Integration of microbial reductive dehalogenation with persulfate activation and oxidation (Bio-RD-PAO) for complete attenuation of organohalides
Rifeng Wu, Shanquan Wang()
Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou 510006, China
•Bio-RD-PAO can effectively and extensively remove organohalides.
•Bio-RD alone effectively dehalogenate the highly-halogenated organohalides.
•PAO alone is efficient in degrading the lowly-halogenated organohalides.
•The impacts of PAO on organohalide-respiring microbial communities remain elusive.
•Bio-RD-PAO provides a promising solution for remediation of organohalide pollution.
Due to the toxicity of bioaccumulative organohalides to human beings and ecosystems, a variety of biotic and abiotic remediation methods have been developed to remove organohalides from contaminated environments. Bioremediation employing organohalide-respiring bacteria (OHRB)-mediated microbial reductive dehalogenation (Bio-RD) represents a cost-effective and environmentally friendly approach to attenuate highly-halogenated organohalides, specifically organohalides in soil, sediment and other anoxic environments. Nonetheless, many factors severely restrict the implications of OHRB-based bioremediation, including incomplete dehalogenation, low abundance of OHRB and consequent low dechlorination activity. Recently, the development of in situ chemical oxidation (ISCO) based on sulfate radicals (SO4·−) via the persulfate activation and oxidation (PAO) process has attracted tremendous research interest for the remediation of lowly-halogenated organohalides due to its following advantages, e.g., complete attenuation, high reactivity and no selectivity to organohalides. Therefore, integration of OHRB-mediated Bio-RD and subsequent PAO (Bio-RD-PAO) may provide a promising solution to the remediation of organohalides. In this review, we first provide an overview of current progress in Bio-RD and PAO and compare their limitations and advantages. We then critically discuss the integration of Bio-RD and PAO (Bio-RD-PAO) for complete attenuation of organohalides and its prospects for future remediation applications. Overall, Bio-RD-PAO opens up opportunities for complete attenuation and consequent effective in situ remediation of persistent organohalide pollution.
Wang and He, 2013; Marcet et al., 2018; Zhao and He, 2019
TCE, DCE
Ethene
Dehalogenimonas
prokka_00862, prokka_02004
Yang et al., 2017b
(α, β, γ, δ)-HCH
Benzene
Dehalococcoides
ND
Bashir et al., 2018
Trichloroethane
Ethene
Desulfitobacterium
CtrA
Zhao et al., 2015
Dichloroethane
Ethene
Dehalococcoides
BvcA, VcrA
Tang et al., 2013; Parthasarathy et al., 2015
Dehalogenimonas
ND
Key et al., 2017
Dichloropropane
Propene
Dehalogenimonas
DcpA
Martin-Gonzalez et al., 2015
Trichloromethane
Dichloromethane
Dehalobacter
CfrA, TmrA
Heckel et al., 2019
Hepta-, Octa-, Nona-CB, Aroclor 1260
Penta-, Tetra-, Tri-CB, Di-CB
Dehalococcoides
PcbA1, PcbA4, PcbA5, JNA_RD8, JNA_RD11
Wang and He, 2013; Wang et al., 2015; Chen and He, 2018; Yu et al., 2018; Wang et al., 2019
PeCDD
DiCDD
Dehalococcoides
ND
Bunge et al., 2003
TeCDD
MoCDD
Dehalococcoides
CbrA
Bunge et al., 2003; Pöritz et al., 2015
TrCDD
DD
Dehalococcoides
CbrA
Pöritz et al., 2015
HeCDF
TeCDF
Dehalococcoides
ND
Liu and Fennell, 2008
TeCDF
TrCDF
Dehalococcoides
ND
Fennell et al., 2004
Penta-BDE, Tetra-BDE
Diphenyl ether
Dehalococcoides
PbrA1, PbrA2, PbrA3
Ding et al., 2017
Pentachlorophenol
Monochlorophenol
Desulfitobacterium
CprA3
Bisaillon et al., 2010
Trichlorophenol
Monochlorophenol
Dehalobacter
ND
Li et al., 2013; Wang and He, 2013
Hexachlorobenzene
Monochlorobenzene
Dehalobacter
ND
Nelson et al., 2014
Pentachlorobenzene
Benzene
Dehalobacter
ND
Nelson et al., 2014
TBBPA
Bisphenol A
Dehalococcoides
CbdbA80, CbdbA1092 CbrA, CbdbA1503,
Yang et al., 2015
Bromophenol blue
Phenol red
Dehalogenimonas
ND
Rosell et al., 2019
Tab.1
Fig.2
Compound
Concentration (mmol/L)
PS Concentration (mmol/L)
Degradation efficiency
Final products
Activator
Run time (min)
Reference
TCE
1.0
5
90.68%
ND
nZVI
30
Dong et al., 2019
0.4
5
>99%
short chain acids, CO2
Fe2+
20
Yuan et al., 2014
0.15
2.25
>99%
ND
Fe2+
30
Wu et al., 2015
0.15
4.5
99.4%
ND
biochar supported nZVI
5
Yan et al., 2015
Hexabromocyclododecane
0.04
4
100%
Carboxylic acids, CO2
UV/TiO2
180
Li et al., 2019
Perfluorooctanesulfonate
0.15
4.5
>99%
PFOA
hydrothermal
5
Yang et al., 2013
0.01
4.2
>99%
ND
ultrasound
360
Lei et al., 2020
Perfluorooctanoic acid
0.01
4.2
100%
CO2, HF
ultrasound
360
Lei et al., 2020
0.12
12
61.7%
CO2, F−
iron/activated carbon
600
Lee et al., 2020b
0.15
15
85.6%
short chain acids
UV
480
Qian et al., 2016
6:2 FTS
0.01
4.2
87%
ND
ultrasound
360
Lei et al., 2020
0.0025
50
100%
short chain acids
heat
60
Bruton and Sedlak, 2017
PCB1
0.0019
16.8
100%
CO2, H2O
heat
480
Fang et al., 2013
PCB3
0.0019
16.8
100%
CO2, H2O
heat
480
Fang et al., 2013
PCB7
0.0019
16.8
100%
CO2, H2O
heat
480
Fang et al., 2013
PCB8
0.0019
16.8
100%
CO2, H2O
heat
480
Fang et al., 2013
PCB28
0.0019
5
88%
CO2, H2O
iron
240
Rodriguez et al., 2017
0.0039
2
82%
CO2, H2O
vanadium species
240
Fang et al., 2017b
0.0039
2
100%
ND
vanadium species
1440
Fang et al., 2017a
0.0039
8
100%
ND
biochar
240
Fang et al., 2015
0.0019
16.8
100%
CO2, H2O
heat
480
Fang et al., 2013
0.0025
2
100%
ND
iron
240
Rodriguez et al., 2017
PCB30
0.0019
16.8
78%
CO2, H2O
heat
480
Fang et al., 2013
PCB31 (in soil)
0.006
500
67.2%
ND
iron
3 Days
Tang et al., 2015
PCB44 (in soil)
0.171
ND
97.4%
ND
electricity
7 Days
Yukselen-Aksoy
and Reddy, 2012
PCB153 (in soil)
0.005
500
67.7%
ND
iron
3Days
Tang et al., 2015
BDE47
0.0031
71.4
75%
ND
nZVI
2 Days
Wang et al., 2017
BDE209
0.021
500
53.8%
short chain acids, CO2, H2O, Br−
heat
360
Peng et al., 2016
Monochlorobenzene
0.3
15
>90%
CO2, H2O
Fe2+
180
Jiang et al., 2020
DDTs
0.00138
10
87.9%
CO2,H2O
ZVI
30
Zhu et al., 2016b
Atrazine
0.05
1
100%
DEIA, HAIT, DEIHA
heat
120
Ji et al., 2015
0.025
1
63%
DIA, DEA
heat
35
Lutze et al., 2015
Pentachlorophenol
50
0.115
75%
CO2, H2O
electrochemical
60
Govindan et al., 2014
2,4-Dichlorophenol
0.184
12.5
98%
CO2, H2O
iron-based nanoparticles
180
Li et al., 2015
0.034
0.5
82.7%
CO2, H2O
ZVC/nZVC
120
Zhou et al., 2018
0.1
1
100%
ND
heat/Fe2+
45
Kuśmierek et al., 2016
Tetrabromobisphenol A
0.018
3.6
94.8%
CO2, H2O, Br−
Iron-based MOFs
120
Huang et al., 2020
Triclosan
0.17
9.4
80%
ND
heat
360
Chen et al., 2019
p-chloroaniline
0.5
2.5
98.03%
CO2, H2O
activated carbon
120
Yao et al., 2019
0.2
4
>99%
CO2, H2O
FeS
150
Yuan et al., 2015
Tab.2
1
D A Abramowicz (1995). Aerobic and anaerobic PCB biodegradation in the environment. Environmental Health Perspectives, 103: 97–99
2
L Adrian, V Dudkova, K Demnerova, D L Bedard (2009). “Dehalococcoides” sp. strain CBDB1 extensively dechlorinates the commercial polychlorinated biphenyl mixture aroclor 1260. Applied and Environmental Microbiology, 75(13): 4516–4524 https://doi.org/10.1128/AEM.00102-09
3
L Adrian, F E Löffler (2016). Organohalide-respiring bacteria. Heidelberg: Springer-Verlag
M Ahmad, A L Teel, R J Watts (2013). Mechanism of persulfate activation by phenols. Environmental Science & Technology, 47(11): 5864–5871 https://doi.org/10.1021/es400728c
6
A A A Aioub, Y Li, X Qie, X Zhang, Z Hu (2019). Reduction of soil contamination by cypermethrin residues using phytoremediation with Plantago major and some surfactants. Environmental Sciences Europe, 31(1): 26 https://doi.org/10.1186/s12302-019-0210-4
7
G P Anipsitakis, D D Dionysiou (2004). Radical generation by the interaction of transition metals with common oxidants. Environmental Science & Technology, 38(13): 3705–3712 https://doi.org/10.1021/es035121o
8
K Antoniou, D Mamais, D Pantazidou (2019). Reductive dechlorination of trichloroethene under different sulfate-reducing and electron donor conditions. Journal of Contaminant Hydrology, 226: 103519 https://doi.org/10.1016/j.jconhyd.2019.103519
9
S Asaoka, A Umehara, Y Haga, C Matsumura, R Yoshiki, K Takeda (2019). Persistent organic pollutants are still present in surface marine sediments from the Seto Inland Sea, Japan. Marine Pollution Bulletin, 149: 110543 https://doi.org/10.1016/j.marpolbul.2019.110543
10
S Atashgahi, M G Liebensteiner, D B Janssen, H Smidt, A J M Stams, D Sipkema (2018). Microbial synthesis and transformation of inorganic and organic chlorine compounds. Frontiers in Microbiology, 9: 1–22 https://doi.org/10.3389/fmicb.2018.03079
11
F Aulenta, A Pera, S Rossetti, M Petrangeli Papini, M Majone (2007). Relevance of side reactions in anaerobic reductive dechlorination microcosms amended with different electron donors. Water Research, 41(1): 27–38 https://doi.org/10.1016/j.watres.2006.09.019
12
R Bajagain, P Gautam, S W Jeong (2020). Degradation of petroleum hydrocarbons in unsaturated soil and effects on subsequent biodegradation by potassium permanganate. Environmental Geochemistry and Health, 42(6): 1705–1714 https://doi.org/10.1007/s10653-019-00346-y
13
R Bajagain, S Lee, S W Jeong (2018). Application of persulfate-oxidation foam spraying as a bioremediation pretreatment for diesel oil-contaminated soil. Chemosphere, 207: 565–572 https://doi.org/10.1016/j.chemosphere.2018.05.081
14
S Bashir, K Kuntze, C Vogt, I Nijenhuis (2018). Anaerobic biotransformation of hexachlorocyclohexane isomers by Dehalococcoides species and an enrichment culture. Biodegradation, 29(4): 409–418 https://doi.org/10.1007/s10532-018-9838-9
15
D L Bedard (2008). A case study for microbial biodegradation: anaerobic bacterial reductive dechlorination of polychlorinated biphenyls-from sediment to defined medium. Annual Review of Microbiology, 62(1): 253–270 https://doi.org/10.1146/annurev.micro.62.081307.162733
16
E J Behrman (2006). The Elbs and Boyland-Sims peroxydisulfate oxidations. Beilstein Journal of Organic Chemistry, 2: 22 https://doi.org/10.1186/1860-5397-2-22
17
D R V Berggren, I P G Marshall, M F Azizian, A M Spormann, L Semprini (2013). Effects of sulfate reduction on the bacterial community and kinetic parameters of a dechlorinating culture under chemostat growth conditions. Environmental Science & Technology, 47(4): 1879–1886 https://doi.org/10.1021/es304244z
18
A Bisaillon, R Beaudet, F Lepine, E Deziel, R Villemur (2010). Identification and characterization of a novel CprA reductive dehalogenase specific to highly chlorinated phenols from Desulfitobacterium hafniense strain PCP-1. Applied and Environmental Microbiology, 76(22): 7536–7540 https://doi.org/10.1128/AEM.01362-10
19
A D Bokare, W Choi (2014). Review of iron-free Fenton-like systems for activating H2O2 in advanced oxidation processes. Journal of Hazardous Materials, 275: 121–135 https://doi.org/10.1016/j.jhazmat.2014.04.054
20
M Bommer, C Kunze, J Fesseler, T Schubert, G Diekert, H Dobbek (2014). Structural basis for organohalide respiration. Science, 346(6208): 455–458 https://doi.org/10.1126/science.1258118
21
I Bouzid, J Maire, N Fatin-Rouge (2019). Comparative assessment of a foam-based oxidative treatment of hydrocarbon-contaminated unsaturated and anisotropic soils. Chemosphere, 233: 667–676 https://doi.org/10.1016/j.chemosphere.2019.05.295
22
T A Bruton, D L Sedlak (2017). Treatment of aqueous film-forming foam by heat-activated persulfate under conditions representative of in situ chemical oxidation. Environmental Science & Technology, 51(23): 13878–13885 https://doi.org/10.1021/acs.est.7b03969
23
M Bunge, L Adrian, A Kraus, M Opel, W G Lorenz, J R Andreesen, H Görisch, U Lechner (2003). Reductive dehalogenation of chlorinated dioxins by an anaerobic bacterium. Nature, 421(6921): 357–360 https://doi.org/10.1038/nature01237
24
Z Cai, X Zhao, J Duan, D Zhao, Z Dang, Z Lin (2020). Remediation of soil and groundwater contaminated with organic chemicals using stabilized nanoparticles: Lessons from the past two decades. Frontiers of Environmental Science & Engineering, 14(5): 84 https://doi.org/10.1007/s11783-020-1263-8
25
J Cao, W X Zhang, D G Brown, D Sethi (2008). Oxidation of Lindane with Fe(II)-Activated Sodium Persulfate. Environmental Engineering Science, 25(2): 221–228 https://doi.org/10.1089/ees.2006.0244
26
E Cervantes-González, M A Guevara-García, J García-Mena, V M Ovando-Medina (2019). Microbial diversity assessment of polychlorinated biphenyl-contaminated soils and the biostimulation and bioaugmentation processes. Environmental Monitoring and Assessment, 191(2): 118 https://doi.org/10.1007/s10661-019-7227-4
27
C Chen, J He (2018). Strategy for the rapid dechlorination of polychlorinated biphenyls (PCBs) by Dehalococcoides mccartyi strains. Environmental Science & Technology, 52(23): 13854–13862 https://doi.org/10.1021/acs.est.8b03198
28
F Chen, Q Zhang, J Ma, Q Zhu, Y Wang, H Liang (2021). Effective remediation of organic-metal co-contaminated soil by enhanced electrokinetic-bioremediation process. Frontiers of Environmental Science & Engineering, 15(6): 113 https://doi.org/10.1007/s11783-021-1401-y
29
L Chen, X Hu, T Cai, Y Yang, R Zhao, C Liu, A Li, C Jiang (2019). Degradation of triclosan in soils by thermally activated persulfate under conditions representative of in situ chemical oxidation (ISCO). Chemical Engineering Journal, 369: 344–352 https://doi.org/10.1016/j.cej.2019.03.084
30
K R Crincoli, C Green, S G Huling (2020). Sulfate Radical Scavenging by Mineral Surfaces in Persulfate-Driven Oxidation Systems: Reaction Rate Constants and Implications. Environmental Science & Technology, 54(3): 1955–1962 https://doi.org/10.1021/acs.est.9b06442
31
L A Cutter, J E M Watts, K R Sowers, H D May (2001). Identification of a microorganism that links its growth to the reductive dechlorination of 2,3,5,6-chlorobiphenyl. Environmental Microbiology, 3(11): 699–709 https://doi.org/10.1046/j.1462-2920.2001.00246.x
32
M Cycoń, A Mrozik, Z Piotrowska-Seget (2017). Bioaugmentation as a strategy for the remediation of pesticide-polluted soil: A review. Chemosphere, 172: 52–71 https://doi.org/10.1016/j.chemosphere.2016.12.129
33
H T Dam, W Sun, L Mcguinness, L J Kerkhof, M M Haggblom (2019). Identification of a Chlorodibenzo-p-dioxin dechlorinating Dehalococcoides mccartyi by stable isotope probing. Environmental Science & Technology, 53(24): 14409–14419 https://doi.org/10.1021/acs.est.9b05395
34
H T Dam, J Vollmers, A K Kaster, M M Häggblom (2017). Reconstructed genomes of novel Dehalococcoides mccartyi strains from 1,2,3,4-tetrachlorodibenzo-p-dioxin-dechlorinating enrichment cultures reveal divergent reductive dehalogenase gene profiles. FEMS Microbiology Ecology, 93(12): fix151 https://doi.org/10.1093/femsec/fix151
35
R K Dean, C R Schneider, H S Almnehlawi, K S Dawson, D E Fennell (2020). 2,3,7,8-Tetrachlorodibenzo-p-dioxin dechlorination is differentially enhanced by dichlorobenzene amendment in Passaic River, NJ Sediments. Environmental Science & Technology, 54(13): 8380–8389 https://doi.org/10.1021/acs.est.0c00876
36
J Desforges, A Hall, B Mcconnell, A Rosing-Asvid, J L Barber, A Brownlow, S De Guise, I Eulaers, P D Jepson, R J Letcher, M Levin, P S Ross, F Samarra, G Víkingson, C Sonne, R Dietz (2018). Predicting global killer whale population collapse from PCB pollution. Science, 361(6409): 1373–1376 https://doi.org/10.1126/science.aat1953
37
P Devi, U Das, A K Dalai (2016). In-situ chemical oxidation: Principle and applications of peroxide and persulfate treatments in wastewater systems. Science of the Total Environment, 571: 643–657 https://doi.org/10.1016/j.scitotenv.2016.07.032
38
K DeWeerd, L Mandelco, R Tanner, C J S Woese, J M Suflita (1990). Desulfomonile tiedjei gen. nov. and sp. nov., a novel anaerobic, dehalogenating, sulfate-reducing bacterium. Archives of Microbiology, 154(1): 23–30 https://doi.org/10.1007/BF00249173
39
C Ding, M J Rogers, K L Yang, J He (2017). Loss of the ssrA genome island led to partial debromination in the PBDE respiring Dehalococcoides mccartyi strain GY50. Environmental Microbiology, 19(7): 2906–2915 https://doi.org/10.1111/1462-2920.13817
40
W Doesburg, M H A Eekert, P J M Middeldorp, M Balk, G Schraa, A J M Stams (2005). Reductive dechlorination of β-hexachlorocyclohexane (β-HCH) by a Dehalobacter species in coculture with a Sedimentibacter sp. FEMS Microbiology Ecology, 54(1): 87–95 https://doi.org/10.1016/j.femsec.2005.03.003
41
E Doğan-Subasi, L Bastiaens, N Boon, W Dejonghe (2013). Microbial dechlorination activity during and after chemical oxidant treatment. Journal of Hazardous Materials, 262: 598–605 https://doi.org/10.1016/j.jhazmat.2013.09.003
42
C M Dominguez, M Romero, A Santos (2019). Selective removal of chlorinated organic compounds from lindane wastes by combination of nonionic surfactant soil flushing and Fenton oxidation. Chemical Engineering Journal, 376: 120009 https://doi.org/10.1016/j.cej.2018.09.170
43
H Dong, K Hou, W Qiao, Y Cheng, L Zhang, B Wang, L Li, Y Wang, Q Ning, G Zeng (2019). Insights into enhanced removal of TCE utilizing sulfide-modified nanoscale zero-valent iron activated persulfate. Chemical Engineering Journal, 359: 1046–1055 https://doi.org/10.1016/j.cej.2018.11.080
44
X Duan, H Sun, Z Shao, S Wang (2018). Nonradical reactions in environmental remediation processes: Uncertainty and challenges. Applied Catalysis B: Environmental, 224: 973–982 https://doi.org/10.1016/j.apcatb.2017.11.051
45
B S Evans, C A Dudley, K T Klasson (1996). Sequential anaerobic-aerobic biodegradation of PCBs in soil slurry microcosms. Applied Biochemistry and Biotechnology, 57–58(1): 885–894 https://doi.org/10.1007/BF02941769
46
G Fang, X Chen, W Wu, C Liu, D D Dionysiou, T Fan, Y Wang, C Zhu, D Zhou (2018). Mechanisms of interaction between persulfate and soil constituents: Activation, free radical formation, conversion, and identification. Environmental Science & Technology, 52(24): 14352–14361 https://doi.org/10.1021/acs.est.8b04766
47
G Fang, C Liu, J Gao, D D Dionysiou, D Zhou (2015). Manipulation of persistent free radicals in biochar to activate persulfate for contaminant degradation. Environmental Science & Technology, 49(9): 5645–5653 https://doi.org/10.1021/es5061512
48
G Fang, W Wu, Y Deng, D Zhou (2017a). Homogenous activation of persulfate by different species of vanadium ions for PCBs degradation. Chemical Engineering Journal, 323: 84–95 https://doi.org/10.1016/j.cej.2017.04.092
49
G Fang, W Wu, C Liu, D D Dionysiou, Y Deng, D Zhou (2017b). Activation of persulfate with vanadium species for PCBs degradation: A mechanistic study. Applied Catalysis B: Environmental, 202: 1–11 https://doi.org/10.1016/j.apcatb.2016.09.006
50
G D Fang, D D Dionysiou, D M Zhou, Y Wang, X D Zhu, J X Fan, L Cang, Y J Wang (2013). Transformation of polychlorinated biphenyls by persulfate at ambient temperature. Chemosphere, 90(5): 1573–1580 https://doi.org/10.1016/j.chemosphere.2012.07.047
51
J Y Fang, C Shang (2012). Bromate formation from bromide oxidation by the UV/persulfate process. Environmental Science & Technology, 46(16): 8976–8983 https://doi.org/10.1021/es300658u
52
A B Fardin, A Jamshidi-Zanjani, A K Darban (2021). Application of enhanced electrokinetic remediation by coupling surfactants for kerosene-contaminated soils: Effect of ionic and nonionic surfactants. Journal of Environmental Management, 277: 111422 https://doi.org/10.1016/j.jenvman.2020.111422
53
D E Fennell, I Nijenhuis, S F Wilson, S H Zinder, M M Häggblom (2004). Dehalococcoides ethenogenes strain 195 reductively dechlorinates diverse chlorinated aromatic pollutants. Environmental Science & Technology, 38(7): 2075–2081 https://doi.org/10.1021/es034989b
54
H Fiedler (2007). National PCDD/PCDF release inventories under the Stockholm Convention on persistent organic pollutants. Chemosphere, 67(9): S96–S108 https://doi.org/10.1016/j.chemosphere.2006.05.093
J C Fountain, R C Starr, T Middleton, M Beikirch, C Taylor, D Hodge (1996). A controlled field test of surfactant-enhanced aquifer remediation. Ground Water, 34(5): 910–916 https://doi.org/10.1111/j.1745-6584.1996.tb02085.x
57
A D Fricker, S L LaRoe, M E Shea, D L Bedard (2014). Dehalococcoides mccartyi strain JNA dechlorinates multiple chlorinated phenols including pentachlorophenol and harbors at least 19 reductive dehalogenase homologous genes. Environmental Science & Technology, 48(24): 14300–14308 https://doi.org/10.1021/es503553f
58
R García-Cervilla, A Santos, A Romero, D Lorenzo (2021). Compatibility of nonionic and anionic surfactants with persulfate activated by alkali in the abatement of chlorinated organic compounds in aqueous phase. Science of the Total Environment, 751: 141782 https://doi.org/10.1016/j.scitotenv.2020.141782
59
K Govindan, M Raja, M Noel, E J James (2014). Degradation of pentachlorophenol by hydroxyl radicals and sulfate radicals using electrochemical activation of peroxomonosulfate, peroxodisulfate and hydrogen peroxide. Journal of Hazardous Materials, 272: 42–51 https://doi.org/10.1016/j.jhazmat.2014.02.036
60
S Gushgari-Doyle, L Alvarez-Cohen (2020). Effects of Arsenic on Trichloroethene-Dechlorination Activities of Dehalococcoides mccartyi 195. Environmental Science & Technology, 54(2): 1276–1285 https://doi.org/10.1021/acs.est.9b06527
61
G L W Heavner, C B Mansfeldt, M J Wilkins, C D Nicora, G E Debs, E A Edwards, R E Richardson (2019). Detection of organohalide-respiring enzyme biomarkers at a bioaugmented TCE-contaminated field site. Frontiers in Microbiology, 10: 1433 https://doi.org/10.3389/fmicb.2019.01433
62
B Heckel, E Phillips, E Edwards, B Sherwood Lollar, M Elsner, M J Manefield, M Lee (2019). Reductive dehalogenation of trichloromethane by two different Dehalobacterrestrictus strains reveal opposing dual element isotope effects. Environmental Science & Technology, 53(5): 2332–2343
63
A C Heimann, A K Friis, R Jakobsen(2005). Effects of sulfate on anaerobic chloroethene degradation by an enriched culture under transient and steady-state hydrogen supply. Water Research, 39(15): 3579–3586
64
J Herrero, D Puigserver, I Nijenhuis, K Kuntze, J M Carmona (2019). Combined use of ISCR and biostimulation techniques in incomplete processes of reductive dehalogenation of chlorinated solvents. Science of the Total Environment, 648: 819–829 https://doi.org/10.1016/j.scitotenv.2018.08.184
65
H Hori, A Yamamoto, E Hayakawa, S Taniyasu, N Yamashita, S Kutsuna, H Kiatagawa, R Arakawa (2005). Efficient decomposition of environmentally persistent perfluorocarboxylic acids by use of persulfate as a photochemical oxidant. Environmental Science & Technology, 39(7): 2383–2388 https://doi.org/10.1021/es0484754
66
L Hrapovic, B E Sleep, D J Major, E D Hood (2005). Laboratory study of treatment of trichloroethene by chemical oxidation followed by bioremediation. Environmental Science & Technology, 39(8): 2888–2897 https://doi.org/10.1021/es049017y
67
A Huang, Z Zhang, N Wang, L Zhu, J Zou (2016). Green mechanochemical oxidative decomposition of powdery decabromodiphenyl ether with persulfate. Journal of Hazardous Materials, 302: 158–165 https://doi.org/10.1016/j.jhazmat.2015.09.072
68
J Huang, H Zhang (2019). Mn-based catalysts for sulfate radical-based advanced oxidation processes: A review. Environment International, 133: 105141 https://doi.org/10.1016/j.envint.2019.105141
69
K C Huang, Z Zhao, G E Hoag, A Dahmani, P A Block (2005). Degradation of volatile organic compounds with thermally activated persulfate oxidation. Chemosphere, 61(4): 551–560 https://doi.org/10.1016/j.chemosphere.2005.02.032
70
M Huang, Y Wang, J Wan, Y Ma, H Chi, Y Xu, S Qiu (2020). Facile construction of highly reactive and stable defective iron-based metal organic frameworks for efficient degradation of Tetrabromobisphenol A via persulfate activation. Environmental Pollution, 256: 113399 https://doi.org/10.1016/j.envpol.2019.113399
71
K C Huang, R A Couttenye, G E Hoag (2002). Kinetics of heat-assisted persulfate oxidation of methyl tert-butyl ether (MTBE). Chemosphere 49: 413–420
72
L A Hug, F Maphosa, D Leys, F E Löffler, H Smidt, E A Edwards, L Adrian (2013). Overview of organohalide-respiring bacteria and a proposal for a classification system for reductive dehalogenases. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 368(1616): 20120322 https://doi.org/10.1098/rstb.2012.0322
73
I A Ike, K G Linden, J D Orbell, M Duke (2018). Critical review of the science and sustainability of persulphate advanced oxidation processes. Chemical Engineering Journal, 338: 651–669 https://doi.org/10.1016/j.cej.2018.01.034
74
J Jasmine, S Mukherji (2014). Evaluation of bioaugmentation and biostimulation effects on the treatment of refinery oily sludge using 2(n) full factorial design. Environmental Science. Processes & Impacts, 16(8): 1889–1896 https://doi.org/10.1039/C4EM00116H
75
Y Ji, C Dong, D Kong, J Lu, Q Zhou (2015). Heat-activated persulfate oxidation of atrazine: Implications for remediation of groundwater contaminated by herbicides. Chemical Engineering Journal, 263: 45–54 https://doi.org/10.1016/j.cej.2014.10.097
76
Z Ji, H Zhang, H Liu, O M Yaghi, P Yang (2018). Cytoprotective metal-organic frameworks for anaerobic bacteria. Proceedings of the National Academy of Sciences of the United States of America, 115(42): 10582–10587 https://doi.org/10.1073/pnas.1808829115
77
F Jiang, Y Li, W Zhou, Z Yang, Y Ning, D Liu, Z Tang, S Yang, H Huang, G Wang (2020). Enhanced degradation of monochlorobenzene in groundwater by ferrous iron/persulfate process with cysteine. Chemical Engineering Journal, 387: 124048 https://doi.org/10.1016/j.cej.2020.124048
78
B Johnson-Restrepo, K Kannan, R Addink, D H Adams (2005). Polybrominated diphenyl ethers and polychlorinated biphenyls in a marine foodweb of coastal Florida. Environmental Science & Technology, 39(21): 8243–8250 https://doi.org/10.1021/es051551y
79
B E Jugder, H Ertan, S Bohl, M Lee, C P Marquis, M Manefield (2016). Organohalide respiring bacteria and reductive dehalogenases: Key tools in organohalide bioremediation. Frontiers in Microbiology, 7: 249 https://doi.org/10.3389/fmicb.2016.00249
80
B E Jugder, H Ertan, M Lee, M Manefield, C P Marquis (2015). Reductive dehalogenases come of age in biological destruction of organohalides. Trends in Biotechnology, 33(10): 595–610 https://doi.org/10.1016/j.tibtech.2015.07.004
81
A V Karim, Y Jiao, M Zhou, P V Nidheesh (2021). Iron-based persulfate activation process for environmental decontamination in water and soil. Chemosphere, 265: 129057 https://doi.org/10.1016/j.chemosphere.2020.129057
82
D Kaya, B V Kjellerup, K Chourey, R L Hettich, D M Taggart, F E Löffler (2019). Impact of fixed nitrogen availability on Dehalococcoides mccartyi reductive dechlorination activity. Environmental Science & Technology, 53(24): 14548–14558 https://doi.org/10.1021/acs.est.9b04463
83
F O Kengara, U Doerfler, G Welzl, B Ruth, J C Munch, R Schroll (2013). Enhanced degradation of C-14-HCB in two tropical clay soils using multiple anaerobic-aerobic cycles. Environmental Pollution, 173: 168–175 https://doi.org/10.1016/j.envpol.2012.09.027
84
T A Key, K S Bowman, I Lee, J Chun, L Albuquerque, M S Da Costa, F A Rainey, W M Moe (2017). Dehalogenimonas formicexedens sp. nov., a chlorinated alkane-respiring bacterium isolated from contaminated groundwater. International Journal of Systematic and Evolutionary Microbiology, 67(5): 1366–1373 https://doi.org/10.1099/ijsem.0.001819
85
S Khan, X He, H M Khan, D Boccelli, D D Dionysiou (2016). Efficient degradation of lindane in aqueous solution by iron (II) and/or UV activated peroxymonosulfate. Journal of Photochemistry and Photobiology A Chemistry, 316: 37–43 https://doi.org/10.1016/j.jphotochem.2015.10.004
86
A Kublik, D Deobald, S Hartwig, C L Schiffmann, A Andrades, M Von Bergen, R G Sawers, L Adrian (2016). Identification of a multi-protein reductive dehalogenase complex in Dehalococcoides mccartyi strain CBDB1 suggests a protein-dependent respiratory electron transport chain obviating quinone involvement. Environmental Microbiology, 18(9): 3044–3056 https://doi.org/10.1111/1462-2920.13200
87
N Kulik, A Goi, M Trapido, T Tuhkanen (2006). Degradation of polycyclic aromatic hydrocarbons by combined chemical pre-oxidation and bioremediation in creosote contaminated soil. Journal of Environmental Management, 78(4): 382–391 https://doi.org/10.1016/j.jenvman.2005.05.005
88
C Kunze, M Bommer, W R Hagen, M Uksa, H Dobbek, T Schubert, G Diekert (2017). Cobamide-mediated enzymatic reductive dehalogenation via long-range electron transfer. Nature Communications, 8(1): 15858 https://doi.org/10.1038/ncomms15858
89
K Kuśmierek, L Dąbek, A Świątkowski (2016). A comparative study on oxidative degradation of 2,4-dichlorophenol and 2,4-dichlorophenoxyacetic acid by ammonium persulfate. Desalination and Water Treatment, 57(3): 1098–1106 https://doi.org/10.1080/19443994.2015.1017327
90
S L LaRoe, A D Fricker, D L Bedard (2014). Dehalococcoides mccartyi strain JNA in pure culture extensively dechlorinates Aroclor 1260 according to polychlorinated biphenyl (PCB) dechlorination Process N. Environmental Science & Technology, 48(16): 9187–9196 https://doi.org/10.1021/es500872t
91
J Lee, J Im, U Kim, F E Löffler (2016). A Data Mining Approach to Predict In Situ Detoxification Potential of Chlorinated Ethenes. Environmental Science & Technology, 50(10): 5181–5188 https://doi.org/10.1021/acs.est.5b05090
92
J Lee, U Von Gunten, J H Kim (2020a). Persulfate-based advanced oxidation: Critical assessment of opportunities and roadblocks. Environmental Science & Technology, 54(6): 3064–3081 https://doi.org/10.1021/acs.est.9b07082
93
Y C Lee, Y F Li, M J Chen, Y C Chen, J Kuo, S L Lo (2020b). Efficient decomposition of perfluorooctanic acid by persulfate with iron-modified activated carbon. Water Research, 174: 115618 https://doi.org/10.1016/j.watres.2020.115618
94
Y J Lei, Y Tian, Z Sobhani, R Naidu, C Fang (2020). Synergistic degradation of PFAS in water and soil by dual-frequency ultrasonic activated persulfate. Chemical Engineering Journal, 388: 124215 https://doi.org/10.1016/j.cej.2020.124215
95
K Li, H Li, T Xiao, G Zhang, A Liang, P Zhang, L Lin, Z Chen, X Cao, J Long (2020). Zero-valent manganese nanoparticles coupled with different strong oxidants for thallium removal from wastewater. Frontiers of Environmental Science & Engineering, 14(2): 34 https://doi.org/10.1007/s11783-019-1213-5
96
Q Li, L Wang, X Fang, L Zhang, J Li, H Xie (2019). Synergistic effect of photocatalytic degradation of hexabromocyclododecane in water by UV/TiO2/persulfate. Catalysts, 9(2): 189 https://doi.org/10.3390/catal9020189
97
R Li, X Jin, M Megharaj, R Naidu, Z Chen (2015). Heterogeneous Fenton oxidation of 2,4-dichlorophenol using iron-based nanoparticles and persulfate system. Chemical Engineering Journal, 264: 587–594 https://doi.org/10.1016/j.cej.2014.11.128
98
T Li, C Zhang, J Zhang, S Yan, C Qin (2021). Remediation of 2,4-dichlorophenol-contaminated groundwater using nano-sized CaO2 in a two-dimensional scale tank. Frontiers of Environmental Science & Engineering, 15(5): 87 https://doi.org/10.1007/s11783-020-1381-3
99
Z Li, D Suzuki, C Zhang, N Yoshida, S Yang, A Katayama (2013). Involvement of Dehalobacter strains in the anaerobic dechlorination of 2,4,6-trichlorophenol. Journal of Bioscience and Bioengineering, 116(5): 602–609 https://doi.org/10.1016/j.jbiosc.2013.05.009
100
C Liang, C J Bruell, M C Marley, K L Sperry (2004). Persulfate oxidation for in situ remediation of TCE. I. Activated by ferrous ion with and without a persulfate-thiosulfate redox couple. Chemosphere, 55(9): 1213–1223 https://doi.org/10.1016/j.chemosphere.2004.01.029
101
C S Liu, C P Higgins, F Wang, K Shih (2012). Effect of temperature on oxidative transformation of perfluorooctanoic acid (PFOA) by persulfate activation in water. Separation and Purification Technology, 91: 46–51 https://doi.org/10.1016/j.seppur.2011.09.047
102
F Liu, D E Fennell (2008). Dechlorination and detoxification of 1,2,3,4,7,8-Hexachlorodibenzofuran by a mixed culture containing Dehalococcoidesethenogenes strain 195. Environmental Science & Technology, 42(2): 602–607 https://doi.org/10.1021/es071380s
103
H Liu, T A Bruton, F A Doyle, D L Sedlak (2014b). In Situ chemical oxidation of contaminated groundwater by persulfate: Decomposition by Fe(III)- and Mn(IV)-containing oxides and aquifer materials. Environmental Science & Technology, 48(17): 10330–10336 https://doi.org/10.1021/es502056d
104
H Liu, J W Park, M M Häggblom (2014a). Enriching for microbial reductive dechlorination of polychlorinated dibenzo-p-dioxins and dibenzofurans. Environmental Pollution, 184: 222–230 https://doi.org/10.1016/j.envpol.2013.08.019
105
J Liu, Y F Wang, B Q Jiang, L H Wang, J Q Chen, H Y Guo, R Ji (2013). Degradation, metabolism, and bound-residue formation and release of tetrabromobisphenol A in soil during sequential anoxic-oxic incubation. Environmental Science & Technology, 47(15): 8348–8354 https://doi.org/10.1021/es4014322
106
J W Liu, K H Wei, S W Xu, J Cui, J Ma, X L Xiao, B D Xi, X S He (2021). Surfactant-enhanced remediation of oil-contaminated soil and groundwater: A review. Science of the Total Environment, 756: 144142 https://doi.org/10.1016/j.scitotenv.2020.144142
107
S Liu, C Guo, X Liang, F Wu, Z Dang (2016). Nonionic surfactants induced changes in cell characteristics and phenanthrene degradation ability of Sphingomonas sp. GY2B. Ecotoxicology and Environmental Safety, 129: 210–218 https://doi.org/10.1016/j.ecoenv.2016.03.035
108
F E Löffler, E A Edwards (2006). Harnessing microbial activities for environmental cleanup. Current Opinion in Biotechnology, 17(3): 274–284 https://doi.org/10.1016/j.copbio.2006.05.001
109
F E Löffler, J Yan, K M Ritalahti, L Adrian, E A Edwards, K T Konstantinidis, J A Muller, H Fullerton, S H Zinder, A M Spormann (2013). Dehalococcoides mccartyi gen. nov., sp. nov., obligately organohalide-respiring anaerobic bacteria relevant to halogen cycling and bioremediation, belong to a novel bacterial class, Dehalococcoidia classis nov., order Dehalococcoidales ord. nov. and family Dehalococcoidaceae fam. nov., within the phylum chloroflexi. International Journal of Systematic and Evolutionary Microbiology, 63(Pt_2): 625–635 https://doi.org/10.1099/ijs.0.034926-0
110
N J Lombard, U Ghosh, B V Kjellerup, K R Sowers (2014). Kinetics and threshold level of 2,3,4,5-tetrachlorobiphenyl dechlorination by an organohalide respiring bacterium. Environmental Science & Technology, 48(8): 4353–4360 https://doi.org/10.1021/es404265d
111
M Lu, Z Zhang, W Qiao, X Wei, Y Guan, Q Ma, Y Guan (2010). Remediation of petroleum-contaminated soil after composting by sequential treatment with Fenton-like oxidation and biodegradation. Bioresource Technology, 101(7): 2106–2113 https://doi.org/10.1016/j.biortech.2009.11.002
112
Q Lu, L Qiu, L Yu, S Zhang, R A De Toledo, H Shim, S Wang (2019). Microbial transformation of chiral organohalides: Distribution, microorganisms and mechanisms. Journal of Hazardous Materials, 368: 849–861 https://doi.org/10.1016/j.jhazmat.2019.01.103
113
C Luo, J Ma, J Jiang, Y Liu, Y Song, Y Yang, Y Guan, D Wu (2015). Simulation and comparative study on the oxidation kinetics of atrazine by UV/H2O2, UV/HSO5− and UV/S2O82−. Water Research, 80: 99–108 https://doi.org/10.1016/j.watres.2015.05.019
114
H V Lutze, S Bircher, I Rapp, N Kerlin, R Bakkour, M Geisler, C Von Sonntag, T C Schmidt (2015). Degradation of chlorotriazine pesticides by sulfate radicals and the influence of organic matter. Environmental Science & Technology, 49(3): 1673–1680 https://doi.org/10.1021/es503496u
115
J Ma, Q Zhang, F Chen, Q Zhu, Y Wang, G Liu (2020). Remediation of PBDEs-metal co-contaminated soil by the combination of metal stabilization, persulfate oxidation and bioremediation. Chemosphere, 252: 126538 https://doi.org/10.1016/j.chemosphere.2020.126538
116
Z Ma, H Cao, F Lv, Y Yang, C Chen, T Yang, H Zheng, D Wu (2021). Preparation of nZVI embedded modified mesoporous carbon for catalytic persulfate to degradation of reactive black 5. Frontiers of Environmental Science & Engineering, 15(5): 98 https://doi.org/10.1007/s11783-020-1372-4
S Mandal, T Bera, G Dubey, J Saha, J K Laha (2018). Uses of K2S2O8 in metal-catalyzed and metal-free oxidative transformations. ACS Catalysis, 8(6): 5085–5144 https://doi.org/10.1021/acscatal.8b00743
119
X Mao, R Jiang, W Xiao, J Yu (2015). Use of surfactants for the remediation of contaminated soils: A review. Journal of Hazardous Materials, 285: 419–435 https://doi.org/10.1016/j.jhazmat.2014.12.009
120
X Mao, R S Oremland, T Liu, S Gushgari, A A Landers, S M Baesman, L Alvarez-Cohen (2017). Acetylene fuels tce reductive dechlorination by defined Dehalococcoides/Pelobacter consortia. Environmental Science & Technology, 51(4): 2366–2372 https://doi.org/10.1021/acs.est.6b05770
121
F Maphosa, M W J van Passel, W M de Vos, H Smidt (2012). Metagenome analysis reveals yet unexplored reductive dechlorinating potential of Dehalobacter sp. E1 growing in co-culture with Sedimentibacter sp. Environmental Microbiology Reports, 4: 604–616
122
T F Marcet, N L Capiro, Y Yang, F E Löffler, K D Pennell (2018). Impacts of low-temperature thermal treatment on microbial detoxification of tetrachloroethene under continuous flow conditions. Water Research, 145: 21–29 https://doi.org/10.1016/j.watres.2018.07.076
123
L Martín-González, M Hatijah Mortan S, E Rosell, M Parladé, N Martínez-Alonso, G Gaju, L Caminal, E Adrian, Marco-Urrea (2015). Stable carbon isotope fractionation during 1,2-dichloropropane-to-propene transformation by an enrichment culture containing Dehalogenimonas strains and a dcpA gene. Environmental Science & Technology, 49(14): 8666–8674 https://doi.org/10.1021/acs.est.5b00929
124
S Martínez, F M Cuervo-López, J Gomez (2007). Toluene mineralization by denitrification in an up flow anaerobic sludge blanket (UASB) reactor. Bioresource Technology, 98(9): 1717–1723 https://doi.org/10.1016/j.biortech.2006.07.046
125
E Martínez-Pascual, T Grotenhuis, A M Solanas, M Viñas (2015). Coupling chemical oxidation and biostimulation: Effects on the natural attenuation capacity and resilience of the native microbial community in alkylbenzene-polluted soil. Journal of Hazardous Materials, 300: 135–143 https://doi.org/10.1016/j.jhazmat.2015.06.061
126
G Mascolo, R Ciannarella, L Balest, A Lopez (2008). Effectiveness of UV-based advanced oxidation processes for the remediation of hydrocarbon pollution in the groundwater: A laboratory investigation. Journal of Hazardous Materials, 152(3): 1138–1145 https://doi.org/10.1016/j.jhazmat.2007.07.120
127
E R Master, V W Lai, B Kuipers, W R Cullen, W W Mohn (2002). Sequential anaerobic–aerobic treatment of soil contaminated with weathered Aroclor 1260. Environmental Science & Technology, 36(1): 100–103 https://doi.org/10.1021/es001930l
B Maucourt, S Vuilleumier, F Bringel (2020). Transcriptional regulation of organohalide pollutant utilisation in bacteria. FEMS Microbiology Reviews, 44(2): 189–207 https://doi.org/10.1093/femsre/fuaa002
130
K Mayer-Blackwell, M F Azizian, J K Green, A M Spormann, L Semprini (2017). Survival of vinyl chloride respiring Dehalococcoides mccartyi under long-term electron donor limitation. Environmental Science & Technology, 51(3): 1635–1642 https://doi.org/10.1021/acs.est.6b05050
131
W M Moe, S J Reynolds, M A Griffin, J B Mcreynolds (2018). Bioremediation strategies aimed at stimulating chlorinated solvent dehalogenation can lead to microbially-mediated toluene biogenesis. Environmental Science & Technology, 52(16): 9311–9319 https://doi.org/10.1021/acs.est.8b02081
132
J M Monteagudo, A Duran, J Latorre, A J Exposito (2016). Application of activated persulfate for removal of intermediates from antipyrine wastewater degradation refractory towards hydroxyl radical. Journal of Hazardous Materials, 306: 77–86 https://doi.org/10.1016/j.jhazmat.2015.12.001
C N Mulligan, B F Gibbs (2004). Types, production and applications of biosurfactants. Proceedings of the Indian National Science Academy. Part B, Biological Sciences, 70(1): 31–55
135
K Nam, W Rodriguez, J J Kukor (2001). Enhanced degradation of polycyclic aromatic hydrocarbons by biodegradation combined with a modified Fenton reaction. Chemosphere, 45(1): 11–20 https://doi.org/10.1016/S0045-6535(01)00051-0
136
A C Ndjou’ou, J Bou-Nasr, D Cassidy (2006). Effect of Fenton reagent dose on coexisting chemical and microbial oxidation in soil. Environmental Science & Technology, 40(8): 2778–2783 https://doi.org/10.1021/es0525152
137
J L Nelson, J Jiang, S H Zinder (2014). Dehalogenation of chlorobenzenes, dichlorotoluenes, and tetrachloroethene by three Dehalobacter spp. Environmental Science & Technology, 48(7): 3776–3782 https://doi.org/10.1021/es4044769
138
J Němeček, M Nechanicka, R Spanek, F Eichler, J Zeman, M Cernik (2019). Engineered in situ biogeochemical transformation as a secondary treatment following ISCO: A field test. Chemosphere, 237: 124460 https://doi.org/10.1016/j.chemosphere.2019.124460
139
I Nijenhuis, K Kuntze (2016). Anaerobic microbial dehalogenation of organohalides-state of the art and remediation strategies. Current Opinion in Biotechnology, 38: 33–38 https://doi.org/10.1016/j.copbio.2015.11.009
140
W D Oh, Z Dong, T T Lim (2016). Generation of sulfate radical through heterogeneous catalysis for organic contaminants removal: Current development, challenges and prospects. Applied Catalysis B: Environmental, 194: 169–201 https://doi.org/10.1016/j.apcatb.2016.04.003
141
D Ouyang, J Yan, L Qian, Y Chen, L Han, A Su, W Zhang, H Ni, M Chen (2017). Degradation of 1,4-dioxane by biochar supported nano magnetite particles activating persulfate. Chemosphere, 184: 609–617 https://doi.org/10.1016/j.chemosphere.2017.05.156
142
M Pacwa-Płociniczak, G A Plaza, Z Piotrowska-Seget, S S Cameotra (2011). Environmental applications of biosurfactants: recent advances. International Journal of Molecular Sciences, 12(1): 633–654 https://doi.org/10.3390/ijms12010633
143
X Pan, L Yan, R Qu, Z Wang (2018). Degradation of the UV-filter benzophenone-3 in aqueous solution using persulfate activated by heat, metal ions and light. Chemosphere, 196: 95–104 https://doi.org/10.1016/j.chemosphere.2017.12.152
144
Y Pan, J Chen, H Zhou, S G Cheung, N F Y Tam (2019). Degradation of BDE-47 in mangrove sediments under alternating anaerobicaerobic conditions. Journal of Hazardous Materials, 378: 120709 https://doi.org/10.1016/j.jhazmat.2019.05.102
145
Y Pang, K Luo, L Tang, X Li, J Yu, J Guo, Y Liu, Z Zhang, R Yue, L Li (2019). Carbon-based magnetic nanocomposite as catalyst for persulfate activation: A critical review. Environmental Science and Pollution Research International, 26(32): 32764–32776 https://doi.org/10.1007/s11356-019-06403-4
146
S Pari, I A Wang, H Liu, B M Wong (2017). Sulfate radical oxidation of aromatic contaminants: a detailed assessment of density functional theory and high-level quantum chemical methods. Environmental Science. Processes & Impacts, 19(3): 395–404 https://doi.org/10.1039/C7EM00009J
147
A Parthasarathy, T A Stich, S T Lohner, A Lesnefsky, R D Britt, A M Spormann (2015). Biochemical and EPR-spectroscopic investigation into heterologously expressed vinyl chloride reductive dehalogenase (VcrA) from Dehalococcoides mccartyi strain VS. Journal of the American Chemical Society, 137(10): 3525–3532 https://doi.org/10.1021/ja511653d
148
G Pathiraja, P Egodawatta, A Goonetilleke, V S J Te’o (2019). Effective degradation of polychlorinated biphenyls by a facultative anaerobic bacterial consortium using alternating anaerobic aerobic treatments. Science of the Total Environment, 659: 507–514 https://doi.org/10.1016/j.scitotenv.2018.12.385
149
H Peng, W Zhang, L Xu, R Fu, K Lin (2016). Oxidation and mechanism of decabromodiphenyl ether (BDE209) by thermally activated persulfate (TAP) in a soil system. Chemical Engineering Journal, 306: 226–232 https://doi.org/10.1016/j.cej.2016.07.066
150
B G Petri, R J Watts, A Tsitonaki, M Crimi, N R Thomson, T L Teel (2011). Fundamentals of ISCO Using Persulfate. In: Siegrist R, Crimi M, Simpkin T, eds. In situ Chemical Oxidation for Groundwater Remediation. SERDP/ESTCP Environmental Remediation Technology, 3 (Springer, New York, NY): 147–192
151
M Pöritz, C L Schiffmann, G Hause, U Heinemann, J Seifert, N Jehmlich, M Von Bergen, I Nijenhuis, U Lechner (2015). Dehalococcoides mccartyi strain DCMB5 respires a broad spectrum of chlorinated aromatic compounds. Applied and Environmental Microbiology, 81(2): 587–596 https://doi.org/10.1128/AEM.02597-14
152
L A Puentes Jácome, P H Wang, O Molenda, Y X Li, M A Islam, E A Edwards (2019). Sustained dechlorination of vinyl chloride to ethene in Dehalococcoides-enriched cultures grown without addition of exogenous vitamins and at low pH. Environmental Science & Technology, 53(19): 11364–11374 https://doi.org/10.1021/acs.est.9b02339
153
Y Qian, X Guo, Y Zhang, Y Peng, P Sun, C H Huang, J Niu, X Zhou, J C Crittenden (2016). Perfluorooctanoic acid degradation using UV-persulfate process: Modeling of the degradation and chlorate formation. Environmental Science & Technology, 50(2): 772–781 https://doi.org/10.1021/acs.est.5b03715
154
W Qiao, L A Puentes Jácome, X Tang, L Lomheim, M I Yang, S Gaspard, I R Avanzi, J Wu, S Ye, E A Edwards (2020). Microbial communities associated with sustained anaerobic reductive dechlorination of alpha-, beta-, gamma-, and delta-hexachlorocyclohexane isomers to monochlorobenzene and benzene. Environmental Science & Technology, 54(1): 255–265
155
J M Ranck, R S Bowman, J L Weeber, L E Katz, E J Sullivan (2005). BTEX removal from produced water using surfactant-modified zeolite. Journal of Environmental Engineering, 131(3): 434–442 https://doi.org/10.1061/(ASCE)0733-9372(2005)131:3(434)
156
A Rastogi, S R Al-Abed, D D Dionysiou (2009). Sulfate radical-based ferrous–peroxymonosulfate oxidative system for PCBs degradation in aqueous and sediment systems. Applied Catalysis B: Environmental, 85(3–4): 171–179 https://doi.org/10.1016/j.apcatb.2008.07.010
P G Rieger, H M Meier, M Gerle, U Vogt, T Groth, H J Knackmuss (2002). Xenobiotics in the environment: present and future strategies to obviate the problem of biological persistence. Journal of Biotechnology, 94(1): 101–123 https://doi.org/10.1016/S0168-1656(01)00422-9
159
L E Rios, M David, J Vazquez-Arenas, W A Anderson (2013). Use of surfactants and blends to remove DDT from contaminated soils. Canadian Journal of Chemical Engineering, 91(2): 238–244 https://doi.org/10.1002/cjce.21620
160
K M Ritalahti, F E Löffler, E E, S. K S Rasch (2005). Bioaugmentation for chlorinated ethene detoxification bioaugmentation and molecular diagnostics in the bioremediation of chlorinated ethene-contaminated sites. Industrial Biotechnology, 1: 114–118
161
L A Rodenburg, V Krumins, J C Curran (2015). Microbial dechlorination of polychlorinated biphenyls, dibenzo-p-dioxins, and-furans at the Portland Harbor Superfund site, Oregon, USA. Environmental Science & Technology, 49(12): 7227–7235 https://doi.org/10.1021/acs.est.5b01092
162
S Rodriguez, A Santos, A Romero (2017). Oxidation of priority and emerging pollutants with persulfate activated by iron: Effect of iron valence and particle size. Chemical Engineering Journal, 318: 197–205 https://doi.org/10.1016/j.cej.2016.06.057
163
Z Ronen, A Abeliovich (2000). Anaerobic-aerobic process for microbial degradation of Tetrabromobisphenol A. Applied and Environmental Microbiology, 66(6): 2372–2377 https://doi.org/10.1128/AEM.66.6.2372-2377.2000
164
M Rosell, J Palau, S H Mortan, G Caminal, A Soler, O Shouakar-Stash, E Marco-Urrea (2019). Dual carbon-chlorine isotope fractionation during dichloroelimination of 1,1,2-trichloroethane by an enrichment culture containing Dehalogenimonas sp. Science of the Total Environment, 648: 422–429 https://doi.org/10.1016/j.scitotenv.2018.08.071
165
A Roy, A Dutta, S Pal, A Gupta, J Sarkar, A Chatterjee, A Saha, P Sarkar, P Sar, S K Kazy (2018). Biostimulation and bioaugmentation of native microbial community accelerated bioremediation of oil refinery sludge. Bioresource Technology, 253: 22–32 https://doi.org/10.1016/j.biortech.2018.01.004
166
V Rybnikova, M Usman, K Hanna (2016). Removal of PCBs in contaminated soils by means of chemical reduction and advanced oxidation processes. Environmental Science and Pollution Research International, 23(17): 17035–17048 https://doi.org/10.1007/s11356-016-6881-0
167
D Sadowsky, K Mcneill, C J Cramer (2013). Thermochemical factors affecting the dehalogenation of aromatics. Environmental Science & Technology, 47(24): 14194–14203 https://doi.org/10.1021/es404033y
168
J Sahl, J Munakata-Marr (2006). The effects of in situ chemical oxidation on microbiological processes: A review. Remediation Journal, 16(3): 57–70 https://doi.org/10.1002/rem.20091
169
T Schubert, L Adrian, R G Sawers, G Diekert (2018). Organohalide respiratory chains: composition, topology and key enzymes. FEMS Microbiology Ecology, 94(4) https://doi.org/10.1093/femsec/fiy035
170
B M Sharma, G K Bharat, S Tayal, L Nizzetto, P Cupr, T Larssen (2014). Environment and human exposure to persistent organic pollutants (POPs) in India: A systematic review of recent and historical data. Environment International, 66: 48–64 https://doi.org/10.1016/j.envint.2014.01.022
171
S Siddaramappa, J F Challacombe, S F Delano, L D Green, H Daligault, D Bruce, C Detter, R Tapia, S Han, L Goodwin, J Han, T Woyke, S Pitluck, L Pennacchio, M Nolan, M Land, Y J Chang, N C Kyrpides, G Ovchinnikova, L Hauser, A Lapidus, J Yan, K S Bowman, M S Da Costa, F A Rainey, W M Moe (2012). Complete genome sequence of Dehalogenimonas lykanthroporepellens type strain (BL-DC-9(T)) and comparison to “Dehalococcoides” strains. Standards in Genomic Sciences, 6(2): 251–264 https://doi.org/10.4056/sigs.2806097
172
K R Sowers, H D May (2013). In situ treatment of PCBs by anaerobic microbial dechlorination in aquatic sediment: Are we there yet? Current Opinion in Biotechnology, 24(3): 482–488 https://doi.org/10.1016/j.copbio.2012.10.004
173
N B Sutton, S Atashgahi, J Van Der Wal, G Wijn, T Grotenhuis, H Smidt, H H Rijnaarts (2015). Microbial dynamics during and after in situ chemical oxidation of chlorinated solvents. Ground Water, 53(2): 261–270 https://doi.org/10.1111/gwat.12209
174
N B Sutton, J T C Grotenhuis, A A M Langenhoff, H H M Rijnaarts (2011). Efforts to improve coupled in situ chemical oxidation with bioremediation: A review of optimization strategies. Journal of Soils and Sediments, 11(1): 129–140 https://doi.org/10.1007/s11368-010-0272-9
175
N B Sutton, T Grotenhuis, H H Rijnaarts (2014a). Impact of organic carbon and nutrients mobilized during chemical oxidation on subsequent bioremediation of a diesel-contaminated soil. Chemosphere, 97: 64–70 https://doi.org/10.1016/j.chemosphere.2013.11.005
176
N B Sutton, A A Langenhoff, D H Lasso, B Van Der Zaan, P Van Gaans, F Maphosa, H Smidt, T Grotenhuis, H H Rijnaarts (2014b). Recovery of microbial diversity and activity during bioremediation following chemical oxidation of diesel contaminated soils. Applied Microbiology and Biotechnology, 98(6): 2751–2764 https://doi.org/10.1007/s00253-013-5256-4
177
J Tan, Z Li, J Li, J Wu, X Yao, T Zhang (2021). Graphitic carbon nitride-based materials in activating persulfate for aqueous organic pollutants degradation: A review on materials design and mechanisms. Chemosphere, 262: 127675 https://doi.org/10.1016/j.chemosphere.2020.127675
178
S Tang, W W Chan, K E Fletcher, J Seifert, X Liang, F E Löffler, E A Edwards, L Adrian (2013). Functional characterization of reductive dehalogenases by using blue native polyacrylamide gel electrophoresis. Applied and Environmental Microbiology, 79(3): 974–981 https://doi.org/10.1128/AEM.01873-12
179
X Tang, M Z Hashmi, B Zeng, J Yang, C Shen (2015). Application of iron-activated persulfate oxidation for the degradation of PCBs in soil. Chemical Engineering Journal, 279: 673–680 https://doi.org/10.1016/j.cej.2015.05.059
180
A L Teel, M Ahmad, R J Watts (2011). Persulfate activation by naturally occurring trace minerals. Journal of Hazardous Materials, 196: 153–159 https://doi.org/10.1016/j.jhazmat.2011.09.011
181
G T Townsend, J M Suflita (1997). Influence of sulfur oxyanions on reductive dehalogenation activities in Desulfomonile tiedjei. Applied and Environmental Microbiology, 63(9): 3594–3599 https://doi.org/10.1128/AEM.63.9.3594-3599.1997
182
A Tsitonaki, B Petri, M Crimi, H Mosbæk, R L Siegrist, P L Bjerg (2010). In situ chemical oxidation of contaminated soil and groundwater using persulfate: A review. Critical Reviews in Environmental Science and Technology, 40(1): 55–91 https://doi.org/10.1080/10643380802039303
183
A Tsitonaki, B F Smets, P L Bjerg (2008). Effects of heat-activated persulfate oxidation on soil microorganisms. Water Research, 42(4–5): 1013–1022 https://doi.org/10.1016/j.watres.2007.09.018
184
T Tsuneta, R Loch-Caruso, J F Quensen III, S A Boyd, M Hanna, C Grindatti (2008). Stimulatory effects of a microbially dechlorinated polychlorinated biphenyl (PCB) mixture on rat uterine contraction in vitro. Environmental Research, 107(2): 185–193 https://doi.org/10.1016/j.envres.2008.01.011
185
D Türkowsky, N Jehmlich, G Diekert, L Adrian, M Von Bergen, T Goris (2018). An integrative overview of genomic, transcriptomic and proteomic analyses in organohalide respiration research. FEMS Microbiology Ecology, 94(3) https://doi.org/10.1093/femsec/fiy013
186
M Tyagi, M M Da Fonseca, C C De Carvalho (2011). Bioaugmentation and biostimulation strategies to improve the effectiveness of bioremediation processes. Biodegradation, 22(2): 231–241 https://doi.org/10.1007/s10532-010-9394-4
187
T Uenotsuchi, J Nakayama, M Asahi, O Kohro, T Akimoto, M Muto, K Shimizu, I Katayama, T Kanzaki, Y Kanagawa, T Imamura, M Furue (2005). Dermatological manifestations in Yusho: Correlation between skin symptoms and blood levels of dioxins, such as polychlorinated dibenzofurans (PCDFs) and polychlorinated biphenyls (PCBs). Journal of Dermatological Science. Supplement, 1(1): S73–S80 https://doi.org/10.1016/j.descs.2005.03.015
188
M Vakili, W Qiu, G Cagnetta, J Huang, G Yu (2021). Solvent-free mechanochemical mild oxidation method to enhance adsorption properties of chitosan. Frontiers of Environmental Science & Engineering, 15(6): 128 https://doi.org/10.1007/s11783-021-1416-4
189
S Venny, H K Gan, Ng (2012). Modified Fenton oxidation of polycyclic aromatic hydrocarbon (PAH)-contaminated soils and the potential of bioremediation as post-treatment. Science of the Total Environment, 419: 240–249 https://doi.org/10.1016/j.scitotenv.2011.12.053
190
R D Villa, A G Trovó, R F P Nogueira (2010). Soil remediation using a coupled process: soil washing with surfactant followed by photo-Fenton oxidation. Journal of Hazardous Materials, 174(1-3): 770–775 https://doi.org/10.1016/j.jhazmat.2009.09.118
191
S Wacławek, H V Lutze, K Grübel, V V T Padil, M Černík, D D Dionysiou (2017). Chemistry of persulfates in water and wastewater treatment: A review. Chemical Engineering Journal, 330: 44–62 https://doi.org/10.1016/j.cej.2017.07.132
192
R H Waldemer, P G Tratnyek, R L Johnson, J T Nurmi (2007). Oxidation of chlorinated ethenes by heat-activated persulfate_ kinetics and products. Environmental Science & Technology, 41: 1010–1015
193
S Wallace, R Kadlec (2005). BTEX degradation in a cold-climate wetland system. Water Science and Technology, 51(9): 165–171 https://doi.org/10.2166/wst.2005.0311
194
S Wang, C Chen, S Zhao, J He (2019). Microbial synergistic interactions for reductive dechlorination of polychlorinated biphenyls. Science of the Total Environment, 666: 368–376 https://doi.org/10.1016/j.scitotenv.2019.02.283
195
S Wang, K R Chng, C Chen, D L Bedard, J He (2015). Genomic characterization of Dehalococcoidesmccartyi strain JNA that reductively dechlorinates tetrachloroethene and polychlorinated biphenyls. Environmental Science & Technology, 49(24): 14319–14325 https://doi.org/10.1021/acs.est.5b01979
196
S Wang, K R Chng, A Wilm, S Zhao, K L Yang, N Nagarajan, J He (2014). Genomic characterization of three unique Dehalococcoides that respire on persistent polychlorinated biphenyls. Proceedings of the National Academy of Sciences of the United States of America, 111(33): 12103–12108 https://doi.org/10.1073/pnas.1404845111
197
S Wang, J He (2013). Phylogenetically distinct bacteria involve extensive dechlorination of aroclor 1260 in sediment-free cultures. PLoS One, 8(3): e59178 https://doi.org/10.1371/journal.pone.0059178
198
S Wang, L Qiu, X Liu, G Xu, M Siegert, Q Lu, P Juneau, L Yu, D Liang, Z He, R Qiu (2018). Electron transport chains in organohalide-respiring bacteria and bioremediation implications. Biotechnology Advances, 36(4): 1194–1206 https://doi.org/10.1016/j.biotechadv.2018.03.018
199
Y Wang, S Y Chen, X Yang, X F Huang, Y H Yang, E K He, S Wang, R L Qiu (2017). Degradation of 2,2′,4,4′-tetrabromodiphenyl ether (BDE-47) by a nano zerovalent iron-activated persulfate process: The effect of metal ions. Chemical Engineering Journal, 317: 613–622 https://doi.org/10.1016/j.cej.2017.02.070
200
P Wardman (1989). Reduction potentials of one-electron couples involving free radicals in aqueous-solution. Journal of Physical and Chemical Reference Data, 18(4): 1637–1755 https://doi.org/10.1063/1.555843
201
K G Watson, A Serban (1995). Evaluation of the Elbs persulfate oxidation reaction for the preparation of aryloxyphenoxypropionate herbicides. Australian Journal of Chemistry, 48(8): 1503–1509 https://doi.org/10.1071/CH9951503
202
R J Watts, M Ahmad, A K Hohner, A L Teel (2018). Persulfate activation by glucose for in situ chemical oxidation. Water Research, 133: 247–254 https://doi.org/10.1016/j.watres.2018.01.050
203
M M Whalen, B G Loganathan, N Yamashita, T Saito (2003). Immunomodulation of human natural killer cell cytotoxic function by triazine and carbamate pesticides. Chemico-Biological Interactions, 145(3): 311–319 https://doi.org/10.1016/S0009-2797(03)00027-9
204
M S Willemin, M Vingerhoets, C Holliger, J Maillard (2020). Hybrid transcriptional regulators for the screening of target DNA motifs in organohalide-respiring bacteria. Frontiers in Microbiology, 11: 310 https://doi.org/10.3389/fmicb.2020.00310
205
R Williams, M T Doeschate, D J Curnick, A Brownlow, J L Barber, N J Davison, R Deaville, M Perkins, P D Jepson, S Jobling (2020). Levels of polychlorinated biphenyls are still associated with toxic effects in harbor porpoises (Phocoena) despite having fallen below proposed toxicity thresholds. Environmental Science & Technology, 54(4): 2277–2286 https://doi.org/10.1021/acs.est.9b05453
206
Q Wu, J E Watts, K R Sowers, H D May (2002). Identification of a bacterium that specifically catalyzes the reductive dechlorination of polychlorinated biphenyls with doubly flanked chlorines. Applied and Environmental Microbiology, 68(2): 807–812 https://doi.org/10.1128/AEM.68.2.807-812.2002
207
X Wu, X Gu, S Lu, Z Qiu, Q Sui, X Zang, Z Miao, M Xu (2015). Strong enhancement of trichloroethylene degradation in ferrous ion activated persulfate system by promoting ferric and ferrous ion cycles with hydroxylamine. Separation and Purification Technology, 147: 186–193 https://doi.org/10.1016/j.seppur.2015.04.031
208
Y Xia, Y Cheng, L Li, Y Chen, Y Jiang (2020). A microcosm study on persulfate oxidation combined with enhanced bioremediation to remove dissolved BTEX in gasoline-contaminated groundwater. Biodegradation, 31(3): 213–222 https://doi.org/10.1007/s10532-020-09904-z
209
G Xu, Q Lu, L Yu, S Wang (2019). Tetrachloroethene primes reductive dechlorination of polychlorinated biphenyls in a river sediment microcosm. Water Research, 152: 87–95 https://doi.org/10.1016/j.watres.2018.12.061
210
Y Xu, K B Gregory, J M Vanbriesen (2018). Effects of ferric oxyhydroxide on anaerobic microbial dechlorination of polychlorinated biphenyls in Hudson and Grasse River sediment microcosms: dechlorination extent, preferences, ortho removal, and its enhancement. Frontiers in Microbiology, 9: 1574 https://doi.org/10.3389/fmicb.2018.01574
211
Y Xu, R M Yu, X Zhang, M B Murphy, J P Giesy, M H Lam, P K Lam, R S Wu, H Yu (2006). Effects of PCBs and MeSO2-PCBs on adrenocortical steroidogenesis in H295R human adrenocortical carcinoma cells. Chemosphere, 63(5): 772–784 https://doi.org/10.1016/j.chemosphere.2005.08.013
212
J Yan, L Han, W Gao, S Xue, M Chen (2015). Biochar supported nanoscale zerovalent iron composite used as persulfate activator for removing trichloroethylene. Bioresource Technology, 175: 269–274 https://doi.org/10.1016/j.biortech.2014.10.103
213
C Yang, A Kublik, C Weidauer, B Seiwert, L Adrian (2015). Reductive dehalogenation of oligocyclic phenolic bromoaromatics by Dehalococcoides mccartyi Strain CBDB1. Environmental Science & Technology, 49(14): 8497–8505 https://doi.org/10.1021/acs.est.5b01401
214
X Yang, D Beckmann, S Fiorenza, C Niedermeier (2005). Field study of pulsed air sparging for remediation of petroleum hydrocarbon contaminated soil and groundwater. Environmental Science & Technology, 39(18): 7279–7286 https://doi.org/10.1021/es050084h
215
S Yang, J Cheng, J Sun, Y Hu, X Liang (2013). Defluorination of aqueous perfluorooctanesulfonate by activated persulfate oxidation. PLoS One, 8(10): e74877 https://doi.org/10.1371/journal.pone.0074877
216
Y Yang, N L Capiro, T F Marcet, J Yan, K D Pennell, F E Löffler (2017a). Organohalide respiration with chlorinated ethenes under low pH conditions. Environmental Science & Technology, 51(15): 8579–8588 https://doi.org/10.1021/acs.est.7b01510
217
Y Yang, S A Higgins, J Yan, B Simsir, K Chourey, R Iyer, R L Hettich, B Baldwin, D M Ogles, F E Löffler (2017b). Grape pomace compost harbors organohalide-respiring Dehalogenimonas species with novel reductive dehalogenase genes. ISME Journal, 11(12): 2767–2780 https://doi.org/10.1038/ismej.2017.127
218
C Yao, Y Zhang, M Du, X Du, S Huang (2019). Insights into the mechanism of non-radical activation of persulfate via activated carbon for the degradation of p-chloroaniline. Chemical Engineering Journal, 362: 262–268 https://doi.org/10.1016/j.cej.2019.01.040
219
S Y Guvenc, G Varank (2021). Degradation of refractory organics in concentrated leachate by the Fenton process: Central composite design for process optimization. Frontiers of Environmental Science & Engineering, 15(1): 2 https://doi.org/10.1007/s11783-020-1294-1
220
Y Yukselen-Aksoy, K R Reddy (2012). Effect of soil composition on electrokinetically enhanced persulfate oxidation of polychlorobiphenyls. Electrochimica Acta, 86: 164–169 https://doi.org/10.1016/j.electacta.2012.03.049
221
Y Yin, J Yan, G Chen, F K Murdoch, N Pfisterer, F E Löffler (2019). Nitrous oxide is a potent inhibitor of bacterial reductive dechlorination. Environmental Science & Technology, 53(2): 692–701 https://doi.org/10.1021/acs.est.8b05871
222
M Yoshikawa, M Zhang, K Toyota (2017). Integrated anaerobic-aerobic biodegradation of multiple contaminants including chlorinated ethylenes, benzene, toluene, and dichloromethane. Water, Air, and Soil Pollution, 228(1): 25 https://doi.org/10.1007/s11270-016-3216-1
223
L Yu, Q Lu, L Qiu, G Xu, Y Zeng, X Luo, S Wang, B Mai (2018). Enantioselective dechlorination of polychlorinated biphenyls in Dehalococcoides mccartyi CG1. Applied and Environmental Microbiology, 84(21): e01300–18 https://doi.org/10.1128/AEM.01300-18
224
Z Y Yu, W H Wang, L Song, L Q Lu, Z Y Wang, X F Jiang, C N Dong, R Y Qiu (2013). Acceleration comparison between Fe2+/H2O2 and Co2+/oxone for decolouration of azo dyes in homogeneous systems. Chemical Engineering Journal, 234: 475–483 https://doi.org/10.1016/j.cej.2013.08.013
225
S Yuan, P Liao, A N Alshawabkeh (2014). Electrolytic manipulation of persulfate reactivity by iron electrodes for trichloroethylene degradation in groundwater. Environmental Science & Technology, 48(1): 656–663 https://doi.org/10.1021/es404535q
226
Y Yuan, H Tao, J Fan, L Ma (2015). Degradation of p-chloroaniline by persulfate activated with ferrous sulfide ore particles. Chemical Engineering Journal, 268: 38–46 https://doi.org/10.1016/j.cej.2014.12.092
227
X Zhai, I Hua, P S C Rao, L S Lee (2006). Cosolvent-enhanced chemical oxidation of perchloro-ethylene by potassium permanganate. Journal of Contaminant Hydrology, 82(1–2): 61–74 https://doi.org/10.1016/j.jconhyd.2005.08.007
228
B Zhang, Y Guo, J Huo, H Xie, C Xu, S Liang (2020). Combining chemical oxidation and bioremediation for petroleum polluted soil remediation by BC-nZVI activated persulfate. Chemical Engineering Journal, 382: 123055 https://doi.org/10.1016/j.cej.2019.123055
229
B T Zhang, Y Zhang, Y Teng, M Fan (2015). Sulfate radical and its application in decontamination technologies. Critical Reviews in Environmental Science and Technology, 45(16): 1756–1800 https://doi.org/10.1080/10643389.2014.970681
230
T Zhang, Y Chen, Y Wang, J Le Roux, Y Yang, J P Croue (2014). Efficient peroxydisulfate activation process not relying on sulfate radical generation for water pollutant degradation. Environmental Science & Technology, 48(10): 5868–5875 https://doi.org/10.1021/es501218f
231
T Zhang, H Zhu, J P Croue (2013). Production of sulfate radical from peroxymonosulfate induced by a magnetically separable CuFe2O4 spinel in water: Efficiency, stability, and mechanism. Environmental Science & Technology, 47(6): 2784–2791 https://doi.org/10.1021/es304721g
232
Z F Zhang, L Zhong, M D White, J E Szecsody (2012). Experimental investigation of the effective foam viscosity in unsaturated porous media. Vadose Zone Journal, 11(4): 9 https://doi.org/10.2136/vzj2011.0190
233
S Zhao, C Ding, J He (2015). Detoxification of 1,1,2-trichloroethane to ethene by desulfitobacterium and identification of its functional reductase gene. PLoS One, 10(4): e0119507 https://doi.org/10.1371/journal.pone.0119507
234
S Zhao, J He (2019). Reductive dechlorination of high concentrations of chloroethenes by a Dehalococcoides mccartyi strain 11G. FEMS Microbiology Ecology, 95(1)
235
H Zhen, S Du, L A Rodenburg, G Mainelis, D E Fennell (2014). Reductive dechlorination of 1,2,3,7,8-pentachlorodibenzo-p-dioxin and Aroclor 1260, 1254 and 1242 by a mixed culture containing Dehalococcoides mccartyi strain 195. Water Research, 52: 51–62 https://doi.org/10.1016/j.watres.2013.12.038
236
D Zhi, Y Lin, L Jiang, Y Zhou, A Huang, J Yang, L Luo (2020). Remediation of persistent organic pollutants in aqueous systems by electrochemical activation of persulfates: A review. Journal of Environmental Management, 260: 110125 https://doi.org/10.1016/j.jenvman.2020.110125
237
P Zhou, J Zhang, Y Zhang, G Zhang, W Li, C Wei, J Liang, Y Liu, S Shu (2018). Degradation of 2,4-dichlorophenol by activating persulfate and peroxomonosulfate using micron or nanoscale zero-valent copper. Journal of Hazardous Materials, 344: 1209–1219 https://doi.org/10.1016/j.jhazmat.2017.11.023
238
C Zhu, G Fang, D D Dionysiou, C Liu, J Gao, W Qin, D Zhou (2016b). Efficient transformation of DDTs with Persulfate Activation by Zero-valent Iron Nanoparticles: A Mechanistic Study. Journal of Hazardous Materials, 316: 232–241 https://doi.org/10.1016/j.jhazmat.2016.05.040
239
C Zhu, F Zhu, D D Dionysiou, D Zhou, G Fang, J Gao (2018a). Contribution of alcohol radicals to contaminant degradation in quenching studies of persulfate activation process. Water Research, 139: 66–73 https://doi.org/10.1016/j.watres.2018.03.069
240
C Zhu, F Zhu, C Liu, N Chen, D Zhou, G Fang, J Gao (2018b). Reductive hexachloroethane degradation by S2O8·− with thermal activation of persulfate under anaerobic conditions. Environmental Science & Technology, 52(15): 8548–8557 https://doi.org/10.1021/acs.est.7b06279
241
S Zhu, X Huang, F Ma, L Wang, X Duan, S Wang (2018c). Catalytic removal of aqueous contaminants on N-doped graphitic biochars: Inherent roles of adsorption and nonradical mechanisms. Environmental Science & Technology, 52(15): 8649–8658 https://doi.org/10.1021/acs.est.8b01817
242
S Zhu, X Li, J Kang, X Duan, S Wang (2019a). Persulfate activation on crystallographic manganese oxides: Mechanism of singlet oxygen evolution for nonradical selective degradation of aqueous contaminants. Environmental Science & Technology, 53(1): 307–315 https://doi.org/10.1021/acs.est.8b04669
243
X Zhu, E Du, H Ding, Y Lin, T Long, H Li, L Wang (2016a). QSAR modeling of VOCs degradation by ferrous-activated persulfate oxidation. Desalination and Water Treatment, 57(27): 12546–12560 https://doi.org/10.1080/19443994.2015.1049557
244
X Zhu, Y Zhong, H Wang, D Li, Y Deng, P Peng (2019b). New insights into the anaerobic microbial degradation of decabrominated diphenyl ether (BDE-209) in coastal marine sediments. Environmental Pollution, 255: 113151 https://doi.org/10.1016/j.envpol.2019.113151