Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

邮发代号 80-973

2018 Impact Factor: 3.883

Frontiers of Environmental Science & Engineering  2021, Vol. 15 Issue (3): 47   https://doi.org/10.1007/s11783-021-1420-8
  本期目录
Advances in airborne microorganisms detection using biosensors: A critical review
Jinbiao Ma1,2, Manman Du1,2, Can Wang1,2(), Xinwu Xie3,4(), Hao Wang3,5, Qian Zhang6
1. School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
2. Tianjin Key Laboratory of Indoor Air Environmental Quality Control, Tianjin 300072, China
3. Institute of Medical Support Technology, Academy of Military Science, Tianjin 300161, China
4. National Bio-Protection Engineering Center, Tianjin 300161, China
5. School of Electronic Information and Automation, Tianjin University of Science and Technology, Tianjin 300222, China
6. School of Mechanical Engineering and Safety Engineering, Institute of Particle Technology, University of Wuppertal, Wuppertal D-42119, Germany
 全文: PDF(1180 KB)   HTML
Abstract

• Airborne microorganism detection methods are summarized.

• Biosensors play an important role in detecting airborne microorganisms.

• The principle of biosensor detection of airborne microorganisms is introduced.

• The application and progress of biosensor in recent years is summarized.

• The future perspectives of biosensor are identified.

Humanity has been facing the threat of a variety of infectious diseases. Airborne microorganisms can cause airborne infectious diseases, which spread rapidly and extensively, causing huge losses to human society on a global scale. In recent years, the detection technology for airborne microorganisms has developed rapidly; it can be roughly divided into biochemical, immune, and molecular technologies. However, these technologies still have some shortcomings; they are time-consuming and have low sensitivity and poor stability. Most of them need to be used in the ideal environment of a laboratory, which limits their applications. A biosensor is a device that converts biological signals into detectable signals. As an interdisciplinary field, biosensors have successfully introduced a variety of technologies for bio-detection. Given their fast analysis speed, high sensitivity, good portability, strong specificity, and low cost, biosensors have been widely used in environmental monitoring, medical research, food and agricultural safety, military medicine and other fields. In recent years, the performance of biosensors has greatly improved, becoming a promising technology for airborne microorganism detection. This review introduces the detection principle of biosensors from the three aspects of component identification, energy conversion principle, and signal amplification. It also summarizes its research and application in airborne microorganism detection. The new progress and future development trend of the biosensor detection of airborne microorganisms are analyzed.

Key wordsBiosensor    Airborne microorganisms    Microbiological detection technology
收稿日期: 2020-10-28      出版日期: 2021-04-12
Corresponding Author(s): Can Wang,Xinwu Xie   
 引用本文:   
. [J]. Frontiers of Environmental Science & Engineering, 2021, 15(3): 47.
Jinbiao Ma, Manman Du, Can Wang, Xinwu Xie, Hao Wang, Qian Zhang. Advances in airborne microorganisms detection using biosensors: A critical review. Front. Environ. Sci. Eng., 2021, 15(3): 47.
 链接本文:  
https://academic.hep.com.cn/fese/CN/10.1007/s11783-021-1420-8
https://academic.hep.com.cn/fese/CN/Y2021/V15/I3/47
Airborne diseases Airborne microorganisms Parasitifer Duration Impact
SARS SARS-CoV Bat 2002.11–2003.07 8069 confirmed cases and 774 deaths (as at July 2003)
H1N1 Flu Influenza virus A Birds and mammals 2009.04–2010.08 68474274 confirmed cases and 18449 deaths (as at August 2009)
MERS MERS-CoV Camel 2012.09–2018.09 2562 confirmed cases and 881 deaths (as at September 2020)
H7N9 avian influenza AIV Poultry 2013.03–2017.09 1564 confirmed cases and 609 deaths (as at October 2017)
COVID-19 SARS-CoV-2 Bat* 2019.12– More than 107 million confirmed cases and 2.3 million deaths (as at February 2021)
Tab.1  
Detection method Advantage Disadvantage Reference
Culture 1. Relatively simple operation
2. Low cost, and less equipment investment
3. Used for strain typing and drug resistance detection
1. Large workload, and long detection time
2. Low sensitivity
3. Difficult to cultivate some microorganisms or require high biological safety
Hudu et al., 2016; Gupta and Kakkar, 2018
Medical imaging 1. Short detection time
2. fast analysis speed
1. Need professional equipment
2. Low specificity
3. Invasive
4. Not suitable for early-stage patients
Brenner and Hall, 2007; Seibel et al., 2020
Immune technology 1. Medium sensitivity, capable of determining small or limited amounts of enzymes in samples
2. Medium specificity, not easily affected by impurities
3. Medium detection time, suitable for large number of samples
1. Prone to “false positives” affecting the results
2. Many measurement steps and complicated operation
3. High measurement cost
Phunpae et al., 2014; Fronczek and Yoon, 2015; Mekonnen et al., 2020
Polymerase chain reaction 1. High sensitivity
2. High specificity, low sample purity requirements
3. Used for strain typing and drug resistance detection
4. Medium detection time
1. High measurement cost
2. Complex cyclic process, high technical requirements, and professional equipment
3. Unable to distinguish between living and dead microorganisms
Weile and knabbe, 2009; Paolucci et al., 2010; Eddabra and Ait Benhassou, 2018
Gene Sequencing 1. Good stability, and specificity
2. High detection accuracy
1. Large workload, and long detection time
2. High measurement cost
Schlaberg et al., 2017
Biosensor 1. High sensitivity, and high specificity
2. Short detection time, and fast analysis speed
3. Flexible and portable, suitable for on-site testing
4. Low cost
1. High sample purity requirements, weak anti-interference ability
2. Poor detection stability
3. Poor repeatability
Nidzworski et al., 2014; Cui and Zhou, 2020
Tab.2  
Fig.1  
Fig.2  
Fig.3  
Virus Sensor type Sample Range Detection limit Response
time
Detection target Reference
SARS-CoV-2 FET biosensor Culture medium; Nasopharyngeal swabs Protein: 1 fg/mL – 100 pg/mL;
SARS-CoV-2 in culture medium: 1.6 × 101 – 1.6 × 104 PFU/mL;
Clinical samples: 1 × 101- 1 × 105 copies/mL
Protein: 1 fg/mL;
SARS-CoV-2 in culture medium: 1.6 × 101 PFU/mL;
Clinical samples: 2.42 × 102 copies/mL
50 s SARS-CoV-2 antigen protein, cultured SARS-CoV-2, or SARS-CoV-2 from clinical samples Seo et al., 2020
Electrochemical biosensor Cell-containing medium 10 fg/mL – 1 µg/mL 1 fg/mL 3 min SARS-CoV-2 S1 spike protein Mavrikou et al., 2020
SPR biosensors Oligonucleotide 0.1 pM – 1 μM 0.22±0.08 pM RNA-dependent RNA polymerase-COVID sequences Qiu et al., 2020
SARS-CoV SPR biosensor Rabbit anti- SARS coronaviral surface antigen (SCVme) 200 ng/mL – 100 μg/mL 200 ng/mL 10 min Anti-SCVme Park et al., 2009
Nanowire FET biosensor Nucleocapsid (N) protein 0.6 – 10 nM 0.6 nM 10 min N protein Ishikawa et al., 2009
H1N1 Influenza virus Paired surface plasma waves biosensor Throat swab 18 – 1.8 × 106 PFU/mL 30 PFU/mL 20 min Swine-origin influenza virus Su et al., 2012
FET biosensor H1N1 HA 50 aM – 5 nM 50 aM HA Hideshima et al., 2013
Electrochemical immunesensor Throat swab 10 – 100 pg/mL 20 pg/mL (80 – 100 virions/μL) 30 min Structural protein in the virion Nidzworski et al., 2014
SPR biosensor Recombinant influenza virus A 10 pg/mL – 10 μg/mL 50.5 pg/mL Anti-hemagglutinin (HA) Ahmed et al., 2017
Electrochemical biosensor Nasal swab 103 – 108 PFU/sample 102 PFU/sample 15 min H1N1 influenza virus Cui et al., 2017
Electrochemical impedance aptasensor Inactivated H1N1 viruses 9 – 900 ng/L 0.9 pg/uL 30 min Inactivated influenza A virus subtype H1N1 Bai et al., 2018
Electrochemical impedance sensor Influenza virus DNA 1 pM – 10 nM 8.4 pM Influenza virus DNA Lee et al., 2018
Electrochemical biosensor Mini-HA protein and H1N1 viruses 0 – 106 PFU/mL 3.7 PFU/mL 30 min Mini-HA protein and H1N1 viruses Bhardwaj et al., 2019
H7N9 Influenza virus Upconversion luminescence resonance energy Biosensor H7 oligonucleotide 1 pM – 10 nM 7 pM 2 h H7 oligonucleotide Ye et al., 2014
Electrochemical DNA biosensor Throat swab 1 pM – 100 nM 100 fM 100 s HA gene sequence Dong et al., 2015
Electrochemical immunesensor Inactivated H7N9 avian influenza virus (AIV) 0.01 – 20 ng/mL 6.8 pg/mL H7N9 AIV Wu et al., 2015
Electrochemical biosensor H7N9 virus DNA 50 fM – 100 pM 9.4 fM 150 min H7N9 virus DNA Yu et al., 2015
Electrochemical immunesensor AIV H7 1.6 pg/mL – 16 ng/mL 1.6 pg/mL 30 min AIV H7 Huang et al., 2016
Electrochemical immunesensor AIV H7 1 – 25 ng/mL 0.43 ng/mL 20 min AIV H7 Tian et al., 2017
SPR biosensor H7N9 virus mixed with nasal mucosa 2.3 × 102 – 2.3 × 105 copies/mL 402 copies/mL 10 min H7N9 virus Chang et al., 2018
H5N1 Influenza virus SPR biosensor Poultry swab 0.128 – 12.8 HAU/50 μL 0.128 HAU/50 μL 1.5 h H5N1 AIV Bai et al., 2012
Electrochemical immunesensor Chicken red blood cells 101 – 103 EID50/mL 103 EID50/mL 2 h H5N1 AIV Lum et al., 2012
Electrochemical DNA biosensor H5N1 AIV HA and neuraminidase (NA) 8 – 100 nM 18 nM HA and NA Grabowska et al., 2013
Fluorescence biosensor H5N1 antibody 5.0 nM – 1.0 μM 1.6 nM H5N1 antibody Wei et al., 2013
Electrochemical impedance aptasensor H5N1 virus and
chicken swab
0.125 – 16 HAU/50 μL H5N1 virus: 0.125 HAU/50 μL
chicken swab: 1 HAU/50 mL
H5N1 virus Karash et al., 2016
SPR biosensor H5N1-infected feces 1 × 104 – 1 × 106 EID50/mL 1000 EID50/mL H5N1 AIV Nguyen et al., 2016
FET biosensor Chicken serum 10 pM – 10 nM 5.9 pM HA protein Kwon et al., 2020
Rotavirus Photonic crystal biosensors Culture/ Feces 0.02 × 104 – 5.77 × 104 FFU/mL 0.18 × 104 FFU/mL 30 min Rotavirus Pineda et al., 2009
Fluorescence biosensor Rotavirus 103 – 105 PFU/mL 105 PFU/mL Rotavirus cell Jung et al., 2010
FET biosensor Pure rotavirus stock and fecal sample Pure rotavirus stock: 10 – 105 PFU/mL
fecal sample: 10 – 104 PFU/mL
Pure rotavirus stock: 102 PFU/mL
fecal sample: 103 PFU/mL
50 min Rotavirus Liu et al., 2013
3D photonic crystal biosensor Rotavirus antigen 2.54 – 127 μg/mL 6.35 μg/mL Rotavirus Maeng et al., 2016
Dengue virus Innovative silicon nanowire FET sensor Viral RNA mini kit 1 – 100 fM 10 fM 30 min RNA Zhang et al., 2010
Electrochemical impedance biosensor Vero cells 5.5 × 103 – 8.4 × 105 TCID50/mL 8.4 × 102 TCID50/mL Dengue virus Wasik et al., 2017
Optical DNA-based biosensor Saliva and urine 0.1 fM – 0.1 nM 0.2 aM 90 min DNA Ariffin et al., 2018
Solid-state optical DNA biosensor Serum, Urine, and Saliva 1 fM – 1 × mM 0.121 fM 15 min Dengue virus serotype 2 genome Mazlan et al., 2019
Vaccinia virus Evanescent wave biosensor Optic biosensor Throat culture swab specimens 1.3 × 101 – 1.3 × 108 PFU/mL 2.5 × 105 pfu/ml Variola virus Donaldson et al., 2004
Electrochemical impedance biosensor Human blood cells 0 – 3500 PFU/50 μL 330 PFU/50 μL Variola virus Labib et al., 2012
Tab.3  
Bacteria Sensor type Sample Range Detection limit Response time Detection target Reference
Pneumococcus Electrochemical biosensor Serotype 100 – 104 CFU/sample 102 CFU/sample 15 min S. pneumoniae Cui et al., 2017
Electrochemical impedance biosensor Bacteria in Mueller-Hinton medium 101 – 107 CFU/mL 101 CFU/mL K. pneumoniae Silva Junior et al., 2018
Yersinia pestis Phosphor biosensor Lung tissue homogenates infected Balb/c mice 104 – 108 CFU/mL 104 CFU/mL 30 min The whole cells of Y. pestis Yan et al., 2006
Fiber optic biosensor Serum 0 – 103 ng/mL 10 ng/mL 40 min Anti-F1 antibodies Wei et al., 2007
Magnetic biosensor Buffer and human blood serum 25 – 300 ng/mL 2.5 ng/mL Y. pestis antigen F1 Meyer et al., 2007
Staphylococcus aureus Electrochemical biosensor Apple juice samples and water 2.0 – 2.0 × 106 CFU/mL 2 CFU/mL 2 min S. aureus Bhardwaj et al., 2016
Fluorescent MOF biosensor Culture medium and cream pastry samples 40 – 4 × 108 CFU/mL 31 CFU/mL 20 min S. aureus Bhardwaj et al., 2017
Autoinducer peptide-based electrochemical biosensor AIP-I isolated from S. aureus cultured 10 – 1000 nM 0.5 nM 4 h Autoinducer peptide Lubkowicz et al., 2018
Love wave biosensor Synthesis 0 – 10 nM 1.86 pM (12.4 pg/mL) 30 min S. aureusgene sequences Ji et al., 2020
Bacillus Electrochemical immune biosensor B. cereus, Bacillus megaterium, and Bacillus thuringiensis 100 – 107 CFU/mL 101 CFU/mL Bacillus Pal et al., 2007
Electrochemical biosensor Synthesis 0.1 fM – 20 fM 0.08 fM 120 min DNA Hu et al., 2014
Single-walled carbon nanotubes-based electrochemical biosensor B. subtilis KCCM 11316 102 – 1010 CFU/mL 102 CFU/mL 10 min B. subtilis Yoo et al., 2017
Corynebacterium diphtheriae Array fluorescent biosensor Human serum 5 – 20 mg/mL 100 fg Human antibodies Moreno-Bondi et al., 2006
SPR biosensor Monoclonal anti–diphtheria IgG sample 0 – 1000 ng/mL 10 ng/mL 1 h Anti-diphtheria IgG Zeinoddini et al., 2018
Electrochemical immune biosensor Human saliva 10-4 – 10-1 Lf/mL 10-4 Lf/mL Diphtheria toxoid Ziółkowski et al., 2019
Streptococcus Electrochemical biosensor Group B Streptococus nucleic acid detection kit 1 fM – 1 nM 0.4 fM 2 h DNA Yuan et al., 2016
Electrochemical immune biosensor S. agalactiae reference strain 101 – 107 CFU/mL 101 CFU/mL 90 min S. agalactiae Vásquez et al., 2017
Electrochemical biosensor Human serum 50 – 5 × 104 CFU/mL 50 CFU/mL S. pneumoniae Chang et al., 2020
Acinetobacter baumannii Electrochemical DNA biosensor Blood or sputum 27.5 – 8.25 × 107 mg/mL 0.825 ng/mL (1.2 fM) 15 min DNA Yeh et al., 2010
Lateral flow biosensor Sputum 10 ng/uL – 1 fg/uL 100 fg/uL 1 h DNA Hu et al., 2019
Optical DNA biosensor Synthesis 1 μM – 1 zM 1 fM Oligonucleotide sequences Bahavarnia et al., 2020
Escherichia coli Electrochemical biosensor E. coli O157:H7 10 – 105 CFU/mL 79 CFU/mL 10 min E. coli O157:H7 Muhammad-Tahir and Alocilja, 2003
Electrochemical impedance biosensor E. coli strains ORN 178 and ORN 208 1.2 × 102 – 2.5 × 103 CFU/mL 120 CFU/mL E. coli Guo et al., 2012
FET biosensor E. coli O157:H7 10 – 104 CFU/mL 10 CFU/mL 100 s E. coli cells Chang et al., 2013
Electrochemical immunesensor E. coli O157:H7 30 – 3 × 108 CFU/mL 30 CFU/mL E. coli O157:H7 Güner et al., 2017
Quartz crystal microbalance (QCM) sensor Stock cultures of E. coli O157:H7 102 – 107 CFU/ml 1.46 × 103 CFU/mL 50 min E. coli O157:H7 Yu et al., 2018
Electrochemical biosensor Urine 15 – 1.5 × 108 CFU/mL, 1 CFU/mL 140 min E. coli Li et al., 2018
Electrochemical biosensor E. coli strain ATCC 11303 culture collection 313, 10, and 1 CFU/mL 1 CFU/mL 6 – 8 h E. coli Zuser et al., 2019
Microfluidic colorimetric biosensor Chicken E. coli O157:H7 50 – 5 × 108 CFU/mL 50 CFU/mL E. coli O157:H7 Zheng et al., 2019
Hemophilus influenzae Electrochemical biosensor Culture/urine 0.1 – 2500 nM 0.02 nM Chloramphenicol Yadav et al., 2014
Electrochemical DNA biosensor Synthesis 1 zM – 1 μM 1 zM 50 min DNA Mobed et al., 2019b
Optical DNA biosensor Synthesized H. influenza sequences 1 μM – 1 zM 1 zM 2 h DNA Hassanpour et al., 2020
Legionella pneumophila Electrochemically biosensor Synthesis 1 × 10-14 – 1 × 10-6 M 2.3 × 10-14 M 30 min DNA Rai et al., 2012
Electrochemical DNA biosensor Synthesis 1 zM – 1 μM 1 zM 20 min DNA Mobed et al., 2019a
Antimicrobial peptide biosensor L. pneumophila 103 – 106 CFU/mL 103 CFU/mL 2 h L. pneumophila Islam et al., 2020
Campylobacter jejuni QCM sensor Against C. jejuni 104 – 109 CFU/mL 150 CFU/mL C. jejuni Masdor et al., 2016
Fluorescence immunosensor C. jejuni in poultry liver 10 – 106 CFU/mL 10 CFU/mL 1.5 h C. jejuni Dehghani et al., 2020
Salmonella Electrochemical impedance biosensor Culture 3 × 103 – 3 × 106 CFU/mL 3 × 103 CFU/mL 3 h Salmonella Dastider et al., 2015
Microfluidic nano-biosensoR Culture/chicken 0 – 106 CFU/mL 103 CFU/mL 30 min Salmonella Kim et al., 2015
Electrochemical biosensor Culture/apple juice 102 – 108 CFU/mL 3 CFU/mL 45 min Salmonella Sheikhzadeh et al., 2016
Colorimetric biosensor Culture/spiked Chicken carcass 101 – 104 CFU/mL 11CFU/mL 2.5 h Salmonella Wang et al., 2020a
Electrochemical aptasensor Culture/spiked Chicken carcass 102 – 106 CFU/mL 80CFU/mL 2 h Salmonella Wang et al., 2020b
Electrochemical biosensor Milk 1.5 × 101 – 1.5 × 104 CFU/mL 150 CFU/mL 30 min Salmonella Malvano et al., 2020
Mycobacterium tuberculosis Electrochemical DNA biosensor Synthesis 1 pM – 10 nM 0.26 pM 100 s DNA Hong et al., 2012
Electrochemical impedimetric immunosensor Synthesis 100 fM – 1 nM 100 fM 16 kDa HSP Gopinath et al., 2016
Multichannel series piezoelectric quartz crystal (MSPQC) sensor Culture /sputum 1 × 103 – 1 × 107CFU/mL 102 CFU/mL 70 min H37Rv Zhang et al., 2017
Silicon photonic microring sensor Sputum 5 fg/uL– 500 pg/uL 3.2 copies 1 h DNA Liu et al., 2018c
MSPQC sensor Culture /sputum 1 × 102 – 1 × 108CFU/mL 20 CFU/mL 3 h H37Ra Zhang et al., 2019a
Electrochemical Sensor Culture 102 – 107 CFU/mL 102 CFU/mL 2 h H37Rv Zhang et al., 2019b
Electrochemical sensor Synthesis 1 fg/mL – 1 ng/mL 0.33 fg/mL Protein Chen et al., 2019
SPR biosensor Sputum 2 – 125 ng/mL 0.63 ng/mL 35 – 40 min Protein Peláez et al., 2020
Tab.4  
Bio-substance Sensor type Sample Range Detection limit Response time Detection target Reference
Aspergillus flavus Electrochemical DNA biosensor Aflatoxin B1 in pistachio nuts 1 nM – 10 μM 0.55 nM 4 h DNA Sedighi-Khavidak et al., 2017
Aspergillus niger Cantilever sensor Fungal strain A. niger 103 CFU/mL 4 h Fungal spores Nugaeva et al., 2007
Mycoplasma Cantilever Sensors Cell culture 103 – 107 CFU/mL 103 CFU/mL Less than 1h Mycoplasma Xu et al., 2010
Electrochemical gene sensor Synthesis 0.1 pM – 20 nM 0.03 pM 2 h DNA Liu et al., 2016
Fluorescence biosensor Sheep serum 102 – 106 copies/μL. 1.042 copies/mL Less than 15 min Mycoplasma ovipneumoniae Chen et al., 2017
Lateral flow biosensor Oropharyngeal
swab specimens
60 fg/uL – 60 ng/uL 600 fg/uL 1 h DNA Wang et al., 2019b
Lateral flow biosensor Oropharyngeal
Swab specimens
5 fg/uL – 5 ng/uL 50 fg/uL 1 h DNA Wang et al., 2019c
Fluorescence biosensor Human saliva 5 – 300 nM 3.96 nm 10 min DNA Li et al., 2019
Rickettsia Optical biosensor Blood plasma/Liver biopsy samples 5 × 101 – 5 × 104 copies/reaction 5 × 101 copies/reaction 20 min DNA Koo et al., 2018
Chlamydia Optical DNA biosensor Human urine 0.25 – 20 nM 0.25 nM DNA Parab et al., 2010
Nanoplasmonic biosensor Culture/ Urine 101 – 107 CFU/mL 300 CFU/mL Chlamydia trachomatis Soler et al., 2017
Leishmania spp Electrochemical DNA biosensor Genomic sequence of Leishmania major 0.5 – 20 ng/μL 0.07 ng/μL DNA Moradi et al., 2016
Tab.5  
1 S R Ahmed, J Kim, V T Tran, T Suzuki, S Neethirajan, J Lee, E Y Park (2017). In situ self-assembly of gold nanoparticles on hydrophilic and hydrophobic substrates for influenza virus-sensing platform. Scientific Reports, 7(1): 44495
https://doi.org/10.1038/srep44495
2 E Y Ariffin, L L Tan, N H A Karim, L Y Heng (2018). Optical DNA biosensor based on square-planar ethyl piperidine substituted nickel (II) salphen complex for dengue virus detection. Sensors (Basel), 18(4): 1173
https://doi.org/10.3390/s18041173
3 F Bahavarnia, A Mobed, M Hasanzadeh, A Saadati, S Hassanpour, A Mokhtarzadeh (2020). Bio-assay of Acintobacter baumannii using DNA conjugated with gold nano-star: A new platform for microorganism analysis. Enzyme and Microbial Technology, 133: 109466
https://doi.org/10.1016/j.enzmictec.2019.109466
4 C Bai, Z Lu, H Jiang, Z Yang, X Liu, H Ding, H Li, J Dong, A Huang, T Fang, Y Jiang, L Zhu, X Lou, S Li, N Shao (2018). Aptamer selection and application in multivalent binding-based electrical impedance detection of inactivated H1N1 virus. Biosensors & Bioelectronics, 110: 162–167
https://doi.org/10.1016/j.bios.2018.03.047
5 H Bai, R Wang, B Hargis, H Lu, Y Li (2012). A SPR aptasensor for detection of avian influenza virus H5N1. Sensors (Basel), 12(9): 12506–12518
https://doi.org/10.3390/s120912506
6 L Bai, Y Chen, X Liu, J Zhou, J Cao, L Hou, S Guo (2019). Ultrasensitive electrochemical detection of Mycobacterium tuberculosis IS6110 fragment using gold nanoparticles decorated fullerene nanoparticles/nitrogen-doped graphene nanosheet as signal tags. Analytica Chimica Acta, 1080: 75–83
https://doi.org/10.1016/j.aca.2019.06.043
7 J Bhardwaj, N Chaudhary, H Kim, J Jang (2019). Subtyping of influenza A H1N1 virus using a label-free electrochemical biosensor based on the DNA aptamer targeting the stem region of HA protein. Analytica Chimica Acta, 1064: 94–103
https://doi.org/10.1016/j.aca.2019.03.005
8 N Bhardwaj, S K Bhardwaj, J Mehta, K H Kim, A Deep (2017). MOF–bacteriophage biosensor for highly sensitive and specific detection of Staphylococcus aureus. ACS Applied Materials & Interfaces, 9(39): 33589–33598
https://doi.org/10.1021/acsami.7b07818
9 N Bhardwaj, S K Bhardwaj, J Mehta, G C Mohanta, A Deep (2016). Bacteriophage immobilized graphene electrodes for impedimetric sensing of bacteria (Staphylococcus arlettae). Analytical Biochemistry, 505: 18–25
https://doi.org/10.1016/j.ab.2016.04.008
10 D Bhattacharyya, Y R Smith, S K Mohanty, M Misra (2016). Titania nanotube array sensor for electrochemical detection of four predominate Tuberculosis volatile biomarkers. Journal of the Electrochemical Society, 163(6): B206
https://doi.org/10.1149/2.0221606jes
11 D J Brenner, E J Hall (2007). Computed tomography — An increasing source of radiation exposure. New England Journal of Medicine, 357(22): 2277–2284
https://doi.org/10.1056/NEJMra072149
12 R K Briceno, S R Sergent, S M Benites, E C Alocilja (2019). Nanoparticle-based biosensing assay for universally accessible low-cost TB detection with comparable sensitivity as culture. Diagnostics (Basel), 9(4): 222
https://doi.org/10.3390/diagnostics9040222
13 E Cesewski, B N Johnson (2020). Electrochemical biosensors for pathogen detection. Biosensors & Bioelectronics, 159: 112214
https://doi.org/10.1016/j.bios.2020.112214
14 J Chang, S Mao, Y Zhang, S Cui, G Zhou, X Wu, C H Yang, J Chen (2013). Ultrasonic-assisted self-assembly of monolayer graphene oxide for rapid detection of Escherichia coli bacteria. Nanoscale, 5(9): 3620–3626
https://doi.org/10.1039/c3nr00141e
15 P H Chang, C C Weng, B R Li, Y K Li (2020). An antifouling peptide-based biosensor for determination of Streptococcus pneumonia markers in human serum. Biosensors & Bioelectronics, 151: 111969
https://doi.org/10.1016/j.bios.2019.111969
16 Y F Chang, W H Wang, Y W Hong, R Y Yuan, K H Chen, Y W Huang, P L Lu, Y H Chen, Y M A Chen, L C Su, S F Wang (2018). Simple strategy for rapid and sensitive detection of avian influenza A H7N9 virus based on intensity-modulated SPR biosensor and new generated antibody. Analytical Chemistry, 90(3): 1861–1869
https://doi.org/10.1021/acs.analchem.7b03934
17 Q Chen, L Zhang, F Jiang, B Wang, T Lv, Z Zeng, W Wu, S Sun (2017). MnO2 microsphere absorbing Cy5-labeled single strand DNA probe serving as powerful biosensor for effective detection of mycoplasma ovipneumoniae. Sensors and Actuators. B, Chemical, 244: 1138–1144
https://doi.org/10.1016/j.snb.2017.01.104
18 Y Chen, X Liu, S Guo, J Cao, J Zhou, J Zou, L Bai (2019). A sandwich-type electrochemical aptasensor for Mycobacterium tuberculosis MPT64 antigen detection using C60NPs decorated N-CNTs/GO nanocomposite coupled with conductive PEI-functionalized metal-organic framework. Biomaterials, 216: 119253
https://doi.org/10.1016/j.biomaterials.2019.119253
19 F Cui, H S Zhou (2020). Diagnostic methods and potential portable biosensors for coronavirus disease 2019. Biosensors & Bioelectronics, 165: 112349
https://doi.org/10.1016/j.bios.2020.112349
20 X Cui, A Das, A N Dhawane, J Sweeney, X Zhang, V Chivukula, S S Iyer (2017). Highly specific and rapid glycan based amperometric detection of influenza viruses. Chemical Science (Cambridge), 8(5): 3628–3634
https://doi.org/10.1039/C6SC03720H
21 S G Dastider, S Barizuddin, N S Yuksek, M Dweik, M F Almasri (2015). Efficient and rapid detection of Salmonella using microfluidic impedance based sensing. Journal of Sensors, 8: 293461
https://doi.org/10.1155/2015/293461
22 Z Dehghani, J Mohammadnejad, M Hosseini, B Bakhshi, A H Rezayan (2020). Whole cell FRET immunosensor based on graphene oxide and graphene dot for Campylobacter jejuni detection. Food Chemistry, 309: 125690
https://doi.org/10.1016/j.foodchem.2019.125690
23 V R Després, J A Huffman, S M Burrows, C Hoose, A S Safatov, G Buryak, J Fröhlich-Nowoisky, W Elbert, M O Andreae, U Pöschl, R Jaenicke (2012). Primary biological aerosol particles in the atmosphere: A review. Tellus B: Chemical and Physical Meteorology, 64(1): 15598
https://doi.org/10.3402/tellusb.v64i0.15598
24 K A Donaldson, M F Kramer, D V Lim (2004). A rapid detection method for Vaccinia virus, the surrogate for smallpox virus. Biosensors & Bioelectronics, 20(2): 322–327
https://doi.org/10.1016/j.bios.2004.01.029
25 S Dong, R Zhao, J Zhu, X Lu, Y Li, S Qiu, L Jia, X Jiao, S Song, C Fan, R Hao, H Song (2015). Electrochemical DNA biosensor based on a tetrahedral nanostructure probe for the detection of avian influenza A (H7N9) virus. ACS Applied Materials & Interfaces, 7(16): 8834–8842
https://doi.org/10.1021/acsami.5b01438
26 N Doremalen, T Bushmaker, D H Morris, M G Holbrook, A Gamble, B N Williamson, A Tamin, J L Harcourt, N J Thornburg, S I Gerber, J O Lloyd-Smith, E Wit, V J Munster (2020). Aerosol and surface stability of SARS-CoV-2 as compared with SARS-CoV-1. The New England Journal of Medicine, 382(16): 1564–1567
https://doi.org/10.1056/NEJMc2004973
27 R Eddabra, Ait H Benhassou (2018). Rapid molecular assays for detection of tuberculosis. Pneumonia, 10(1): 4
https://doi.org/10.1186/s41479-018-0049-2
28 C A Freije, C Myhrvold, C K Boehm, A E Lin, N L Welch, A Carter, H C Metsky, C Y Luo, O O Abudayyeh, J S Gootenberg, N L Yozwiak, F Zhang, P C Sabeti (2019). Programmable inhibition and detection of RNA viruses using Cas13. Molecular Cell, 76(5): 826–837.e11
https://doi.org/10.1016/j.molcel.2019.09.013
29 C F Fronczek, J Y Yoon (2015). Biosensors for monitoring airborne pathogens. Journal of Laboratory Automation, 20(4): 390–410
https://doi.org/10.1177/2211068215580935
30 A Gao, S Chen, Y Wang, T Li (2018). Silicon nanowire field-effect-transistor-based biosensor for biomedical applications. Sensors and Materials, 30(8): 1619–1628
https://doi.org/10.18494/SAM.2018.1829
31 S C B Gopinath, V Perumal, R Kumaresan, T Lakshmipriya, H Rajintraprasad, B S Rao, M K Md Arshad, Y Chen, N Kotani, U Hashim (2016). Nanogapped impedimetric immunosensor for the detection of 16 kDa heat shock protein against Mycobacterium tuberculosis. Mikrochimica Acta, 183(10): 2697–2703
https://doi.org/10.1007/s00604-016-1911-7
32 I Grabowska, K Malecka, A Stachyra, A Gora-Sochacka, A Sirko, W Zagorski-Ostoja, H Radecka, J Radecki (2013). Single electrode genosensor for simultaneous determination of sequences encoding hemagglutinin and neuraminidase of avian influenza virus type H5N1. Analytical Chemistry, 85(21): 10167–10173
https://doi.org/10.1021/ac401547h
33 A Güner, E Cevik, M Senel, L Alpsoy (2017). An electrochemical immunosensor for sensitive detection of Escherichia coli O157:H7 by using chitosan, MWCNT, polypyrrole with gold nanoparticles hybrid sensing platform. Food Chemistry, 229: 358–365
https://doi.org/10.1016/j.foodchem.2017.02.083
34 X Guo, A Kulkarni, A Doepke, H B Halsall, S Iyer, W R Heineman (2012). Carbohydrate-based label-free detection of Escherichia coli ORN 178 using electrochemical impedance spectroscopy. Analytical Chemistry, 84(1): 241–246
https://doi.org/10.1021/ac202419u
35 S Gupta, V Kakkar (2018). Recent technological advancements in tuberculosis diagnostics: A review. Biosensors & Bioelectronics, 115: 14–29
https://doi.org/10.1016/j.bios.2018.05.017
36 S Hassanpour, A Saadati, M Hasanzadeh (2020). pDNA conjugated with citrate capped silver nanoparticles towards ultrasensitive bio-assay of Haemophilus influenza in human biofluids: A novel optical biosensor. Journal of Pharmaceutical and Biomedical Analysis, 180: 113050
https://doi.org/10.1016/j.jpba.2019.113050
37 S Hideshima, H Hinou, D Ebihara, R Sato, S Kuroiwa, T Nakanishi, S I Nishimura, T Osaka (2013). Attomolar detection of influenza A virus hemagglutinin human H1 and avian H5 using glycan-blotted field effect transistor biosensor. Analytical Chemistry, 85(12): 5641–5644
https://doi.org/10.1021/ac401085c
38 S Hoehl, H Rabenau, A Berger, M Kortenbusch, J Cinatl, D Bojkova, P Behrens, B Böddinghaus, U Götsch, F Naujoks, P Neumann, J Schork, P Tiarks-Jungk, , A Walczok, M Eickmann, M J G T Vehreschild, G Kann, T Wolf, R Gottschalk, S Ciesek (2020). Evidence of SARS-CoV-2 infection in returning travelers from Wuhan, China. The New England Journal of Medicine, 382(13): 1278–1280
https://doi.org/10.1056/NEJMc2001899
39 G Hong, Y Liu, W Chen, S Weng, Q Liu, A Liu, D Zheng, X Lin (2012). A sandwich-type DNA electrochemical biosensor for hairpin-stem-loop structure based on multistep temperature-controlling method. International Journal of Nanomedicine, 7: 4953–4960
https://doi.org/10.2147/IJN.S35177
40 S Hu, L Niu, F Zhao, L Yan, J Nong, C Wang, N Gao, X Zhu, L Wu, T Bo, H Wang, J Gu (2019). Identification of Acinetobacter baumannii and its carbapenem-resistant gene blaOXA-23-like by multiple cross displacement amplification combined with lateral flow biosensor. Scientific Reports, 9(1): 17888
https://doi.org/10.1038/s41598-019-54465-8
41 Y Hu, X Xu, Q Liu, L Wang, Z Lin, G Chen (2014). Ultrasensitive electrochemical biosensor for detection of DNA from Bacillus subtilis by coupling target-induced strand displacement and nicking endonuclease signal amplification. Analytical Chemistry, 86(17): 8785–8790
https://doi.org/10.1021/ac502008k
42 J Huang, Z Xie, Z Xie, S Luo, L Xie, L Huang, Q Fan, Y Zhang, S Wang, T Zeng (2016). Silver nanoparticles coated graphene electrochemical sensor for the ultrasensitive analysis of avian influenza virus H7. Analytica Chimica Acta, 913: 121–127
https://doi.org/10.1016/j.aca.2016.01.050
43 S A Hudu, A S Alshrari, A Syahida, Z Sekawi (2016). Cell culture, technology: enhancing the culture of diagnosing human diseases. Journal of Clinical and Diagnostic Research: JCDR, 10(3): DE1–DE5
https://doi.org/10.7860/JCDR/2016/15837.7460
44 F N Ishikawa, H K Chang, M Curreli, H I Liao, C A Olson, P C Chen, R Zhang, R W Roberts, R Sun, R J Cote, M E Thompson, C Zhou (2009). Label-free, electrical detection of the SARS virus N-protein with nanowire biosensors utilizing antibody mimics as capture probes. ACS Nano, 3(5): 1219–1224
https://doi.org/10.1021/nn900086c
45 M A Islam, W M Hassen, A F Tayabali, J J Dubowski (2020). Antimicrobial warnericin RK peptide functionalized GaAs/AlGaAs biosensor for highly sensitive and selective detection of Legionella pneumophila. Biochemical Engineering Journal, 154: 107435
https://doi.org/10.1016/j.bej.2019.107435
46 J Ji, Y Pang, D Li, X Wang, Y Xu, X Mu (2020). Single-layered graphene/Au-nanoparticles-based love wave biosensor for highly sensitive and specific detection of Staphylococcus aureus gene sequences. ACS Applied Materials & Interfaces, 12(11): 12417–12425
https://doi.org/10.1021/acsami.9b20639
47 G Jiang, C Wang, L Song, X Wang, Y Zhou, C Fei, H Liu (2021). Aerosol transmission, an indispensable route of COVID-19 spread: Case study of a department-store cluster. Frontiers of Environmental Science & Engineering, 15(3): 46
https://doi.org/10.1007/s11783-021-1386-6
48 J H Jung, D S Cheon, F Liu, K B Lee, T S Seo (2010). A graphene oxide based immuno-biosensor for pathogen detection. Angewandte Chemie International Edition, 49(33): 5708–5711
https://doi.org/10.1002/anie.201001428
49 S Karash, R Wang, L Kelso, H Lu, Huang T J Y , Li (2016). Rapid detection of avian influenza virus H5N1 in chicken tracheal samples using an impedance aptasensor with gold nanoparticles for signal amplification. Journal of Virological Methods, 236: 147–156
https://doi.org/10.1016/j.jviromet.2016.07.018
50 N I Khan, M Mousazadehkasin, S Ghosh, J G Tsavalas, E Song (2020). An integrated microfluidic platform for selective and real-time detection of thrombin biomarkers using a graphene FET. Analyst (London), 145(13): 4494–4503
https://doi.org/10.1039/D0AN00251H
51 G Kim, J H Moon, C Y Moh, J G Lim (2015). A microfluidic nano-biosensor for the detection of pathogenic Salmonella. Biosensors & Bioelectronics, 67: 243–247
https://doi.org/10.1016/j.bios.2014.08.023
52 B Koo, C E Jin, S Y Park, T Y Lee, J Nam, Y R Jang, Kim S M, J Y Kim, S H Kim, Y Shin (2018). A rapid bio-optical sensor for diagnosing Q fever in clinical specimens. Journal of Biophotonics, 11(4): e201700167
https://doi.org/10.1002/jbio.201700167
53 N Kumar, S Bhatia, A K Pateriya, R Sood, S Nagarajan, H V Murugkar, S Kumar, P Singh, V P Singh (2020). Label-free peptide nucleic acid biosensor for visual detection of multiple strains of influenza A virus suitable for field applications. Analytica Chimica Acta, 1093: 123–130
https://doi.org/10.1016/j.aca.2019.09.060
54 J Kwon, Y Lee, T Lee, J H Ahn (2020). Aptamer-based field-effect transistor for detection of avian influenza virus in chicken serum. Analytical Chemistry, 92(7): 5524–5531
https://doi.org/10.1021/acs.analchem.0c00348
55 M Labib, A S Zamay, D Muharemagic, A V Chechik, J C Bell, M V Berezovski (2012). Aptamer-based viability impedimetric sensor for viruses. Analytical Chemistry, 84(4): 1813–1816
https://doi.org/10.1021/ac203412m
56 J Lee, M Morita, K Takemura, E Y Park (2018). A multi-functional gold/iron-oxide nanoparticle-CNT hybrid nanomaterial as virus DNA sensing platform. Biosensors & Bioelectronics, 102: 425–431
https://doi.org/10.1016/j.bios.2017.11.052
57 J Li, J Wu, Z He, H Pei, Q Xia, Q Wu, H Ju (2019). Fast detection of mycoplasma pneumoniae by interaction of tetramolecular G-quadruplex with graphene oxide. Sensors and Actuators. B, Chemical, 290: 41–46
https://doi.org/10.1016/j.snb.2019.03.103
58 Y Li, G Xie, J Qiu, D Zhou, D Gou, Y Tao, Y Li, H Chen (2018). A new biosensor based on the recognition of phages and the signal amplification of organic-inorganic hybrid nanoflowers for discriminating and quantitating live pathogenic bacteria in urine. Sensors and Actuators. B, Chemical, 258: 803–812
https://doi.org/10.1016/j.snb.2017.11.155
59 F Liu, Y H Kim, D S Cheon, T S Seo (2013). Micropatterned reduced graphene oxide based field-effect transistor for real-time virus detection. Sensors and Actuators. B, Chemical, 186: 252–257
https://doi.org/10.1016/j.snb.2013.05.097
60 H Liu, Z Zhang, N Wen, C Wang (2018a). Determination and risk assessment of airborne endotoxin concentrations in a university campus. Journal of Aerosol Science, 115: 146–157
https://doi.org/10.1016/j.jaerosci.2017.09.002
61 L Liu, D Shan, X Zhou, H Shi, B Song, F Falke, A Leinse, R Heideman (2018b). TriPleX™ waveguide-based fluorescence biosensor for multichannel environmental contaminants detection. Biosensors & Bioelectronics, 106: 117–121
https://doi.org/10.1016/j.bios.2018.01.066
62 L Liu, G Xiang, D Jiang, C Du, C Liu, W Huang, X Pu (2016). Electrochemical gene sensor for Mycoplasma pneumoniae DNA using dual signal amplification via a Pt@Pd nanowire and horse radish peroxidase. Mikrochimica Acta, 183(1): 379–387
https://doi.org/10.1007/s00604-015-1656-8
63 Q Liu, B K L Lim, S W Lim, W Y Tang, Z H Gu, J Chung, M K Park, T Barkham (2018c). Label-free, real-time and multiplex detection of Mycobacterium tuberculosis based on silicon photonic microring sensors and asymmetric isothermal amplification technique (SPMS-AIA). Sensors and Actuators. B, Chemical, 255: 1595–1603
https://doi.org/10.1016/j.snb.2017.08.181
64 D Lubkowicz, C L Ho, I Y Hwang, W S Yew, Y S Lee, M W Chang (2018). Reprogramming probiotic Lactobacillus reuteri as a biosensor for Staphylococcus aureus derived AIP-I detection. ACS Synthetic Biology, 7(5): 1229–1237
https://doi.org/10.1021/acssynbio.8b00063
65 J Lum, R Wang, K Lassiter, B Srinivasan, D Abi-Ghanem, L Berghman, B Hargis, S Tung, H Lu, Y Li (2012). Rapid detection of avian influenza H5N1 virus using impedance measurement of immuno-reaction coupled with RBC amplification. Biosensors & Bioelectronics, 38(1): 67–73
https://doi.org/10.1016/j.bios.2012.04.047
66 B Maeng, Y Park, J Park (2016). Direct label-free detection of Rotavirus using a hydrogel based nanoporous photonic crystal. RSC Advances, 6(9): 7384–7390
https://doi.org/10.1039/C5RA21665F
67 F Malvano, R Pilloton, D Albanese (2020). A novel impedimetric biosensor based on the antimicrobial activity of the peptide nisin for the detection of Salmonella spp. Food Chemistry, 325: 126868
https://doi.org/10.1016/j.foodchem.2020.126868
68 N A Masdor, Z Altintas, I E Tothill (2016). Sensitive detection of Campylobacter jejuni using nanoparticles enhanced QCM sensor. Biosensors & Bioelectronics, 78: 328–336
https://doi.org/10.1016/j.bios.2015.11.033
69 S Mavrikou, G Moschopoulou, V Tsekouras, S Kintzios (2020). Development of a portable, ultra-rapid and ultra-sensitive cell-based biosensor for the direct detection of the SARS-CoV-2 S1 spike protein antigen. Sensors, 20(11): 3121
https://doi.org/10.3390/s20113121
70 N F Mazlan, L L Tan, N H A Karim, L Y Heng, N D Jamaluddin, N Y M Yusof, D H X Quay, B Khalid (2019). Acrylic-based genosensor utilizing metal salphen labeling approach for reflectometric dengue virus detection. Talanta, 198: 358–370
https://doi.org/10.1016/j.talanta.2019.02.036
71 D Mekonnen, H M Mengist, A Derbie, E Nibret, A Munshea, H L He, B F Li, T C Jin (2020). Diagnostic accuracy of serological tests and kinetics of severe acute respiratory syndrome coronavirus 2 antibody: A systematic review and meta-analysis. Reviews in Medical Virology, 2020: e2181 (Published online)
https://doi.org/10.1002/rmv.2181
72 M H F Meyer, M Stehr, S Bhuju, H J Krause, M Hartmann, P Miethe, M Singh, M Keusgen (2007). Magnetic biosensor for the detection of Yersinia pestis. Journal of Microbiological Methods, 68(2): 218–224
https://doi.org/10.1016/j.mimet.2006.08.004
73 A Mobed, M Hasanzadeh, S Hassanpour, A Saadati, M Agazadeh, A Mokhtarzadeh (2019a). An innovative nucleic acid based biosensor toward detection of Legionella pneumophila using DNA immobilization and hybridization: A novel genosensor. Microchemical Journal, 148: 708–716
https://doi.org/10.1016/j.microc.2019.05.027
74 A Mobed, F Nami, M Hasanzadeh, S Hassanpour, A Saadati, A Mokhtarzadeh (2019b). novel nucleic acid based bio-assay toward recognition of Haemophilus influenza using bioconjugation and DNA hybridization method. International Journal of Biological Macromolecules, 139: 1239–1251
https://doi.org/10.1016/j.ijbiomac.2019.08.036
75 M Moradi, N Sattarahmady, A Rahi, G R Hatam, S M R Sorkhabadi, H Heli (2016). A label-free, PCR-free and signal-on electrochemical DNA biosensor for Leishmania major based on gold nanoleaves. Talanta, 161: 48–53
https://doi.org/10.1016/j.talanta.2016.08.030
76 M C Moreno-Bondi, C R Taitt, L C Shriver-Lake, F S Ligler (2006). Multiplexed measurement of serum antibodies using an array biosensor. Biosensors & Bioelectronics, 21(10): 1880–1886
https://doi.org/10.1016/j.bios.2005.12.018
77 Z Muhammad-Tahir, E C Alocilja (2003). Fabrication of a disposable biosensor for Escherichia coli O157:H7 detection. IEEE Sensors Journal, 3(4): 345–351
https://doi.org/10.1109/JSEN.2003.815782
78 B Nasseri, N Soleimani, N Rabiee, A Kalbasi, M Karimi, M R Hamblin (2018). Point-of-care microfluidic devices for pathogen detection. Biosensors & Bioelectronics, 117: 112–128
https://doi.org/10.1016/j.bios.2018.05.050
79 V T Nguyen, H B Seo, B C Kim, S K Kim, C S Song, M B Gu (2016). Highly sensitive sandwich-type SPR based detection of whole H5Nx viruses using a pair of aptamers. Biosensors & Bioelectronics, 86: 293–300
https://doi.org/doi:10.1016/j.bios.2016.06.064
80 D Nidzworski, P Pranszke, M Grudniewska, E Król, B Gromadzka (2014). Universal biosensor for detection of influenza virus. Biosensors & Bioelectronics, 59: 239–242
https://doi.org/10.1016/j.bios.2014.03.050
81 N Nugaeva, K Y Gfeller, N Backmann, M Duggelin, H P Lang, H J Guntherodt, M Hegner (2007). An antibody-sensitized microfabricated cantilever for the growth detection of Aspergillus niger spores. Microscopy and Microanalysis, 13(1): 13–17
https://doi.org/10.1017/S1431927607070067
82 S Pal, E C Alocilja, F P Downes (2007). Nanowire labeled direct-charge transfer biosensor for detecting Bacillus species. Biosensors & Bioelectronics, 22(9–10): 2329–2336
https://doi.org/10.1016/j.bios.2007.01.013
83 M Paolucci, M P Landini, V Sambri (2010). Conventional and molecular techniques for the early diagnosis of bacteraemia. International Journal of Antimicrobial Agents, 36: S6–S16
https://doi.org/10.1016/j.ijantimicag.2010.11.010
84 H J Parab, C Jung, J H Lee, H G Park (2010). A gold nanorod-based optical DNA biosensor for the diagnosis of pathogens. Biosensors & Bioelectronics, 26(2): 667–673
https://doi.org/10.1016/j.bios.2010.06.067
85 T J Park, M S Hyun, H J Lee, S Y Lee, S Ko (2009). A self-assembled fusion protein-based surface plasmon resonance biosensor for rapid diagnosis of severe acute respiratory syndrome. Talanta, 79(2): 295–301
https://doi.org/10.1016/j.talanta.2009.03.051
86 E C Peláez, M C Estevez, A Mongui, M C Menéndez, C Toro, O L Herrera-Sandoval, J Robledo, M J García, P D Portillo, L M Lechuga (2020). Detection and quantification of HspX antigen in sputum samples using plasmonic biosensing: toward a real point-of-care (POC) for tuberculosis diagnosis. ACS Infectious Diseases, 6(5): 1110–1120
https://doi.org/10.1021/acsinfecdis.9b00502
87 P Phunpae, S Chanwong, C Tayapiwatana, N Apiratmateekul, A Makeudom, W Kasinrerk (2014). Rapid Diagnosis of tuberculosis by identification of Antigen 85 in mycobacterial culture system. Diagnostic Microbiology and Infectious Disease, 78(3): 242–248
https://doi.org/10.1016/j.diagmicrobio.2013.11.028
88 M F Pineda, L L Y Chan, T Kuhlenschmidt, C J Choi, M Kuhlenschmidt, B T Cunningham (2009). Rapid specific and label-free detection of porcine Rotavirus using photonic crystal biosensors. IEEE Sensors Journal, 9(4): 470–477
https://doi.org/10.1109/JSEN.2009.2014427
89 G Qiu, Z Gai, Y Tao, J Schmitt, G A Kullak-Ublick, J Wang (2020). Dual-functional plasmonic photothermal biosensors for highly accurate severe acute respiratory syndrome coronavirus 2 detection. ACS Nano, 14(5): 5268–5277
https://doi.org/10.1021/acsnano.0c02439
90 V Rai, Y T Nyine, H C Hapuarachchi, H M Yap, L C Ng, C S Toh (2012). Electrochemically amplified molecular beacon biosensor for ultrasensitive DNA sequence-specific detection of Legionella sp. Biosensors & Bioelectronics, 32(1): 133–140
https://doi.org/10.1016/j.bios.2011.11.046
91 K Razzini, M Castrica, L Menchetti, L Maggi, L Negroni, N V Orfeo, A Pizzoccheri, M Stocco, S Muttini, C M Balzaretti (2020). SARS-CoV-2 RNA detection in the air and on surfaces in the COVID-19 ward of a hospital in Milan, Italy. Science of the Total Environment, 742: 140540
https://doi.org/10.1016/j.scitotenv.2020.140540
92 N Rufino de Sousa, N Sandstrrom, L Shen, K Håkansson, R Vezozzo, K I Udekwu, J Croda, A G Rothfuchs (2020). A fieldable electrostatic air sampler enabling tuberculosis detection in bioaerosols. Tuberculosis (Edinburgh, Scotland), 120: 101896
https://doi.org/10.1016/j.tube.2019.101896
93 R Schlaberg, C Y Chiu, S Miller, G W Procop, G Weinstock (2017). Validation of metagenomic next-generation sequencing tests for universal pathogen detection. Archives of Pathology & Laboratory Medicine, 141(6): 776–786
https://doi.org/10.5858/arpa.2016-0539-RA
94 S Sedighi-Khavidak, M Mazloum-Ardakani, M R Khorasgani, G Emtiazi, L Hosseinzadeh (2017). Detection of aflD gene in contaminated pistachio with Aspergillus flavus by DNA based electrochemical biosensor. International Journal of Food Properties, 20(Sup1): S119–S130
https://doi.org/10.1080/10942912.2017.1291675
95 A Seibel, W Heinz, C A Greim, S Weber (2020). Lung ultrasound in COVID-19. Anaesthesist (Published online),
https://doi.org/10.1007/s00101-020-00883-7
96 G Seo, G Lee, M J Kim, S H Baek, M Choi, K B Ku, C S Lee, S M Jun, D Park, S J Kim, J O Lee, B T Kim, E C Park, S Kim (2020). Rapid detection of COVID-19 causative virus (SARS-CoV-2) in human nasopharyngeal swab specimens using field-effect transistor-based Biosensor. ACS Nano, 14(4): 5135–5142
https://doi.org/10.1021/acsnano.0c02823
97 L Setti, F Passarini, G de Gennaro, P Barbieri, M G Perrone, M Borelli, J Palmisani, A Di Gilio, V Torboli, F Fontana, L Clemente, A Pallavicini, M Ruscio, P Piscitelli, A Miani (2020). SARS-Cov-2RNA found on particulate matter of Bergamo in Northern Italy: First evidence. Environmental Research, 188: 109754
https://doi.org/10.1016/j.envres.2020.109754
98 E Sheikhzadeh, M Chamsaz, A P F Turner, E W H Jager, V Beni (2016). Label-free impedimetric biosensor for Salmonella typhimurium detection based on poly [pyrrole-co-3-carboxyl-pyrrole] copolymer supported aptamer. Biosensors & Bioelectronics, 80: 194–200
https://doi.org/10.1016/j.bios.2016.01.057
99 F Shen, M Tan, Z Wang, M Yao, Z Xu, Y Wu, J Wang, X Guo, T Zhu (2011). Integrating silicon nanowire field effect transistor, microfluidics and air sampling techniques for real-time monitoring biological aerosols. Environmental Science & Technology, 45(17): 7473–7480
https://doi.org/10.1021/es1043547
100 F Shen, J Wang, Z Xu, Y Wu, Q Chen, X Li, X Jie, L Li, M Yao, X Guo, T Zhu (2012). Rapid flu diagnosis using silicon nanowire sensor. Nano Letters, 12(7): 3722–3730
https://doi.org/10.1021/nl301516z
101 Z Shen, J Wang, Z Qiu, M Jin, X Wang, Z Chen, J Li, F Cao (2009). Detection of Escherichia coli O157:H7 with piezoelectric immunosensor based on enhancement with immuno-nanoparticles. Acta Microbiologica Sinica, 49(6): 820–825
102 A G Silva Junior , M D L Oliveira, I S Oliveira, R G Lima-Neto, S R Sá, O L Franco, C A S Andrade (2018). A simple nanostructured impedimetric biosensor based on clavanin a peptide for bacterial detection. Sensors and Actuators. B, Chemical, 255: 3267–3274
https://doi.org/10.1016/j.snb.2017.09.153
103 M Soler, A Belushkin, A Cavallini, C Kebbi-Beghdadi, G Greub, H Altug (2017). Multiplexed nanoplasmonic biosensor for one-step simultaneous detection of Chlamydia trachomatis and Neisseria gonorrhoeae in urine. Biosensors & Bioelectronics, 94: 560–567
https://doi.org/10.1016/j.bios.2017.03.047
104 L Song, C Wang, Y Wang (2020). Optimized determination of airborne tetracycline resistance genes in laboratory atmosphere. Frontiers of Environmental Science & Engineering, 14(6): 95
https://doi.org/10.1007/s11783-020-1274-5
105 L C Su, C M Chang, Y L Tseng, Y F Chang, Y C Li, Y S Chang, C Chou (2012). Rapid and highly sensitive method for influenza A (H1N1) virus detection. Analytical Chemistry, 84(9): 3914–3920
https://doi.org/10.1021/ac3002947
106 J Tian, D Wang, Y Zheng, T Jing (2017). A high sensitive electrochemical avian influenza virus H7 biosensor based on CNTs/MoSx aerogel. International Journal of Electrochemical Science, 12(4): 2658–2668
https://doi.org/10.20964/2017.04.30
107 G Vásquez, A Rey, C Rivera, C Iregui, J Orozco (2017). Amperometric biosensor based on a single antibody of dual function for rapid detection of Streptococcus agalactiae. Biosensors & Bioelectronics, 87: 453–458
https://doi.org/10.1016/j.bios.2016.08.082
108 L Wang, X Huo, L Zheng, G Cai, Y Wang, N Liu, M Wang, J Lin (2020a). An ultrasensitive biosensor for colorimetric detection of Salmonella in large-volume sample using magnetic grid separation and platinum loaded zeolitic imidazolate Framework-8 nanocatalysts. Biosensors & Bioelectronics, 150: 111862
https://doi.org/10.1016/j.bios.2019.111862
109 L Wang, X T Huo, W Qi, Z Xia, Y Li, J Lin (2020b). Rapid and sensitive detection of Salmonella Typhimurium using nickel nanowire bridge for electrochemical impedance amplification. Talanta, 211: 120715
https://doi.org/10.1016/j.talanta.2020.120715
110 Y Wang, C Wang, L Song (2019a). Distribution of antibiotic resistance genes and bacteria from six atmospheric environments: Exposure risk to human. Science of the Total Environment, 694: 133750
https://doi.org/10.1016/j.scitotenv.2019.133750
111 Y Wang, Y Wang, W Jiao, J Li, S Quan, L Sun, Y Wang, X Qi, X Wang, A Shen (2019b). Development of loop-mediated isothermal amplification coupled with nanoparticle-based lateral flow biosensor assay for Mycoplasma pneumoniae detection. AMB Express, 9(1): 196
https://doi.org/10.1186/s13568-019-0921-3
112 Y Wang, Y Wang, S Quan, W Jiao, J Li, L Sun, Y Wang, X Qi, X Wang, A Shen (2019c). Establishment and application of a multiple cross displacement amplification coupled with nanoparticle-based lateral flow biosensor assay for detection of Mycoplasma pneumoniae. Frontiers in Cellular and Infection Microbiology, 9: 325
https://doi.org/10.3389/fcimb.2019.00325
113 D Wasik, A Mulchandani, M V Yates (2017). A heparin-functionalized carbon nanotube-based affinity biosensor for dengue virus. Biosensors & Bioelectronics, 91: 811–816
https://doi.org/10.1016/j.bios.2017.01.017
114 H Wei, Z Guo, Z Zhu, Y Tan, Z Du, R Yang (2007). Sensitive detection of antibody against antigen F1 of Yersinia pestis by an antigen sandwich method using a portable fiber optic biosensor. Sensors and Actuators. B, Chemical, 127(2): 525–530
https://doi.org/10.1016/j.snb.2007.05.012
115 X Wei, L Zheng, F Luo, Z Lin, L Guo, B Qiu, G Chen (2013). Fluorescence biosensor for the H5N1 antibody based on a metal-organic framework platform. Journal of Materials Chemistry. B, Materials for Biology and Medicine, 1(13): 1812–1817
https://doi.org/10.1039/c3tb00501a
116 J Weile, C Knabbe (2009). Current applications and future trends of molecular diagnostics in clinical bacteriology. Analytical and Bioanalytical Chemistry, 394(3): 731–742
https://doi.org/10.1007/s00216-009-2779-8
117 N Wen, H Liu, Y Fu, C Wang (2017). Optimization and influence mechanism of sampling and analysis of airborne endotoxin based on limulus amebocyte lysate assay. Aerosol and Air Quality Research, 17(4): 1000–1010
https://doi.org/10.4209/aaqr.2016.05.0184
118 K Wu, C Ma, H Zhao, M Chen, Z Deng (2019). Sensitive aptamer-based fluorescene assay for ochratoxin A based on RNase H signal amplification. Food Chemistry, 277: 273–278
https://doi.org/10.1016/j.foodchem.2018.10.130
119 Z Wu, C Zhou, J Chen, C Xiong, Z Chen, D Pang, Z Zhang (2015). Bifunctional magnetic nanobeads for sensitive detection of avian influenza A (H7N9) virus based on immunomagnetic separation and enzyme-induced metallization. Biosensors & Bioelectronics, 68: 586–592
https://doi.org/10.1016/j.bios.2015.01.051
120 T Xiao, J Huang, D Wang, T Meng, X Yang (2020). Au and Au-based nanomaterials: synthesis and recent progress in electrochemical sensor applications. Talanta, 206: 120210
https://doi.org/10.1016/j.talanta.2019.120210
121 X Xie, F Tan, A Xu, K Deng, Y Zeng, H Huang (2019a). UV-induced peroxidase-like activity of gold nanoclusters for differentiating pathogenic bacteria and detection of enterotoxin with colorimetric readout. Sensors and Actuators. B, Chemical, 279: 289–297
https://doi.org/10.1016/j.snb.2018.10.019
122 X Xie, Z Zhang, X Ge, X Zhao, L Hao, Z Cheng, W Zhou, Y Du, L Wang, F Tian, X Xu (2019b). Particle self-aligning, focusing, and electric impedance microcytometer device for label-free single cell morphology discrimination and Yeast budding analysis. ACS analytical chemistry, 91: 13398–13406
https://doi.org/10.1021/acs.analchem.9b01509
123 Y Xing, Q Zhu, X Zhou, P Qi (2020). A dual-functional smartphone-based sensor for colorimetric and chemiluminescent detection: A case study for fluoride concentration mapping. Sensors and Actuators. B, Chemical, 319: 128254
https://doi.org/10.1016/j.snb.2020.128254
124 S Xu, H Sharma, R Mutharasan (2010). Sensitive and selective detection of Mycoplasma in cell culture samples using cantilever sensors. Biotechnology and Bioengineering, 105(6): 1069–1077
https://doi.org/10.1002/bit.22637
125 Y Xu, X Xie, Y Duan, L Wang, Z Cheng, J Cheng (2016). A review of impedance measurements of whole cells. Biosensors & Bioelectronics, 77: 824–836
https://doi.org/10.1016/j.bios.2015.10.027
126 S K Yadav, B Agrawal, P Chandra, R N Goyal (2014). In vitro chloramphenicol detection in a Haemophilus influenza model using an aptamer-polymer based electrochemical biosensor. Biosensors & Bioelectronics, 55: 337–342
https://doi.org/10.1016/j.bios.2013.12.031
127 Z Yan, L Zhou, Y Zhao, J Wang, L Huang, K Hu, H Liu, H Wang, Z Guo, Y Song, H Huang, R Yang (2006). Rapid quantitative detection of Yersinia pestis by lateral-flow immunoassay and up-converting phosphor technology-based biosensor. Sensors and Actuators. B, Chemical, 119(2): 656–663
https://doi.org/10.1016/j.snb.2006.01.029
128 Y Yang, W Gao (2019). Wearable and flexible electronics for continuous molecular monitoring. Chemical Society Reviews, 48(6): 1465–1491
https://doi.org/10.1039/C7CS00730B
129 W W Ye, M K Tsang, X Liu, M Yang, J Hao (2014). Upconversion luminescence resonance energy transfer (LRET)-based biosensor for rapid and ultrasensitive detection of avian influenza virus H7 subtype. Small, 10(12): 2390–2397
https://doi.org/10.1002/smll.201303766
130 C H Yeh, Y H Chang, T C Chang, H P Lin, Y C Lin (2010). Electro-microchip DNA-biosensor for bacteria detection. Analyst (London), 135(10): 2717–2722
https://doi.org/10.1039/c0an00186d
131 M S Yoo, M Shin, Y Kim, M Jang, Y E Choi, S J Park, J Choi, J Lee, C Park (2017). Development of electrochemical biosensor for detection of pathogenic microorganism in Asian dust events. Chemosphere, 175: 269–274
https://doi.org/10.1016/j.chemosphere.2017.02.060
132 P Yu, J Zhu, Z Zhang, Y Han (2020). A familial cluster of infection associated with the 2019 novel coronavirus indicating possible person-to-person transmission during the incubation period. Journal of Infectious Diseases, 221(11): 1757–1761
https://doi.org/10.1093/infdis/jiaa077
133 X Yu, F Chen, R Wang, Y Li (2018). Whole-bacterium SELEX of DNA aptamers for rapid detection of E.coli O157:H7 using a QCM sensor. Journal of Biotechnology, 266: 39–49
https://doi.org/10.1016/j.jbiotec.2017.12.011
134 Y Yu, Z Chen, W Jian, D Sun, B Zhang, X Li, M Yao (2015). Ultrasensitive electrochemical detection of avian influenza A (H7N9) virus DNA based on isothermal exponential amplification coupled with hybridization chain reaction of DNAzyme nanowires. Biosensors & Bioelectronics, 64: 566–571
https://doi.org/10.1016/j.bios.2014.09.080
135 R Yuan, S Ding, Y Yan, Y Zhang, Y Zhang, W Cheng (2016). A facile and pragmatic electrochemical biosensing strategy for ultrasensitive detection of DNA in real sample based on defective T junction induced transcription amplification. Biosensors & Bioelectronics, 77: 19–25
https://doi.org/10.1016/j.bios.2015.09.009
136 M Zeinoddini, A Azizi, S Bayat, Z Tavasoli (2018). Localized surface plasmon resonance (LSPR) detection of diphtheria toxoid using gold nanoparticle-monoclonal antibody conjugates. Plasmonics, 13(2): 583–590
https://doi.org/10.1007/s11468-017-0548-7
137 G Zhang, L Zhang, M J Huang, Z H H Luo, G K I Tay, E J A Lim, T G Kang, Y Chen (2010). Silicon nanowire biosensor for highly sensitive and rapid detection of Dengue virus. Sensors and Actuators. B, Chemical, 146(1): 138–144
https://doi.org/10.1016/j.snb.2010.02.021
138 J Zhang, J Huang, F He (2019a). The construction of Mycobacterium tuberculosis 16S rDNA MSPQC sensor based on Exonuclease III-assisted cyclic signal amplification. Biosensors & Bioelectronics, 138: 111322
https://doi.org/10.1016/j.bios.2019.111322
139 X Zhang, Y Feng, S Duan, L Su, J Zhang, F He (2019b). Mycobacterium tuberculosis strain H37Rv electrochemical sensor mediated by aptamer and AuNPs–DNA. ACS Sensors, 4(4): 849–855
https://doi.org/10.1021/acssensors.8b01230
140 X Zhang, Y Feng, Q Yao, F He (2017). Selection of a new Mycobacterium tuberculosis H37Rv aptamer and its application in the construction of a SWCNT/aptamer/Au-IDE MSPQC H37Rv sensor. Biosensors & Bioelectronics, 98: 261–266
https://doi.org/10.1016/j.bios.2017.05.043
141 Y Zhang, B S Lai, M Juhas (2019c). Recent advances in aptamer discovery and applications. Molecules (Basel, Switzerland), 24(5): 941
https://doi.org/10.3390/molecules24050941
142 L Zheng, G Cai, S Wang, M Liao, Y Li, J Lin (2019). A microfluidic colorimetric biosensor for rapid detection of Escherichia coli O157:H7 using gold nanoparticle aggregation and smart phone imaging. Biosensors & Bioelectronics, 124–125: 143–149
https://doi.org/10.1016/j.bios.2018.10.006
143 Y Zheng, H Chen, M Yao, X Li (2018). Bacterial pathogens were detected from human exhaled breath using a novel protocol. Journal of Aerosol Science, 117: 224–234
https://doi.org/10.1016/j.jaerosci.2017.12.009
144 R Ziółkowski, M Jarczewska, M Drozd, A A Zasada, E Malinowska (2019). Studies on the development of electrochemical immunosensor for detection of diphtheria toxoid. Journal of the Electrochemical Society, 166(6): B472–B481
https://doi.org/10.1149/2.1091906jes
145 K Zuser, J Ettenauer, K Kellner, T Posnicek, G Mazza, M Brandl (2019). A sensitive voltammetric biosensor for Escherichia coli detection using an electroactive substrate for beta-D-glucuronidase. IEEE Sensors Journal, 19(18): 7789–7802
https://doi.org/10.1109/JSEN.2019.2917883
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed