Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

邮发代号 80-973

2018 Impact Factor: 3.883

Frontiers of Environmental Science & Engineering  2018, Vol. 12 Issue (3): 15   https://doi.org/10.1007/s11783-018-1042-y
  本期目录
Hydrophilic/underwater superoleophobic graphene oxide membrane intercalated by TiO2 nanotubes for oil/water separation
Zhichao Wu, Chang Zhang, Kaiming Peng, Qiaoying Wang(), Zhiwei Wang
State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
 全文: PDF(517 KB)   HTML
Abstract

GO/TiO2 membrane was prepared by assembling GO nanosheets and TiO2 nanotubes.

The intercalation of TiO2 nanotubes enlarged the space of GO interlayers and modified the surface morphology.

Hydrophilic/underwater superoleophobic property of GO/TiO2 membrane was obtained.

Water permeability, hydrophilicity, oleophobicity and antifouling ability of GO-based membrane were all enhanced by intercalating TiO2 nontubes.

Membrane technology for oil/water separation has received increasing attention in recent years. In this study, the hydrophilic/underwater superoleophobic membrane with enhanced water permeability and antifouling ability were fabricated by synergistically assembling graphene oxide(GO) nanosheets and titanium dioxide (TiO2) nanotubes for oil/water separation. GO/TiO2 membrane exhibits hydrophilic and underwater superoleophobic properties with water contact angle of 62° and under water oil contact angle of 162.8°. GO/TiO2 membrane shows greater water permeability with the water flux up to 531 L/(m2·h·bar), which was more than 5 times that of the pristine GO membrane. Moreover, GO/TiO2membrane had excellent oil/water separation efficiency and anti-oil-fouling capability, as oil residual in filtrate after separation was below 5 mg/L and flux recovery ratios were over 80%.The results indicate that the intercalation of TiO2 nanotubes into adjacent GO nanosheets enlarged the channel structure and modified surface topography of the obtained GO/TiO2 membranes, which improved the hydrophilicity, permeability and anti-oil-fouling ability of the membranes, enlightening the great prospects of GO/TiO2 membrane in oil-water treatment.

Key wordsHydrophilic    Superoleophobic    Graphene oxide    Membrane    Titanium dioxide nanotubes    Oil-water separation
收稿日期: 2017-10-30      出版日期: 2018-04-19
Corresponding Author(s): Qiaoying Wang   
 引用本文:   
. [J]. Frontiers of Environmental Science & Engineering, 2018, 12(3): 15.
Zhichao Wu, Chang Zhang, Kaiming Peng, Qiaoying Wang, Zhiwei Wang. Hydrophilic/underwater superoleophobic graphene oxide membrane intercalated by TiO2 nanotubes for oil/water separation. Front. Environ. Sci. Eng., 2018, 12(3): 15.
 链接本文:  
https://academic.hep.com.cn/fese/CN/10.1007/s11783-018-1042-y
https://academic.hep.com.cn/fese/CN/Y2018/V12/I3/15
Fig.1  
Fig.2  
Fig.3  
Fig.4  
Fig.5  
Fig.6  
Fig.7  
Membrane Water flux
(L/(m2·h))
Oil flux
(L/(m2·h))
Oil rejection ratio (%) Flux recovery ratio (%)
GO/TiO2 membrane 4020 1980 70.2 84.5
Ultrafiltration membrane 505 228 65.3 70.8
Tab.1  
1 Nriagu J, Udofia E A, Ekong I, Ebuk G. Health risks associated with oil pollution in the Niger Delta, Nigeria. International Journal of Environmental Research and Public Health, 2016, 13(3): 346
https://doi.org/10.3390/ijerph13030346 pmid: 27007391
2 Polmear R, Stark J S, Roberts D, McMinn A. The effects of oil pollution on Antarctic benthic diatom communities over 5 years. Marine Pollution Bulletin, 2015, 90(1-2): 33–40
https://doi.org/10.1016/j.marpolbul.2014.11.035 pmid: 25499184
3 Coca-Prados J, Gutiérrez G, Benito J M. Treatment of Oily Wastewater by Membrane Hybrid Processes. Netherlands: Springer, 2013
4 Ma J, Yan G, Ma W, Cheng C, Wang Q, Guo S. Isolation and characterization of oil-degrading microorganisms for bench-scale evaluations of autochthonous bioaugmentation for soil remediation. Water, Air, and Soil Pollution, 2015, 226(8): 1–10
https://doi.org/10.1007/s11270-015-2491-6
5 Bhattacharyya D, Jumawan A B, Grieves R B, Harris L R. Ultrafiltration characteristics of oil-detergent-water systems: Membrane fouling mechanisms. Separation Science and Technology, 1979, 14(6): 529–549
https://doi.org/10.1080/01496397908068474
6 Silalahi S H D, Leiknes T O. Cleaning strategies in ceramic microfiltration membranes fouled by oil and particulate matter in produced water. Desalination, 2009, 236(1): 160–169
https://doi.org/10.1016/j.desal.2007.10.063
7 Wang B, Liang W, Guo Z, Liu W. Biomimetic super-lyophobic and super-lyophilic materials applied for oil/water separation: A new strategy beyond nature. Chemical Society Reviews, 2015, 44(1): 336–361
https://doi.org/10.1039/C4CS00220B pmid: 25311259
8 Che H, Huo M, Peng L, Fang T, Liu N, Feng L, Wei Y, Yuan J. CO2-responsive nanofibrous membranes with switchable oil/water wettability. Angewandte Chemie International Edition, 2015, 54(31): 8934–8938
https://doi.org/10.1002/anie.201501034 pmid: 26079643
9 Wang Z, Lin S. Membrane fouling and wetting in membrane distillation and their mitigation by novel membranes with special wettability. Water Research, 2017, 112: 38–47
https://doi.org/10.1016/j.watres.2017.01.022 pmid: 28129554
10 Li H, Zhao X, Wu P, Zhang S, Geng B. Facile preparation of superhydrophobic and superoleophilic porous polymer membranes for oil/water separation from a polyarylester polydimethylsiloxane block copolymer. Journal of Materials Science, 2016, 51(6): 3211–3218
https://doi.org/10.1007/s10853-015-9632-6
11 Prince J A, Bhuvana S, Anbharasi V, Ayyanar N, Boodhoo K V K, Singh G. Ultra-wetting graphene-based PES ultrafiltration membrane—A novel approach for successful oil-water separation. Water Research, 2016, 103: 311–318
https://doi.org/10.1016/j.watres.2016.07.042 pmid: 27475120
12 Chen L, Si Y, Zhu H, Jiang T, Guo Z. A study on the fabrication of porous PVDF membranes by in-situ elimination and their applications in separating oil/water mixtures and nano-emulsions. Journal of Membrane Science, 2016, 520: 760–768
https://doi.org/10.1016/j.memsci.2016.08.026
13 Wenzel R N. Resistance of solid surfaces to wetting by water. Industrial & Engineering Chemistry, 1936, 28(8): 7
https://doi.org/10.1021/ie50320a024
14 Nakajima A. Design of hydrophobic surfaces for liquid droplet control. NPG Asia Materials, 2011, 3(5): 49–56
https://doi.org/10.1038/asiamat.2011.55
15 Lee C H, Johnson N, Drelich J, Yap Y K. The performance of superhydrophobic and superoleophilic carbon nanotube meshes in water–oil filtration. Carbon, 2011, 49(2): 669–676
https://doi.org/10.1016/j.carbon.2010.10.016
16 Xue Z, Wang S, Lin L, Chen L, Liu M, Feng L, Jiang L. A novel superhydrophilic and underwater superoleophobic hydrogel-coated mesh for oil/water separation. Advanced Materials, 2011, 23(37): 4270–4273
https://doi.org/10.1002/adma.201102616 pmid: 22039595
17 Liang J, Zhou Y, Jiang G, Wang R, Wang X, Hu R, Xi X. Transformation of hydrophilic cotton fabrics into superhydrophobic surfaces for oil/water separation. Journal of the Textile Institute, 2013, 104(3): 305–311
https://doi.org/10.1080/00405000.2012.721207
18 Kocherginsky N M, Tan C L, Lu W F. Demulsification of water-in-oil emulsions via filtration through a hydrophilic polymer membrane. Journal of Membrane Science, 2003, 220(1–2): 117–128
https://doi.org/10.1016/S0376-7388(03)00223-0
19 Ribeiro A P B, Moura J M L N D, Gonçalves L A G, Petrus J C C, Viotto L A. Solvent recovery from soybean oil/hexane miscella by polymeric membranes. Journal of Membrane Science, 2006, 282(1–2): 328–336
https://doi.org/10.1016/j.memsci.2006.05.036
20 Goh P S, Ismail A F. Graphene-based nanomaterial: The state-of-the-art material for cutting edge desalination technology. Desalination, 2015, 356, 115–128
21 Mishra A K. 2. Potentialities of Graphene-Based Nanomaterials for Wastewater Treatment. New York: John Wiley & Sons, Inc., 2016
22 Perreault F, Fonseca de Faria A, Elimelech M. Environmental applications of graphene-based nanomaterials. Chemical Society Reviews, 2015, 44(16): 5861–5896
https://doi.org/10.1039/C5CS00021A pmid: 25812036
23 Huang H, Mao Y, Ying Y, Liu Y, Sun L, Peng X. Salt concentration, pH and pressure controlled separation of small molecules through lamellar graphene oxide membranes. Chemical Communications, 2013, 49(53): 5963–5965
https://doi.org/10.1039/c3cc41953c pmid: 23715402
24 Sun P, Zhu M, Wang K, Zhong M, Wei J, Wu D, Xu Z, Zhu H. Selective ion penetration of graphene oxide membranes. ACS Nano, 2013, 7(1): 428–437
https://doi.org/10.1021/nn304471w pmid: 23214493
25 Hegab H M, Zou L. Graphene oxide-assisted membranes: Fabrication and potential applications in desalination and water purification. Journal of Membrane Science, 2015, 484, 95–106
26 Wang N, Ji S, Zhang G, Li J, Wang L. Self-assembly of graphene oxide and polyelectrolyte complex nanohybrid membranes for nanofiltration and pervaporation. Chemical Engineering Journal, 2012, 213(12): 318–329
https://doi.org/10.1016/j.cej.2012.09.080
27 Han Y, Jiang Y, Gao C. High-flux graphene oxide nanofiltration membrane intercalated by carbon nanotubes. ACS Applied Materials & Interfaces, 2015, 7(15): 8147–8155
https://doi.org/10.1021/acsami.5b00986 pmid: 25837883
28 Fujishima A. TiO2 Photocatalysis and Related Surface Phenomena. In: the 60th Annual Meeting of the International Society of Electrochemistry, 2009, 515–582
29 Yang H G, Sun C H, Qiao S Z, Zou J, Liu G, Smith S C, Cheng H M, Lu G Q. Anatase TiO2 single crystals with a large percentage of reactive facets. Nature, 2008, 453: 7195, 638
30 Zhao X, Su Y, Liu Y, Li Y, Jiang Z. Free-standing graphene oxide-palygorskite nanohybrid membrane for oil/water separation. ACS Applied Materials & Interfaces, 2016, 8(12): 8247–8256
https://doi.org/10.1021/acsami.5b12876 pmid: 26978041
31 Wang P, Wang Z, Wu Z, Zhou Q, Yang D. Effect of hypochlorite cleaning on the physiochemical characteristics of polyvinylidene fluoride membranes. Chemical Engineering Journal, 2010, 162(3): 1050–1056
https://doi.org/10.1016/j.cej.2010.07.019
32 Zhang F, Gao S, Zhu Y, Jin J. Alkaline-induced superhydrophilic/underwater superoleophobic polyacrylonitrile membranes with ultralow oil-adhesion for high-efficient oil/water separation. Journal of Membrane Science, 2016, 513: 67–73
https://doi.org/10.1016/j.memsci.2016.04.020
33 Nair R R, Wu H A, Jayaram P N, Grigorieva I V, Geim A K. Unimpeded permeation of water through helium-leak-tight graphene-based membranes. Science, 2012, 335(6067): 442–444
https://doi.org/10.1126/science.1211694 pmid: 22282806
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed