A comprehensive description of the biogas process is presented.
Main operational parameters influencing the biogas process are reviewed.
A historical overview of the biogas development is extensively presented.
The current status of anaerobic digestion for biogas production is discussed.
New horizons for exploitation and utilisation of biogas are proposed.
Biogas production is a well-established technology primarily for the generation of renewable energy and also for the valorization of organic residues. Biogas is the end product of a biological mediated process, the so called anaerobic digestion, in which different microorganisms, follow diverse metabolic pathways to decompose the organic matter. The process has been known since ancient times and was widely applied at domestic households providing heat and power for hundreds of years. Nowadays, the biogas sector is rapidly growing and novel achievements create the foundation for constituting biogas plants as advanced bioenergy factories. In this context, the biogas plants are the basis of a circular economy concept targeting nutrients recycling, reduction of greenhouse gas emissions and biorefinery purposes. This review summarizes the current state-of-the-art and presents future perspectives related to the anaerobic digestion process for biogas production. Moreover, a historical retrospective of biogas sector from the early years of its development till its recent advancements gives an outlook of the opportunities that are opening up for process optimisation.
Stolze Y, Zakrzewski M, Maus I, Eikmeyer F, Jaenicke S, Rottmann N, Siebner C, Pühler A, Schlüter A. Comparative metagenomics of biogas-producing microbial communities from production-scale biogas plants operating under wet or dry fermentation conditions. Biotechnology for Biofuels, 2015, 8(1): 14
pmid: 25688290
2
Tsapekos P, Kougias P G, Angelidaki I. Anaerobic mono- and co-digestion of mechanically pretreated meadow grass for biogas production. Energy & Fuels, 2015, 29(7): 4005–4010
3
Søndergaard M M, Fotidis I A, Kovalovszki A, Angelidaki I. Anaerobic co-digestion of agricultural byproducts with manure for enhanced biogas production. Energy & Fuels, 2015, 29(12): 8088–8094
4
Kougias P G, Boe K, Tsapekos P, Angelidaki I. Foam suppression in overloaded manure-based biogas reactors using antifoaming agents. Bioresource Technology, 2014, 153(2): 198–205
pmid: 24365741
5
Labatut R A, Angenent L T, Scott N R. Biochemical methane potential and biodegradability of complex organic substrates. Bioresource Technology, 2011, 102(3): 2255–2264
pmid: 21050752
6
Zarkadas I, Dontis G, Pilidis G, Sarigiannis D A. Exploring the potential of fur farming wastes and byproducts as substrates to anaerobic digestion process. Renewable Energy, 2016, 96(2): 1063–1070
7
Tsapekos P, Kougias P G, Treu L, Campanaro S, Angelidaki I. Process performance and comparative metagenomic analysis during co-digestion of manure and lignocellulosic biomass for biogas production. Applied Energy, 2017, 185(1): 126–135
8
Li Y, Zhang R, Liu G, Chen C, He Y, Liu X. Comparison of methane production potential, biodegradability, and kinetics of different organic substrates. Bioresource Technology, 2013, 149(2): 565–569
pmid: 24140354
9
Kougias P G, Fotidis I A, Zaganas I D, Kotsopoulos T A, Martzopoulos G G. Zeolite and swine inoculum effect on poultry manure biomethanation. International Agrophysics, 2017, 27(2): 169–173
10
Fotidis I A, Kougias P G, Zaganas I D, Kotsopoulos T A, Martzopoulos G G. Inoculum and zeolite synergistic effect on anaerobic digestion of poultry manure. Environmental Technology, 2014, 35(9–12): 1219–1225
pmid: 24701918
11
Frigon J C, Guiot S R. Biomethane production from starch and lignocellulosic crops—A comparative review. Biofuels, Bioproducts & Biorefining, 2010, 4(4): 447–458
12
O-Thong S, Boe K, AngelidakiI. Thermophilic anaerobic co-digestion of oil palm empty fruit bunches with palm oil mill effluent for efficient biogas production. Applied Energy, 2012, 93(5): 648–654
13
Menardo S, Cacciatore V, Balsari P. Batch and continuous biogas production arising from feed varying in rice straw volumes following pre-treatment with extrusion. Bioresource Technology, 2015, 180(36): 154–161
pmid: 25600012
14
Kougias P G, Boe K, Einarsdottir E S, Angelidaki I. Counteracting foaming caused by lipids or proteins in biogas reactors using rapeseed oil or oleic acid as antifoaming agents. Water Research, 2015, 79(1): 119–127
pmid: 25978353
15
Li Y, Zhang R, Liu X, Chen C, Xiao X, Feng L, He Y, Liu G. Evaluating methane production from anaerobic mono- and co-digestion of kitchen waste, corn stover, and chicken manure. Energy & Fuels, 2013, 27(4): 2085–2091
16
Pagés-Díaz J, Pereda-Reyes I, Taherzadeh M J, Sárvári-Horváth I, Lundin M. Anaerobic co-digestion of solid slaughterhouse wastes with agro-residues: Synergistic and antagonistic interactions determined in batch digestion assays. Chemical Engineering Journal, 2014, 245(5): 89–98
17
Davidsson A, Gruvberger C, Christensen T H, Hansen T L, Jansen J. Methane yield in source-sorted organic fraction of municipal solid waste. Waste Management (New York, N.Y.), 2007, 27(3): 406–414
pmid: 16624541
18
Borowski S, Domański J, Weatherley L. Anaerobic co-digestion of swine and poultry manure with municipal sewage sludge. Waste Management (New York, N.Y.), 2014, 34(2): 513–521
pmid: 24280622
19
Cabbai V, Ballico M, Aneggi E, Goi D. BMP tests of source selected OFMSW to evaluate anaerobic codigestion with sewage sludge. Waste Management (New York, N.Y.), 2013, 33(7): 1626–1632
pmid: 23628216
20
D’Este M, Alvarado-Morales M, Ciofalo A, Angelidaki I. Macroalgae Laminaria digitata and Saccharina latissima as potential biomasses for biogas and total phenolics production: Focusing on seasonal and spatial variations of the algae. Energy & Fuels, 2017, 31(7): 7166–7175
21
Zhang C, Xiao G, Peng L, Su H, Tan T. The anaerobic co-digestion of food waste and cattle manure. Bioresource Technology, 2013, 129(2): 170–176
pmid: 23246757
22
Wei Y, Li X, Yu L, Zou D, Yuan H. Mesophilic anaerobic co-digestion of cattle manure and corn stover with biological and chemical pretreatment. Bioresource Technology, 2015, 198(1): 431–436
pmid: 26409855
23
Kougias P G, Kotsopoulos T A, Martzopoulos G G. Effect of feedstock composition and organic loading rate during the mesophilic co-digestion of olive mill wastewater and swine manure. Renewable Energy, 2014, 69(3): 202–207
24
Liu C, Li H, Zhang Y, Liu C. Improve biogas production from low-organic-content sludge through high-solids anaerobic co-digestion with food waste. Bioresource Technology, 2016, 219(1): 252–260
pmid: 27497086
25
Mata-Alvarez J, Dosta J, Macé S, Astals S. Codigestion of solid wastes: a review of its uses and perspectives including modeling. Critical Reviews in Biotechnology, 2011, 31(2): 99–111
pmid: 21351815
26
Dennehy C, Lawlor P G, Gardiner G E, Jiang Y, Cormican P, McCabe M S, Zhan X. Process stability and microbial community composition in pig manure and food waste anaerobic co-digesters operated at low HRTs. Frontiers of Environmental Science & Engineering, 2017, 11(3): 4
27
Macias-Corral M, Samani Z, Hanson A, Smith G, Funk P, Yu H, Longworth J. Anaerobic digestion of municipal solid waste and agricultural waste and the effect of co-digestion with dairy cow manure. Bioresource Technology, 2008, 99(17): 8288–8293
pmid: 18482835
28
Angelidaki I, Ellegaard L. Codigestion of manure and organic wastes in centralized biogas plants: Status and future trends. Applied Biochemistry and Biotechnology, 2003, 109(1–3): 95–105
pmid: 12794286
29
Hosseini Koupaie E, Barrantes Leiva M, Eskicioglu C, Dutil C. Mesophilic batch anaerobic co-digestion of fruit-juice industrial waste and municipal waste sludge: Process and cost-benefit analysis. Bioresource Technology, 2014, 152(152C): 66–73
pmid: 24280084
30
Banks C J, Salter A M, Heaven S, Riley K. Energetic and environmental benefits of co-digestion of food waste and cattle slurry: A preliminary assessment. Resources, Conservation and Recycling, 2011, 56(1): 71–79
31
Sosnowski P, Wieczorek A, Ledakowicz S. Anaerobic co-digestion of sewage sludge and organic fraction of municipal solid wastes. Advances in Environmental Research, 2003, 7(3): 609–616
32
Levén L, Eriksson A R B, Schnürer A. Effect of process temperature on bacterial and archaeal communities in two methanogenic bioreactors treating organic household waste. FEMS Microbiology Ecology, 2007, 59(3): 683–693
pmid: 17381521
33
Luo G, De Francisci D, Kougias P G, Laura T, Zhu X, Angelidaki I. New steady-state microbial community compositions and process performances in biogas reactors induced by temperature disturbances. Biotechnology for Biofuels, 2015, 8(1): 3
pmid: 25709712
34
Zhu X, Treu L, Kougias P G, Campanaro S, Angelidaki I. Converting mesophilic upflow sludge blanket (UASB) reactors to thermophilic by applying axenic methanogenic culture bioaugmentation. Chemical Engineering Journal, 2018, 332(1): 508–516
35
Angelidaki I, Boe K, Ellegaard L. Effect of operating conditions and reactor configuration on efficiency of full-scale biogas plants. Water Science and Technology, 2005, 52(1–2): 189–194
pmid: 16180427
36
Suhartini S, Heaven S, Banks C J. Comparison of mesophilic and thermophilic anaerobic digestion of sugar beet pulp: performance, dewaterability and foam control. Bioresource Technology, 2014, 152(1): 202–211
pmid: 24291796
37
Bouallagui H, Haouari O, Touhami Y, Ben Cheikh R, Marouani L, Hamdi M. Effect of temperature on the performance of an anaerobic tubular reactor treating fruit and vegetable waste. Process Biochemistry, 2004, 39(12): 2143–2148
38
Labatut R A, Angenent L T, Scott N R. Conventional mesophilic vs. thermophilic anaerobic digestion: a trade-off between performance and stability? Water Research, 2014, 53(8): 249–258
pmid: 24530545
39
Ghasimi D S M, Tao Y, de Kreuk M, Zandvoort M H, van Lier J B. Microbial population dynamics during long-term sludge adaptation of thermophilic and mesophilic sequencing batch digesters treating sewage fine sieved fraction at varying organic loading rates. Biotechnology for Biofuels, 2015, 8(1): 171
pmid: 26500697
40
Watanabe H, Kitamura T, Ochi S, Ozaki M. Inactivation of pathogenic bacteria under mesophilic and thermophilic conditions. Water Science and Technology, 1997, 36(36): 25–32
41
Pandey P K, Soupir M L. Escherichia coli inactivation kinetics in anaerobic digestion of dairy manure under moderate, mesophilic and thermophilic temperatures. AMB Express, 2011, 1(1): 18
pmid: 21906374
42
Angelidaki I, Ahring B K. Anaerobic thermophilic digestion of manure at different ammonia loads: effect of temperature. Water Research, 1994, 28(3): 727–731
43
Tezel U, Tandukar M, Hajaya M G, Pavlostathis S G. Transition of municipal sludge anaerobic digestion from mesophilic to thermophilic and long-term performance evaluation. Bioresource Technology, 2014, 170(5): 385–394
pmid: 25156875
44
Zhu X, Treu L, Kougias P G, Campanaro S, Angelidaki I. Characterization of the planktonic microbiome in upflow anaerobic sludge blanket reactors during adaptation of mesophilic methanogenic granules to thermophilic operational conditions. Anaerobe, 2017, 46(1): 69–77
pmid: 28057558
45
Tian Z, Zhang Y, Li Y, Chi Y, Yang M. Rapid establishment of thermophilic anaerobic microbial community during the one-step startup of thermophilic anaerobic digestion from a mesophilic digester. Water Research, 2015, 69(1): 9–19
pmid: 25463927
46
Boe K, Batstone D J, Steyer J P, Angelidaki I. State indicators for monitoring the anaerobic digestion process. Water Research, 2010, 44(20): 5973–5980
pmid: 20692680
47
Kougias P G, Treu L, Campanaro S, Zhu X, Angelidaki I. Dynamic functional characterization and phylogenetic changes due to Long Chain Fatty Acids pulses in biogas reactors. Scientific Reports, 2016, 6(1): 28810
pmid: 27353502
48
An D, Wang T, Zhou Q, Wang C, Yang Q, Xu B, Zhang Q. Effects of total solids content on performance of sludge mesophilic anaerobic digestion and dewaterability of digested sludge. Waste Management (New York, N.Y.), 2017, 62(1): 188–193
pmid: 28223078
49
Zhang W, Heaven S, Banks C J. Continuous operation of thermophilic food waste digestion with side-stream ammonia stripping. Bioresource Technology, 2017, 244(Pt 1): 611–620
pmid: 28810215
50
Moestedt J, Müller B, Westerholm M, Schnürer A. Ammonia threshold for inhibition of anaerobic digestion of thin stillage and the importance of organic loading rate. Microbial Biotechnology, 2016, 9(2): 180–194
pmid: 26686366
51
Chen Y, Cheng J J, Creamer K S. Inhibition of anaerobic digestion process: A review. Bioresource Technology, 2008, 99(10): 4044–4064
pmid: 17399981
52
Nielsen H B, Angelidaki I. Codigestion of manure and industrial organic waste at centralized biogas plants: Process imbalances and limitations. Water Science and Technology, 2008, 58(7): 1521–1528
pmid: 18957768
53
Lalman J, Bagley D M. Effects of C18 long chain fatty acids on glucose, butyrate and hydrogen degradation. Water Research, 2002, 36(13): 3307–3313
pmid: 12188129
54
Pereira M A, Pires O C, Mota M, Alves M M. Anaerobic biodegradation of oleic and palmitic acids: Evidence of mass transfer limitations caused by long chain fatty acid accumulation onto the anaerobic sludge. Biotechnology and Bioengineering, 2005, 92(1): 15–23
pmid: 16136588
55
Ma J, Zhao Q B, Laurens L L M, Jarvis E E, Nagle N J, Chen S, Frear C S. Mechanism, kinetics and microbiology of inhibition caused by long-chain fatty acids in anaerobic digestion of algal biomass. Biotechnology for Biofuels, 2015, 8(1): 141
pmid: 26379773
56
Moeller L, Lehnig M, Schenk J, Zehnsdorf A. Foam formation in biogas plants caused by anaerobic digestion of sugar beet. Bioresource Technology, 2015, 178(1): 270–277
pmid: 25446785
57
Kougias P G, Boe K, O-Thong S, Kristensen L A, Angelidaki I. Anaerobic digestion foaming in full-scale biogas plants: A survey on causes and solutions. Water Science and Technology, 2014, 69(4): 889–895
pmid: 24569292
58
Kougias P G, Tsapekos P, Boe K, Angelidaki I. Antifoaming effect of chemical compounds in manure biogas reactors. Water Research, 2013, 47(16): 6280–6288
pmid: 23972674
59
Angelidaki I, Karakashev D, Batstone D J, Plugge C M, Stams A J M. Biomethanation and its potential. Methods in Enzymology, 2011, 494(Chapter 16): 327–351
pmid: 21402222
60
Lansche J, Müller J. Life cycle assessment (LCA) of biogas versus dung combustion household cooking systems in developing countries—A case study in Ethiopia. Journal of Cleaner Production, 2017, 165(1): 828–835
61
Bond T, Templeton M R. History and future of domestic biogas plants in the developing world. Energy for Sustainable Development, 2011, 15(4): 347–354
62
Rajendran K, Aslanzadeh S, Taherzadeh M J. Household biogas digesters—A review. Energies, 2012, 5(8): 2911–2942
63
Surendra K C, Takara D, Hashimoto A G, Khanal S K. Biogas as a sustainable energy source for developing countries: Opportunities and challenges. Renewable & Sustainable Energy Reviews, 2014, 31(2): 846–859
64
Sun Q, Li H, Yan J, Liu L, Yu Z, Yu X. Selection of appropriate biogas upgrading technology—A review of biogas cleaning, upgrading and utilisation. Renewable & Sustainable Energy Reviews, 2015, 51(1): 521–532
65
van Brakel J. The Ignis Fatuus of Biogas Small-Scale Anaerobic Digesters (“Biogas Plants”): A Critical Review of the Pre-1970 Literature. Delft: Delft University Press, 1980
66
Volta A. Lettere del Signor Don Allesandro Volta... sull’aria infiammabile nativa delle paludi. Marelli, 1977
67
Barker H. Bacterial Fermentations. New York: Wiley, 1956
68
Omelianski W. Über Methanbildung in der Natur bei biologischen Prozessen. Zentralblatt fuèr Bakteriol. Parasitenkd. II, 1906
69
Söhngen N. Über bakterien, welche methan als kohlenstoffnahrung und energiequelle gebrauchen. Zentrabl Bakteriol Parasitenk Infekt, 1906
70
Buswell A, Boruff C. Mechanical equipment for continuous fermentation of fibrous materials. Industrial & Engineering Chemistry Research, 2002, 25(6): 147–149
71
Hobson P, Bousfield S, Summers R. Anaerobic digestion of organic matter: Critical Reviews in Environmental Science and Technology, 1974, 4(1–4): 131–191
72
Meynell P J. Methane: Planning a Digester. Berlin: Schocken Books, 1978
73
He P J. Anaerobic digestion: An intriguing long history in China. Waste Management, 2010, 30(4): 549–550
74
Vergara-Fernández A, Vargas G, Alarcón N, Velasco A. Evaluation of marine algae as a source of biogas in a two-stage anaerobic reactor system. Biomass and Bioenergy, 2008, 32(4): 338–344
75
Angelidaki I, Treu L, Tsapekos P, Luo G, Campanaro S, Wenzel H, Kougias P G. Biogas upgrading and utilization: Current status and perspectives. Biotechnology Advances, 2018, 36(2): 452–466 https://doi.org/10.1016/j.biotechadv.2018.01.011
pmid: 29360505
76
Bauer F, Persson T, Hulteberg C, Tamm D. Biogas upgrading—Technology overview, comparison and perspectives for the future. Biofuels, Bioproducts & Biorefining, 2013, 7(5): 499–511
77
Kougias P G, Treu L, Benavente D P, Boe K, Campanaro S, Angelidaki I. Ex-situ biogas upgrading and enhancement in different reactor systems. Bioresource Technology, 2017, 225(1): 429–437
pmid: 27931939
78
Westerholm M, Müller B, Arthurson V, Schnürer A. Changes in the acetogenic population in a mesophilic anaerobic digester in response to increasing ammonia concentration. Microbes and Environments, 2011, 26(4): 347–353
pmid: 21869569
79
Fotidis I A, Karakashev D, Kotsopoulos T A, Martzopoulos G G, Angelidaki I. Effect of ammonium and acetate on methanogenic pathway and methanogenic community composition. FEMS Microbiology Ecology, 2013, 83(1): 38–48
pmid: 22809020
80
Palatsi J, Illa J, Prenafeta-Boldú F X, Laureni M, Fernandez B, Angelidaki I, Flotats X. Long-chain fatty acids inhibition and adaptation process in anaerobic thermophilic digestion: Batch tests, microbial community structure and mathematical modelling. Bioresource Technology, 2010, 101(7): 2243–2251
pmid: 20015641
81
Sousa D Z, Pereira M A, Smidt H, Stams A J M, Alves M M. Molecular assessment of complex microbial communities degrading long chain fatty acids in methanogenic bioreactors. FEMS Microbiology Ecology, 2007, 60(2): 252–265
pmid: 17374128
82
Boe K, Batstone D J, Angelidaki I. An innovative online VFA monitoring system for the anerobic process, based on headspace gas chromatography. Biotechnology and Bioengineering, 2007, 96(4): 712–721
pmid: 16902993
83
Batstone D J, Keller J, Angelidaki I, Kalyuzhnyi S V, Pavlostathis S G, Rozzi A, Sanders W T, Siegrist H, Vavilin V A. The IWA anaerobic digestion model No 1 (ADM1). Water Science and Technology, 2002, 45(10): 65–73
pmid: 12188579
84
Vyrides I, Stuckey D C. Saline sewage treatment using a submerged anaerobic membrane reactor (SAMBR): Effects of activated carbon addition and biogas-sparging time. Water Research, 2009, 43(4): 933–942
pmid: 19147169
85
Bremges A, Maus I, Belmann P, Eikmeyer F, Winkler A, Albersmeier A, Púhler A, Schlúter A, Sczyrba A. Deeply sequenced metagenome and metatranscriptome of a biogas-producing microbial community from an agricultural production-scale biogas plant. GigaScience, 2015, 4(1): 33
pmid: 26229594
86
Schlüter A, Bekel T, Diaz N N, Dondrup M, Eichenlaub R, Gartemann K H, Krahn I, Krause L, Krömeke H, Kruse O, Mussgnug J H, Neuweger H, Niehaus K, Púhler A, Runte K J, Szczepanowski R, Tauch A, Tilker A, Viehöver P, Goesmann A. The metagenome of a biogas-producing microbial community of a production-scale biogas plant fermenter analysed by the 454-pyrosequencing technology. Journal of Biotechnology, 2008, 136(1–2): 77–90
pmid: 18597880
87
Treu L, Kougias P G, Campanaro S, Bassani I, Angelidaki I. Deeper insight into the structure of the anaerobic digestion microbial community; the biogas microbiome database is expanded with 157 new genomes. Bioresource Technology, 2016, 216(1): 260–266
pmid: 27243603
88
Campanaro S, Treu L, Kougias P G, De Francisci D, Valle G, Angelidaki I. Metagenomic analysis and functional characterization of the biogas microbiome using high throughput shotgun sequencing and a novel binning strategy. Biotechnology for Biofuels, 2016, 9(1): 26
pmid: 26839589
89
Mosbæk F, Kjeldal H, Mulat D G, Albertsen M, Ward A J, Feilberg A, Nielsen J L. Identification of syntrophic acetate-oxidizing bacteria in anaerobic digesters by combined protein-based stable isotope probing and metagenomics. ISME Journal, 2016, 10(10): 2405–2418
pmid: 27128991
90
Treu L, Campanaro S, Kougias P G, Zhu X, Angelidaki I. Untangling the effect of fatty acid addition at species level revealed different transcriptional responses of the biogas microbial community members. Environmental Science & Technology, 2016, 50(11): 6079–6090
pmid: 27154312
91
Ziels R M, Sousa D Z, Stensel H D, Beck D A C. DNA-SIP based genome-centric metagenomics identifies key long-chain fatty acid-degrading populations in anaerobic digesters with different feeding frequencies. ISME Journal, 2018, 12(1): 112–123 https://doi.org/10.1038/ismej.2017.143
pmid: 28895946
92
European Biogas Association. 6th edition of the Statistical Report of the European Biogas Association. Brussels: European Biogas Association, 2016