masoudi M J, McDonnell N, Peleg M C Stanley (2022). Global variation in contributions to human well-being from urban vegetation ecosystem services.One Earth, 5(5): 522–533
https://doi.org/10.1016/j.oneear.2022.04.006
28 K, Slezakova S, Morais M D Pereira (2013). Forest fires in Northern region of Portugal: impact on PM levels.Atmos Res, 127: 148–153
https://doi.org/10.1016/j.atmosres.2012.07.012
29 D V, Spracklen L J, Mickley J A, Logan R C, Hudman R, Yevich M D, Flannigan A L Westerling (2009). Impacts of climate change from 2000 to 2050 on wildfire activity and carbonaceous aerosol concentrations in the western United States.J Geophys Res, 114: D20301
https://doi.org/10.1029/2008JD010966
30 D T, Squire D, Richardson J S, Risbey A S, Black V, Kitsios R J, Matear D, Monselesan T S, Moore C R Tozer (2021). Likelihood of unprecedented drought and fire weather during Australia’s 2019 megafires.NPJ Clim Atmos Sci, 4(1): 64
https://doi.org/10.1038/s41612-021-00220-8
31 K E, Taylor R J, Stouffer G A Meehl (2012). An overview of CMIP5 and the experiment design.Bull Am Meteorol Soc, 93(4): 485–498
https://doi.org/10.1175/BAMS-D-11-00094.1
32 X M, Tian C L, Tang X, Wu J, Yang F M, Zhao D Liu (2023). The global spatial-temporal distribution and EOF analysis of AOD based on MODIS data during 2003–2021.Atmos Environ, 302: 119722
https://doi.org/10.1016/j.atmosenv.2023.119722
33 X R, Tian D J, McRae J Z, Jin L F, Shu F J, Zhao M Y Wang (2011). Wildfires and the Canadian forest fire weather index system for the Daxing’anling region of China.Int J Wildland Fire, 20(8): 963–973
https://doi.org/10.1071/WF09120
34 X R, Tian L F, Shu M Y Wang (2006). Study on assessment of Beijing forest fire danger.Fire Safety Sci, 15(3): 150–158
35 C E V Wagner (1987). Development and structure of the Canadian Forest Fire Weather Index System. Canadian Forestry Service, Forestry Technical Report 35: 1–48
36 M, Ward A I T, Tulloch J Q, Radford B A, Williams A E, Reside S L, Macdonald H J, Mayfield M, Maron H P, Possingham S J, Vine J L, O’Connor E J, Massingham A C, Greenville J C Z, Woinarski S T, Garnett M, Lintermans B C, Scheele J, Carwardine D G, Nimmo D B, Lindenmayer R M, Kooyman J S, Simmonds L J, Sonter J E M Watson (2020). Impact of 2019–2020 mega-fires on Australian fauna habitat.Nat Ecol Evol, 4(10): 1321–1326
https://doi.org/10.1038/s41559-020-1251-1
37 J, Weeks J E D, Miller Z L, Steel E E, Batzer H D Safford (2023). High-severity fire drives persistent floristic homogenization in human-altered forests.Ecosphere, 14(2): e4409
https://doi.org/10.1002/ecs2.4409
38 S Y, Wei Q J, Chen W B, Wu J Ma (2021). Quantifying the indirect effects of urbanization on urban vegetation carbon uptake in the megacity of Shanghai, China.Environ Res Lett, 16(6): 064088
https://doi.org/10.1088/1748-9326/ac06fd
39 G D, Xie W H, Li Y, Xiao B A, Zhang C X, Lu K, An J X, Wang K, Xu J Z Wang (2010). Forest ecosystem services and their values in Beijing.Chin Geogr Sci, 20(1): 51–58
https://doi.org/10.1007/s11769-010-0051-y
40 L X, Ying Z H, Shen P G, Guan J, Cao C F, Luo X Z, Peng H J Cheng (2022). Impacts of the Western Pacific and Indian Ocean warm pools on wildfires in Yunnan, Southwest China: spatial patterns with interannual and intraannual variations.Geophys Res Lett, 49(11): e2022GL098797
https://doi.org/10.1029/2022GL098797
41 Y F, Zhang D M, Jia H Y, Zhang J, Tan S Y, Song R F Sun (2011). Spatial structure of valley economic development in the mountainous areas in Beijing.J Geogr Sci, 21(2): 331–345
https://doi.org/10.1007/s11442-011-0848-3
42 Z, Zhu X Zhu (2021). Study on spatiotemporal characteristic and mechanism of forest loss in urban agglomeration in the middle reaches of the Yangtze River.Forests, 12(9): 1242
https://doi.org/10.3390/f12091242
43 Y F, Zou P J, Rasch H L, Wang Z W, Xie R D Zhang (2021). Increasing large wildfires over the western United States linked to diminishing sea ice in the Arctic.Nat Commun, 12(1): 6048
https://doi.org/10.1038/s41467-021-26232-9
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed