Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

邮发代号 80-973

2018 Impact Factor: 3.883

Frontiers of Environmental Science & Engineering  2020, Vol. 14 Issue (1): 2   https://doi.org/10.1007/s11783-019-1181-9
  本期目录
Quantification of pesticide residues on plastic mulching films in typical farmlands of the North China
Baoyuan Guo1,2,4(), Jiao Meng1,2, Xinyu Wang3, Chengnan Yin1, Weiyu Hao1,2, Baiwen Ma1,2, Zhang Tao1,2
1. Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
2. University of Chinese Academy of Sciences, Beijing 100049, China
3. Beijing Union University, Beijing 100101, China
4. Academy of National Food and Strategic Reserves Administration, Beijing 100037, China
 全文: PDF(810 KB)   HTML
Abstract

• Pesticide residuals on mulching film of Shandong, Tianjin and Hebei.

• Detected 29 pesticides in soil and 30 in mulching film.

• Pesticides on plastic films: 86.4‒22213.2 ng/g and in soil: 9.3‒535.3 ng/g.

• Pesticides on plastic films 20 times higher than in soil.

Plastic debris as new pollutants attracts much attention in the recent years. The plastic mulching films is one of the most important plastic debirs source in the environment. The aim of this work was to investigate the current status of pesticide residues on the plastic mulching films. Based on the QuEChERS method, multi-residue methods for detection of pesticide residues with gas chromatography tandem mass spectrum (GC-MS) and high performance liquid chromatography tandem mass spectrum (HPLC-MS) were developed for the analysis of the pesticides residues in plastic film and soil samples from Tianjin, Hebei and Shandong. The total concentrations of pesticide residues were in the range of 86.4‒22213.2 ng/g in plastic film debris, which was about 20 times higher than that in soil (9.3‒535.3 ng/g). Residual level of pesticides varied greatly in different samples. The historical usage and recent application of pesticides were the main sources for pesticide residues on plastic films and soil. In short, plastic mulching films could act as a sink for pesticides in farmland and the ubiquitous pesticide residues on plastic films should draw more attention.

Key wordsPesticides    Plastic mulching film    Soil    QuEChERS    Farmland
收稿日期: 2019-04-22      出版日期: 2019-10-30
Corresponding Author(s): Baoyuan Guo   
 引用本文:   
. [J]. Frontiers of Environmental Science & Engineering, 2020, 14(1): 2.
Baoyuan Guo, Jiao Meng, Xinyu Wang, Chengnan Yin, Weiyu Hao, Baiwen Ma, Zhang Tao. Quantification of pesticide residues on plastic mulching films in typical farmlands of the North China. Front. Environ. Sci. Eng., 2020, 14(1): 2.
 链接本文:  
https://academic.hep.com.cn/fese/CN/10.1007/s11783-019-1181-9
https://academic.hep.com.cn/fese/CN/Y2020/V14/I1/2
No. Area Geographical coordinates
S01 Baigou, Hebei N39°08′17.52″, E116°0′24.60″
S02 Cangzhou, Hebei N38°15′8.03″, E116°52′35.04″
S03 Dezhou, Hebei N37°31′13.43″, E116°16′10.71″
S04 Dezhou, Shandong N37°22′11.46″, E116°19′13.53″
S05 Hengshui 1, Hebei N37°46′52.06″, E115°40′15.11″
S06 Hengshui 2, Hebei N37°41′57.09″, E115°35′58.26″
S07 Hengshui 3, Hebei N37°42′20.99″, E115°44′58.50″
S08 Qingzhou 1, Shandong N36°45′35.57″, E118°26′39.97″
S09 Qingzhou 2, Shandong N36°42′29.94″, E118°34′3.75″
S10 Raoyang 1, Hebei N38°15′22.07″, E115°45′12.63″
S11 Raoyang 2, Hebei N38°13′43.54″, E115°45′33.37″
S12 Renqiu, Hebei N38°42′46.63″, E116°02′13.52″
S13 Shouguang 1, Shandong N36°49′45.25″, E118°51′48.44″
S14 Shouguang 2, Shandong N36°55′6.52″, E118°48′36.92″
S15 Shouguang 3, Shandong N36°54′54.56″, E118°40′59.81″
S16 Shouguang 4, Shandong N36°50′44.43″, E118°40′29.03″
S17 Tianjin 1 N38°59′21.50″, E116°58′6.24″
S18 Tianjin 2 N39°18′45.44″, E116°57′29.76″
S19 Zouping, Shandong N36°50′5.55″, E117°46′17.87″
S20 Zibo, Shandong N36°54′21.82″, E117°58′53.50″
Tab.1  
Number Name CAS No. Log P Soil degradation
DT50 (days)
LC50
(mg/kg)
Classification
1 Tricyclazole 41814-78-2 1.4 450 >1000 Fungicide
2 Imazalil 73790-28-0 2.56 76.3 541 Fungicide
3 Boscalid 188425-85-6 2.96 484.4 >500 Fungicide
4 Dimethomorph 110488-70-5 2.68 72.7 >500 Fungicide
5 Myclobutanil 88671-89-0 2.87 560 125 Fungicide
6 Triadimefon 43121-43-3 3.18 26 50 Fungicide
7 Cyazofamid 120116-88-3 3.2 10 >1000 Fungicide
8 Thifluzamide 130000-40-7 4.16 1145 >1250 Fungicide
9 Flusilazole 85509-19-9 3.87 300 388 Fungicide
10 Tebuconazole 80443-41-0 3.7 63 1381 Fungicide
11 Hexaconazole 79983-71-4 3.9 122 414 Fungicide
12 Difenoconazole 119446-68-3 4.36 130 616 Fungicide
13 Procymidone 32809-16-8 3.3 7 >1000 Fungicide
014 Atrazine 1912-24-9 2.7 75 79 Herbicide
15 Flumioxazin 103361-09-7 2.55 21.9 491 Herbicide
16 Acetochlor 34256-82-1 4.14 14 105.5 Herbicide
17 butachlor 23184-66-9 4.5 56 0.515 Herbicide
18 Butralin 33629-47-9 4.93 22 >1000 Herbicide
19 Trifluralin 1582-09-8 5.27 181 >500 Herbicide
20 Oxyfluorfen 42874-03-3 4.86 35 >1000 Herbicide
21 Acetamiprid 135410-20-7 0.8 1.6 9 Insecticide
22 Thiacloprid 111988-49-9 1.26 0.88 105 Insecticide
23 Azoxystrobin 131860-33-8 2.5 78 283 Insecticide
24 Tebufenozide 112410-23-8 4.25 400 >1000 Insecticide
25 Indoxacarb 144171-61-9 4.65 113.2 625 Insecticide
26 Hexaflumuron 86479-06-3 5.68 57 880 Insecticide
27 Lufenuron 103055-07-8 5.12 16.3 >500 Insecticide
28 Etoxazole 153233-91-1 5.25 19.3 >1000 Insecticide
29 Pyridaben 96489-71-3 6.37 55 19 Insecticide
30 Chlorfenapyr 122453-73-0 4.83 1.4 / Insecticide
31 Bifenthrin 83322-02-5 6.6 26 8 Insecticide
32 Fenpropathrin 64257-84-7 6.04 34 184 Insecticide
33 Cyhalothrin 91465-08-6 6.8 57 >1000 Insecticide
34 Flonicamid 158062-67-0 -0.43 3.1 >1000 Insecticide
35 Thiamethoxam 153719-23-4 -0.13 50 >1000 Insecticide
Tab.2  
Fig.1  
sites Insecticides Herbicides Fungicides Total Conc.
(ng/g)
Amounts
Conc.
(ng/g)
Amounts Conc.
(ng/g)
Amounts Conc.
(ng/g)
Amounts
Tianjin-1 352.0 6 4.5 3 7.5 3 357.9 12
Tianjin-2 11.7 5 3.5 3 0.0 0 10.1 8
Shouguang-1 530.1 4 8.1 3 1.0 2 535.3 9
Shouguang-3 25.8 5 12.4 5 22.3 8 55.5 18
Shouguang-4 31.2 5 8.7 3 62.9 8 97.7 16
Zouping 123.5 4 19.6 5 3.4 4 142.5 13
Zibo 54.0 3 6.9 3 0.4 1 58.3 7
Qingzhou-1 56.1 6 132.5 5 19.5 2 202.0 13
Qingzhou-2 142.7 8 138.5 6 118.3 5 391.5 19
Baigou 2.0 1 424.1 4 0.7 1 425.7 6
Cangzhou 12.4 3 6.5 4 0.4 1 16.3 8
Dezhou-1 4.4 1 26.8 5 10.6 3 40.8 9
Dezhou-2 20.4 4 131.8 3 14.9 6 163.1 13
Hengshui-1 0.0 0 189.4 6 2.2 4 191.6 10
Hengshui-2 15.3 3 54.9 6 4.9 4 72.1 13
Hengshui-3 6.1 1 2.8 2 1.3 2 9.3 5
Raoyang-1 12.7 3 5.9 4 2.9 4 18.6 11
Raoyang-2 4.7 1 480.2 4 1.0 1 484.8 6
Renqiu 4.9 1 20.3 4 4.4 2 28.6 7
mean 73.3 3.4 84.2 4.1 14.1 3.2 168.1 10.7
Tab.3  
Fig.2  
Sites Insecticides Herbicides Fungicides Total conc. Amounts
Conc. Amounts Conc. Amounts Conc. Amounts
Tianjin-1 1754.4 6 208.8 4 231.2 10 2194.4 20
Tianjin-2 3301.1 3 240.0 4 53.9 6 3594.9 13
Shouguang-1 21792.5 5 245.3 4 175.3 9 22213.2 18
Shouguang-2 94.9 3 182.1 3 199.2 8 476.3 14
Shouguang-3 126.9 5 395.7 2 165.3 7 688.0 14
Shouguang-4 545.1 4 407.2 5 205.1 4 1157.3 13
Zouping 12109.9 8 268.8 5 223.2 9 12601.9 22
Zibo 156.3 2 225.3 3 93.9 6 475.5 11
Qingzhou-1 181.3 3 388.5 4 344.3 7 914.1 14
Qingzhou-2 14440.0 4 262.1 5 164.0 9 14866.1 18
Baigou 238.7 4 150.4 4 74.7 7 463.7 15
Cangzhou 114.4 4 190.7 4 243.2 5 548.3 13
Dezhou-1 71.2 3 25.1 2 55.2 6 151.5 11
Dezhou-2 502.1 6 99.2 4 71.5 6 672.8 16
Hengshui-1 570.1 3 135.2 4 165.1 6 870.4 13
Hengshui-2 6.9 1 41.1 3 38.4 3 86.4 7
Hengshui-3 2847.5 6 146.7 3 158.4 9 3152.5 18
Raoyang-1 356.3 8 134.7 4 279.7 9 770.7 21
Raoyang-2 2166.4 7 149.6 5 341.6 8 2657.6 20
Renqiu 147.2 3 244.8 4 318.4 8 710.4 15
mean 3076.2 4.4 207.1 3.8 180.1 7.1 3463.3 15.3
Tab.4  
Fig.3  
1 M Anastassiades, S J Lehotay, D Stajnbaher, F J Schenck (2003). Fast and easy multiresidue method employing acetonitrile extraction/partitioning and “dispersive solid-phase extraction” for the determination of pesticide residues in produce. Journal of AOAC International, 86(2): 412–431
pmid: 12723926
2 M Benedetti, L Cafiero, D D Angelis, A Dell’Era, M Pasquali, S Stendardo, R Tuffi, S V Ciprioti (2017). Pyrolysis of WEEE plastics using catalysts produced from fly ash of coal gasification. Frontiers of Environmental Science & Engineering, 11(5): 11
3 J M Bonmatin, C Giorio, V Girolami, D Goulson, D P Kreutzweiser, C Krupke, M Liess, E Long, M Marzaro, E A Mitchell, D A Noome, N Simon-Delso, A Tapparo (2015). Environmental fate and exposure; neonicotinoids and fipronil. Environmental Science and Pollution Research International, 22(1): 35–67
https://doi.org/10.1007/s11356-014-3332-7 pmid: 25096486
4 J Cooper, H Dobson (2007). The benefits of pesticides to mankind and the environment. Crop Protection, 26(9): 1337–1348
https://doi.org/10.1016/j.cropro.2007.03.022
5 J Dai, H Dong (2014). Intensive cotton farming technologies in China: Achievements, challenges and countermeasures. Field Crops Research, 155: 99–110
https://doi.org/10.1016/j.fcr.2013.09.017
6 R E Engler (2012). The complex interaction between marine debris and toxic chemicals in the ocean. Environmental Science & Technology, 46(22): 12302–12315
https://doi.org/10.1021/es3027105 pmid: 23088563
7 T Harner, T F Bidleman, L M Jantunen, D Mackay (2001). Soil-air exchange model of persistent pesticides in the United States cotton belt. Environmental Toxicology and Chemistry, 20(7): 1612–1621
pmid: 11434306
8 J N Huckins, G K Manuweera, J D Petty, D Mackay, J A Lebo (1993). Lipid-containing semipermeable membrane devices for monitoring organic contaminants in water. Environmental Science & Technology, 27(12): 2489–2496
https://doi.org/10.1021/es00048a028
9 J R Jambeck, R Geyer, C Wilcox, T R Siegler, M Perryman, A Andrady, R Narayan, K L Law (2015). Plastic waste inputs from land into the ocean. Science, 347(6223): 768–771
https://doi.org/10.1126/science.1260352 pmid: 25678662
10 Y Liu, A Ding, Y Sun, X Xia, D Zhang (2018). Impacts of n-alkane concentration on soil bacterial community structure and alkane monooxygenase genes abundance during bioremediation processes. Frontiers of Environmental Science & Engineering, 12(6): 1
https://doi.org/10.1007/s11783-018-1036-9
11 C Nerín, R Batlle (1999). Assessing the suitability of recycled plastics used as agricultural soil covers: Migration study and experimental harvest. Journal of Agricultural and Food Chemistry, 47(1): 285–293
https://doi.org/10.1021/jf9804950 pmid: 10563887
12 C Nerín, A R Tornés, C Domeño, J Cacho (1996). Absorption of pesticides on plastic films used as agricultural soil covers. Journal of Agricultural and Food Chemistry, 44(12): 4009–4014
13 G A Querejeta, L M Ramos, A P Flores, E A Hughes, A Zalts, J M Montserrat (2012). Environmental pesticide distribution in horticultural and floricultural periurban production units. Chemosphere, 87(5): 566–572
https://doi.org/10.1016/j.chemosphere.2011.12.074 pmid: 22285036
14 L Ramos, G Berenstein, E A Hughes, A Zalts, J M Montserrat (2015). Polyethylene film incorporation into the horticultural soil of small periurban production units in Argentina. Science of Total Environment, 523: 74–81
https://doi.org/10.1016/j.scitotenv.2015.03.142 pmid: 25862993
15 J B Regitano, W C Koskinen, M J Sadowsky (2006). Influence of soil aging on sorption and bioavailability of simazine. Journal of Agricultural and Food Chemistry, 54(4): 1373–1379
https://doi.org/10.1021/jf052343s pmid: 16478262
16 C Rivard, L Moens, K Roberts, J Brigham, S Kelley (1995). Starch esters as biodegradable plastics: Effects of ester group chain length and degree of substitution on anaerobic biodegradation. Enzyme and Microbial Technology, 17(9): 848–852
https://doi.org/10.1016/0141-0229(94)00120-G
17 C M Rochman, M A Browne, B S Halpern, B T Hentschel, E Hoh, H K Karapanagioti, L M Rios-Mendoza, H Takada, S Teh, R C Thompson (2013). Classify plastic waste as hazardous. Nature, 494(7436): 169–171
https://doi.org/10.1038/494169a pmid: 23407523
18 S Sharma, S Chatterjee (2017). Microplastic pollution, a threat to marine ecosystem and human health: A short review. Environmental Science and Pollution Research International, 24(27): 21530–21547
https://doi.org/10.1007/s11356-017-9910-8 pmid: 28815367
19 N B O Statistics (2016). China Rural Statistical Yearbook. China Statistics Press (in Chinese)
20 C G Summers, J J Stapleton (2002). Use of UV reflective mulch to delay the colonization and reduce the severity of Bemisia argentifolii (Homoptera: Aleyrodidae) infestations in cucurbits. Crop Protection (Guildford, Surrey), 21(10): 921–928
https://doi.org/10.1016/S0261-2194(02)00067-4
21 J M Tarara (2000). Microclimate modification with plastic mulch. HortScience, 35(2): 169–180
https://doi.org/10.21273/HORTSCI.35.2.169
22 C Yan, W He, Y Xue, E Liu, Q Liu (2016). Application of biodegradable plastic film to reduce plastic film residual pollution in Chinese agriculture.  Chinese Journal of Biotechnology, 32(6): 748–760 (in Chinese)
pmid: 29019184
23 C Yan, X Mei, W He (2010). Present situation of residue pollution of mulching plastic film and controlling measures. Transactions of the Chinese Society of Agricultural Engineering (Beijing), 22: 269–272 (in Chinese)
[1] FSE-19073-OF-GBY_suppl_1 Download
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed