Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

邮发代号 80-973

2018 Impact Factor: 3.883

Frontiers of Environmental Science & Engineering  2021, Vol. 15 Issue (1): 7   https://doi.org/10.1007/s11783-020-1299-9
  本期目录
Effects of Fe(II) on anammox community activity and physiologic response
Jing Ding1, Wanyi Seow1, Jizhong Zhou1,4,5,6, Raymond Jianxiong Zeng3, Jun Gu2, Yan Zhou1,2()
1. Advanced Environmental Biotechnology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, Singapore 637141, Singapore
2. School of Civil and Environmental Engineering, Nanyang Technological University, Singapore 639798, Singapore
3. Centre of Wastewater Resource Recovery, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
4. Institute for Environmental Genomics and Department of Microbiology and Plant, University of Oklahoma, Norman, OK 73019, USA
5. Earth and Environmental Sciences, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
6. School of Environment, Tsinghua University, Beijing 100084, China
 全文: PDF(989 KB)   HTML
Abstract

• 0.12 mmol/L Fe(II) enhanced the total anammox activity and bacterial abundance best.

• 0.09 mmol/L Fe(II) led to the best performance on relative anammox activity.

• 0.75 mmol/L Fe(II) had an immediate but recoverable inhibition on anammox activity.

• More genes but not relative level were expressed at higher Fe(II) concentration.

Though there are many literatures studying the effects of iron on anammox process, these studies only focus on the reactor performance and/or the microbial community changes, the detailed effects and mechanisms of Fe(II) on anammox bacterial activity and physiology have not been explored. In this study, four Fe(II) concentrations (0.03, 0.09, 0.12 and 0.75 mmol/L) were employed into the enriched anammox culture. The enhancement and inhibition effects of Fe(II) on anammox process and bacterial physiology were investigated. It was discovered that the anammox process and bacterial growth were enhanced by 0.09 and 0.12 mmol/L Fe(II), in which the 0.12 mmol/L Fe(II) had advantage in stimulating the total anammox activity and bacterial abundance, while 0.09 mmol/L Fe(II) enhanced the relative anammox activity better. The anammox activity could be inhibited by 0.75 mmol/L Fe(II) immediately, while the inhibition was recoverable. Both 0.09 and 0.12 mmol/L Fe(II) induced more genes being expressed, while didn’t show a stimulation on the relative expression level of functional genes. And anammox bacteria showed a stress response to detoxify the Fe inhibition once inhibited by 0.75 mmol/L Fe(II). This study provides more information about physiologic response of anammox bacteria to external influence (enhancement and inhibition), and may also instruct the future application of anammox process in treating various sources of wastewater (containing external disturbances such as heavy metals) and/or different treatment strategies (e.g. from side-stream to main-stream).

Key wordsAnaerobic ammonium oxidation (Anammox)    Candidatus Kuenenia stuttgartiensis    Ferrous iron    GeoChip
收稿日期: 2020-03-19      出版日期: 2020-07-30
Corresponding Author(s): Yan Zhou   
 引用本文:   
. [J]. Frontiers of Environmental Science & Engineering, 2021, 15(1): 7.
Jing Ding, Wanyi Seow, Jizhong Zhou, Raymond Jianxiong Zeng, Jun Gu, Yan Zhou. Effects of Fe(II) on anammox community activity and physiologic response. Front. Environ. Sci. Eng., 2021, 15(1): 7.
 链接本文:  
https://academic.hep.com.cn/fese/CN/10.1007/s11783-020-1299-9
https://academic.hep.com.cn/fese/CN/Y2021/V15/I1/7
Set Nitrogen in different set Time 1 Time 2 Rate change (%)
AMX1 NH4+ 9.386±0.255 13.117±1.994 39.80
NO2 11.243±0.677 15.655±2.317 39.20
AMX2 NH4+ 8.549±0.109 12.265±1.734 43.50
NO2 11.043±0.808 16.168±1.572 46.40
AMX3 NH4+ 5.933±0.571 14.496±0.272 144.30
NO2 7.693±0.838 18.608±2.087 141.90
AMX4 NH4+ 9.311±0.475 5.634±0.804 -39.50
NO2 12.072±1.110 7.945±1.149 -34.20
Tab.1  
Set NH4+ NO2
AMX1 13.117 15.655
AMX2 15.041 19.827
AMX3 13.692 17.575
Tab.2  
Fig.1  
Fig.2  
Fig.3  
Fig.4  
Functional gene group AMX1a) AMX2a) AMX3a) AMX4a) AMX1b) AMX2b) AMX3b) AMX4b)
Stress 20 22 22 22 28.57 28.95 29.33 25.00
Metal homeostasis 16 18 16 25 22.86 23.68 21.33 28.41
Nitrogen 11 13 12 14 15.71 17.11 16.00 15.91
Carbon cycling 7 7 7 7 10.00 9.21 9.33 7.95
CRISPR 5 6 8 9 7.14 7.89 10.67 10.23
Phylogenetic 3 3 3 3 4.29 3.95 4.00 3.41
Secondary metabolism 2 2 2 2 2.86 2.63 2.67 2.27
Sulfur 2 2 2 2 2.86 2.63 2.67 2.27
Virulence 2 2 2 2 2.86 2.63 2.67 2.27
Organic remediation 2 1 1 2 2.86 1.32 1.33 2.27
Tab.3  
Fig.5  
Fig.6  
1 S C Andrews (1998). Iron storage in bacteria. Advances in Microbial Physiology, 40: 281–351
https://doi.org/10.1016/S0065-2911(08)60134-4
2 S C Andrews, A K Robinson, F Rodriguez-Quinones (2003). Bacterial iron homeostasis. FEMS Microbiology Reviews, 27(2–3): 215–237
https://doi.org/10.1016/S0168-6445(03)00055-X
3 APHA (1998). Standard Methods for the Examination of Water and Wastewater, 20th ed. Washington, D.C.: American Public Health Association
4 R Barrangou (2015). The roles of CRISPR-Cas systems in adaptive immunity and beyond. Current Opinion in Immunology, 32: 36–41
https://doi.org/10.1016/j.coi.2014.12.008
5 R Barrangou, C Fremaux, H Deveau, M Richards, P Boyaval, S Moineau, D A Romero, P Horvath (2007). CRISPR provides acquired resistance against viruses in prokaryotes. Science, 315(5819): 1709–1712
https://doi.org/10.1126/science.1138140
6 Z Bi, S Qiao, J T Zhou, X Tang, J Zhang (2014). Fast start-up of anammox process with appropriate ferrous iron concentration. Bioresource Technology, 170: 506–512
https://doi.org/10.1016/j.biortech.2014.07.106
7 L S Cua, L Y Stein (2011). Effects of nitrite on ammonia-oxidizing activity and gene regulation in three ammonia-oxidizing bacteria. FEMS Microbiology Letters, 319(2): 169–175
https://doi.org/10.1111/j.1574-6968.2011.02277.x
8 C Ferousi, S Lindhoud, F Baymann, B Kartal, M S Jetten, J Reimann (2017). Iron assimilation and utilization in anaerobic ammonium oxidizing bacteria. Current Opinion in Chemical Biology, 37: 129–136
https://doi.org/10.1016/j.cbpa.2017.03.009
9 P Han, Y T Huang, J G Lin, J D Gu (2013). A comparison of two 16S rRNA gene-based PCR primer sets in unraveling anammox bacteria from different environmental samples. Applied Microbiology and Biotechnology, 97(24): 10521–10529
https://doi.org/10.1007/s00253-013-5305-z
10 Z L He, T J Gentry, C W Schadt, L Y Wu, J Liebich, S C Chong, Z J Huang, W M Wu, B H Gu, P Jardine, C Criddle, J Zhou (2007). GeoChip: A comprehensive microarray for investigating biogeochemical, ecological and environmental processes. ISME Journal, 1(1): 67–77
https://doi.org/10.1038/ismej.2007.2
11 B L Hu, P Zheng, C J Tang, J W Chen, E Van Der Biezen, L Zhang, B J Ni, M S M Jetten, J Yan, H Q Yu, B Kartal (2010). Identification and quantification of anammox bacteria in eight nitrogen removal reactors. Water Research, 44(17): 5014–5020
https://doi.org/10.1016/j.watres.2010.07.021
12 X L Huang, D W Gao, S Peng, Y Tao (2014). Effects of ferrous and manganese ions on anammox process in sequencing batch biofilm reactors. Journal of Environmental Sciences (China), 26(5): 1034–1039
https://doi.org/10.1016/S1001-0742(13)60531-8
13 X Li, L Hou, M Liu, Y Zheng, G Yin, X Lin, L Cheng, Y Li, X Hu (2015). Evidence of nitrogen loss from anaerobic ammonium oxidation coupled with ferric iron reduction in an intertidal wetland. Environmental Science & Technology, 49(19): 11560–11568
https://doi.org/10.1021/acs.est.5b03419
14 J F Liu, X B Sun, G C Yang, S M Mbadinga, J D Gu, B Z Mu (2015). Analysis of microbial communities in the oil reservoir subjected to CO2-flooding by using functional genes as molecular biomarkers for microbial CO2 sequestration. Frontiers in Microbiology, 6: 236
https://doi.org/10.3389/fmicb.2015.00236
15 S T Liu, H Horn (2012). Effects of Fe(II) and Fe(III) on the single-stage deammonification process treating high-strength reject water from sludge dewatering. Bioresource Technology, 114: 12–19
https://doi.org/10.1016/j.biortech.2011.11.125
16 S T Liu, F L Yang, Y Xue, Z Gong, H H Chen, T Wang, Z C Su (2008). Evaluation of oxygen adaptation and identification of functional bacteria composition for anammox consortium in non-woven biological rotating contactor. Bioresource Technology, 99(17): 8273–8279
https://doi.org/10.1016/j.biortech.2008.03.006
17 Y W Liu, B J Ni (2015). Appropriate Fe(II) addition significantly enhances anaerobic ammonium oxidation (anammox) activity through improving the bacterial growth rate. Scientific Reports, 5: 8204
https://doi.org/10.1038/srep08204
18 C Y Mak, J G Lin, W H Chen, C A Ng, M J K Bashir (2019). The short- and long-term inhibitory effects of Fe(II) on anaerobic ammonium oxidizing (anammox) process. Water Science and Technology, 79(10): 1860–1867
https://doi.org/10.2166/wst.2019.188
19 H J M Op den Camp, B Kartal, D Guven, L A M P van Niftrik, S C M Haaijer, W R L van der Star, K T van de Pas-Schoonen, A Cabezas, Z Ying, M C Schmid, M M M Kuypers, J van de Vossenberg, H R Harhangi, C Picioreanu, M C M van Loosdrecht, J G Kuenen, M Strous, M S M Jetten. (2006). Global impact and application of the anaerobic ammonium-oxidizing (anammox) bacteria. Biochemical Society Transactions, 34(1): 174–178
https://doi.org/10.1042/BST0340174
20 M Oshiki, S Ishii, K Yoshida, N Fujii, M Ishiguro, H Satoh, S Okabe (2013). Nitrate-dependent ferrous iron oxidation by anaerobic ammonium oxidation (anammox) bacteria. Applied and Environmental Microbiology, 79(13): 4087–4093
https://doi.org/10.1128/AEM.00743-13
21 S Qiao, Z Bi, J T Zhou, Y J Cheng, J Zhang (2013). Long term effects of divalent ferrous ion on the activity of anammox biomass. Bioresource Technology, 142: 490–497
https://doi.org/10.1016/j.biortech.2013.05.062
22 Y H Ren, J J Niu, W K Huang, D L Peng, Y H Xiao, X Zhang, Y L Liang, X D Liu, H Q Yin (2016). Comparison of microbial taxonomic and functional shift pattern along contamination gradient. BMC Microbiology, 16: 110
https://doi.org/10.1186/s12866-016-0731-6
23 S Schouten, M Strous, M M M Kuypers, W I C Rijpstra, M Baas, C J Schubert, M S M Jetten, J S S Damste (2004). Stable carbon isotopic fractionations associated with inorganic carbon fixation by anaerobic ammonium-oxidizing bacteria. Applied and Environmental Microbiology, 70(6): 3785–3788
https://doi.org/10.1128/AEM.70.6.3785-3788.2004
24 D T Shu, Y L He, H Yue, S C Yang (2016). Effects of Fe(II) on microbial communities, nitrogen transformation pathways and iron cycling in the anammox process: Kinetics, quantitative molecular mechanism and metagenomic analysis. RSC Advances, 6(72): 68005–68016
https://doi.org/10.1039/C6RA09209H
25 M Strous, M S M Jetten (2004). Anaerobic oxidation of methane and ammonium. Annual Review of Microbiology, 58(1): 99–117
https://doi.org/10.1146/annurev.micro.58.030603.123605
26 M Strous, E Pelletier, S Mangenot, T Rattei, A Lehner, M W Taylor, M Horn, H Daims, D Bartol-Mavel, P Wincker, V Barbe, N Fonknechten, D Vallenet, B Segurens, C Schenowitz-Truong, C Medigue, A Collingro, B Snel, B E Dutilh, H J M Op Den Camp, C Van Der Drift, I Cirpus, K T Van De Pas-Schoonen, H R Harhangi, L Van Niftrik, M Schmid, J Keltjens, J Van De Vossenberg, B Kartal, H Meier, D Frishman, M A Huynen, H W Mewes, J Weissenbach, M S M Jetten, M Wagner, D Le Paslier (2006). Deciphering the evolution and metabolism of an anammox bacterium from a community genome. Nature, 440(7085): 790–794
https://doi.org/10.1038/nature04647
27 L van Niftrik, W J C Geerts, E G Van Donselaar, B M Humbel, R I Webb, J A Fuerst, A J Verkleij, M S M Jetten, M Strous (2008a). Linking ultrastructure and function in four genera of anaerobic ammonium-oxidizing bacteria: Cell plan, glycogen storage, and localization of cytochrome c proteins. Journal of Bacteriology, 190(2): 708–717
https://doi.org/10.1128/JB.01449-07
28 L van Niftrik, W J C Geerts, E G Van Donselaar, B M Humbel, A Yakushevska, A J Verkleij, M S M Jetten, M Strous (2008b). Combined structural and chemical analysis of the anammoxosome: A membrane-bounded intracytoplasmic compartment in anammox bacteria. Journal of Structural Biology, 161(3): 401–410
https://doi.org/10.1016/j.jsb.2007.05.005
29 L van Niftrik, M S M Jetten (2012). Anaerobic ammonium-oxidizing bacteria: unique microorganisms with exceptional properties. Microbiology and Molecular Biology Reviews, 76(3): 585–596
https://doi.org/10.1128/MMBR.05025-11
30 Y Y Wang, X Ma, S Zhou, X M Lin, B Ma, H D Park, Y Yan (2016). Expression of the nirS, hzsA, and hdh genes in response to nitrite shock and recovery in Candidatus Kuenenia stuttgartiensis. Environmental Science & Technology, 50(13): 6940–6947
https://doi.org/10.1021/acs.est.6b00546
31 Y F Yang, C C Xiao, J H Lu, Y B Zhang (2020). Fe(III)/Fe(II) forwarding a new anammox-like process to remove high-concentration ammonium using nitrate as terminal electron acceptor. Water Research, 172: 115528
https://doi.org/10.1016/j.watres.2020.115528
32 X Zhang, Z Chen, Y Zhou, Y Ma, C Ma, Y Li, Y Liang, J Jia (2019a). Impacts of the heavy metals Cu(II), Zn(II) and Fe(II) on an anammox system treating synthetic wastewater in low ammonia nitrogen and low temperature: Fe(II) makes a difference. Science of the Total Environment, 648: 798–804
https://doi.org/10.1016/j.scitotenv.2018.08.206
33 X Zhang, Y Zhou, S Zhao, R Zhang, Z Peng, H Zhai, H Zhang (2018). Effect of Fe(II) in low-nitrogen sewage on the reactor performance and microbial community of an anammox biofilter. Chemosphere, 200: 412–418
https://doi.org/10.1016/j.chemosphere.2018.02.131
34 Y Zhang , Y Y Wang, Y Yan, H C Han, M Wu (2019b). Characterization of CANON reactor performance and microbial community shifts with elevated COD/N ratios under a continuous aeration mode. Frontiers of Environmental Science & Engineering, 13(1): 7
https://doi.org/10.1007/s11783-019-1095-6
35 J Zhao, J N Zuo, X L Wang, J Lin, Y F Yang, J Z Zhou, H J Chu, P Li (2014a). GeoChip-based analysis of microbial community of a combined nitritation-anammox reactor treating anaerobic digestion supernatant. Water Research, 67: 345–354
https://doi.org/10.1016/j.watres.2014.09.029
36 R Zhao, H M Zhang, Y F Li, T Jiang, F L Yang (2014b). Research of iron reduction and the iron reductase localization of anammox bacteria. Current Microbiology, 69(6): 880–887
https://doi.org/10.1007/s00284-014-0668-7
[1] FSE-20059-OF-DJ_suppl_1 Download
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed