Cultivation of Chlorella sp. HQ in inland saline-alkaline water under different light qualities
Xiaoya Liu, Yu Hong(), Yu Liu
Beijing Key Laboratory for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
A Ben-Amotz, A Shaish, M Avron (1989). Mode of action of the massively accumulated beta-carotene of Dunaliella bardawil in protecting the alga against damage by excess irradiation. Plant Physiology, 91(3): 1040–1043 https://doi.org/10.1104/pp.91.3.1040
pmid: 16667108
2
E G Bligh, W J Dyer (1959). A rapid method of total lipid extraction and purification. Canadian Journal of Biochemistry and Physiology, 37(8): 911–917 https://doi.org/10.1139/o59-099
pmid: 13671378
3
A Brar, M Kumar, V Vivekanand, N Pareek (2019). Phycoremediation of textile effluent contaminated water bodies employing microalgae: Nutrient sequestration and biomass production studies. International Journal of Environmental Science and Technology, 16(12): 7757–7768 https://doi.org/10.1007/s13762-018-2133-9
4
H Campos, W J Boeing, B N Dungan, T Schaub (2014). Cultivating the marine microalga Nannochloropsis salina under various nitrogen sources: Effect on biovolume yields, lipid content and composition, and invasive organisms. Biomass and Bioenergy, 66: 301–307 https://doi.org/10.1016/j.biombioe.2014.04.005
5
F Di Caprio, L Tayou Nguemna, M Stoller, M Giona, F Pagnanelli (2021). Microalgae cultivation by uncoupled nutrient supply in sequencing batch reactor (SBR) integrated with olive mill wastewater treatment. Chemical Engineering Journal, 410: 128417 https://doi.org/10.1016/j.cej.2021.128417
6
X Y Deng, K Gao, R C Zhang, M Addy, Q Lu, H Y Ren, P Chen, Y H Liu, R Ruan (2017). Growing Chlorella vulgaris on thermophilic anaerobic digestion swine manure for nutrient removal and biomass production. Bioresource Technology, 243: 417–425 https://doi.org/10.1016/j.biortech.2017.06.141
pmid: 28688324
7
N Fatima, V Kumar, B S Rawat, K K Jaiswal (2019). Enhancing algal biomass production and nutrients removal from municipal wastewater via a novel mini photocavity bioreactor. Biointerface Research in Applied Chemistry, 10: 4714–4720 https://doi.org/10.33263/BRIAC101.714720
8
G Fiutak, M Michalczyk (2020). Effect of artificial light source on pigments, thiocyanates and ascorbic acid content in kale sprouts (Brassica oleracea L. var. Sabellica L.). Food Chemistry, 330: 127189.
pmid: 32521396
9
K Gopalakrishnan, J Roostaei, Y Zhang (2018). Mixed culture of Chlorella sp. and wastewater wild algae for enhanced biomass and lipid accumulation in artificial wastewater medium. Frontiers of Environmental Science & Engineering, 12(4): 14 https://doi.org/10.1007/s11783-018-1075-2
10
M S Graboski, R L McCormick (1998). Combustion of fat and vegetable oil derived fuels in diesel engines. Progress in Energy and Combustion Science 24: 125–164 https://doi.org/10.1016/S0360-1285(97)00034-8
11
S Hena, N Abida, S Tabassum (2015). Screening of facultative strains of high lipid producing microalgae for treating surfactant mediated municipal wastewater. RSC Advances, 5(120): 98805–98813 https://doi.org/10.1039/C5RA20019A
12
S H Ho, A Nakanishi, X Ye, J S Chang, C Y Chen, T Hasunuma, A Kondo (2015). Dynamic metabolic profiling of the marine microalga Chlamydomonas sp. JSC4 and enhancing its oil production by optimizing light intensity. Biotechnology for Biofuels, 8(1): 48–64 https://doi.org/10.1186/s13068-015-0226-y
pmid: 25802553
13
S Huo, J Liu, F Zhu, S Basheer, D Necas, R Zhang, K Li, D Chen, P Cheng, K Cobb, P Chen, B Brandel, R Ruan (2020). Post treatment of swine anaerobic effluent by weak electric field following intermittent vacuum assisted adjustment of N:P ratio for oil-rich filamentous microalgae production. Bioresource Technology, 314: 123718 https://doi.org/10.1016/j.biortech.2020.123718
pmid: 32599529
14
J Hwang, N Maier (2019). Effects of LED-controlled spatially-averaged light intensity and wavelength on Neochloris oleoabundans growth and lipid composition. Algal Research, 41: 101573. https://doi.org/10.1016/j.algal.2019.101573
15
M Islam, M Magnusson, R Brown, G Ayoko, M Nabi, K Heimann (2013). Microalgal species selection for biodiesel production based on fuel properties derived from fatty acid profiles. Energies, 6(11): 5676–5702 https://doi.org/10.3390/en6115676
16
D G Kim, C Lee, S M Park, Y E Choi (2014). Manipulation of light wavelength at appropriate growth stage to enhance biomass productivity and fatty acid methyl ester yield using Chlorella vulgaris. Bioresource Technology, 159: 240–248 https://doi.org/10.1016/j.biortech.2014.02.078
pmid: 24657754
17
S H Kim, I Y Sunwoo, H J Hong, C C Awah, G T Jeong, S K Kim (2019). Lipid and unsaturated fatty acid productions from three microalgae using nitrate and light-emitting diodes with complementary LED wavelength in a two-phase culture system. Bioprocess and Biosystems Engineering, 42(9): 1517–1526 https://doi.org/10.1007/s00449-019-02149-y
pmid: 31111212
18
G Knothe (2002). Structure indices in FA chemistry. How relevant is the iodine value? Journal of the American Oil Chemists’ Society, 79(9): 847–854 https://doi.org/10.1007/s11746-002-0569-4
19
G Knothe, A C Matheaus, T W Ryan III (2003). Cetane numbers of branched and straight chain fatty esters determined in an ignition quality tester. Fuel, 82(8): 971–975 https://doi.org/10.1016/S0016-2361(02)00382-4
20
D Li, Y Yuan, D Cheng, Q Zhao (2019). Effect of light quality on growth rate, carbohydrate accumulation, fatty acid profile and lutein biosynthesis of Chlorella sp. AE10. Bioresource Technology, 291: 121783 https://doi.org/10.1016/j.biortech.2019.121783
pmid: 31326682
21
X Li, H Y Hu, J Yang, Y H Wu (2010). Enhancement effect of ethyl-2-methyl acetoacetate on triacylglycerols production by a freshwater microalga, Scenedesmus sp. LX1. Bioresource Technology, 101(24): 9819–9821 https://doi.org/10.1016/j.biortech.2010.07.103
22
P Liu, Z Yang, Y Hong, Y Hou (2018). An in situ method for synthesis of magnetic nanomaterials and efficient harvesting for oleaginous microalgae in algal culture. Algal Research, 31:173–182 https://doi.org/10.1016/j.algal.2018.02.013
23
X Liu, Y Hong, Y He, Y Liu (2019). Growth and high-valued products accumulation characteristics of microalgae in saline-alkali leachate from Inner Mongolia. Environmental Science and Pollution Research International, 26(36): 36985–36992 https://doi.org/10.1007/s11356-019-06842-z
pmid: 31745799
24
X Y Liu, Y Hong, W P Gu (2021). Influence of light quality on Chlorella growth, photosynthetic pigments and high-valued products accumulation in coastal saline-alkali leachate. Journal of Water Reuse and Desalination, 11(2): 301–311 https://doi.org/10.2166/wrd.2021.088
25
X Y Liu, Y Hong, Y T He, W P Gu (2020). Comparison of oleaginous microalgal growth and lipid accumulation in saline-alkali leachate: A case from Shandong Province. Desalination and Water Treatment, 187: 390–398 https://doi.org/10.5004/dwt.2020.25477
26
Q F Lv, L S Jiang, B Ma, B H Zhao, Z S Huo (2018). A study on the effect of the salt content on the solidification of sulfate saline soil solidified with an alkali-activated geopolymer. Construction & Building Materials, 176: 68–74 https://doi.org/10.1016/j.conbuildmat.2018.05.013
27
V Makareviciene, E Sendzikiene, I Gaide (2021). Application of heterogeneous catalysis to biodiesel synthesis using microalgae oil. Frontiers of Environmental Science & Engineering, 15(5): 97 https://doi.org/10.1007/s11783-020-1343-9
28
A Mishra, K Medhi, N Maheshwari, S Srivastava, I S Thakur (2018). Biofuel production and phycoremediation by Chlorella sp. ISTLA1 isolated from landfill site. Bioresource Technology, 253: 121–129 https://doi.org/10.1016/j.biortech.2017.12.012
pmid: 29335189
29
H Oldenhof, V Zachleder, H Van Den Ende (2006). Blue- and red-light regulation of the cell cycle in Chlamydomonas reinhardtii (Chlorophyta). European Journal of Phycology, 41(3): 313–320 https://doi.org/10.1080/09670260600699920
30
S Pereira, A Otero (2019). Effect of light quality on carotenogenic and non-carotenogenic species of the genus Dunaliella under nitrogen deficiency. Algal Research, 44: 101725 https://doi.org/10.1016/j.algal.2019.101725
31
L F Ramírez-Verduzco, J E Rodríguez-Rodríguez, A D R Jaramillo-Jacob (2012). Predicting cetane number, kinematic viscosity, density and higher heating value of biodiesel from its fatty acid methyl ester composition. Fuel, 91(1): 102–111 https://doi.org/10.1016/j.fuel.2011.06.070
32
P H Ravelonandro, D H Ratianarivo, C Joannis-Cassan, A Isambert, M Raherimandimby (2008). Influence of light quality and intensity in the cultivation of Spirulina platensis from Toliara (Madagascar) in a closed system. Journal of Chemical Technology and Biotechnology (Oxford, Oxfordshire), 83(6): 842–848 https://doi.org/10.1002/jctb.1878
33
E S Salama, A N Kabra, M K Ji, J R Kim, B Min, B H Jeon (2014). Enhancement of microalgae growth and fatty acid content under the influence of phytohormones. Bioresource Technology, 172: 97–103 https://doi.org/10.1016/j.biortech.2014.09.002
pmid: 25247249
34
H Sudibyo, Y S Pradana, T T Samudra, A Budiman, Indarto, E A Suyono (2017). Study of cultivation under different colors of light and growth kinetic study of Chlorella zofingiensis Dönz for biofuel production. Energy Procedia, 105: 270–276 https://doi.org/10.1016/j.egypro.2017.03.313
35
A F Talebi, S K Mohtashami, M Tabatabaei, M Tohidfar, A Bagheri, M Zeinalabedini, H H Mirzaei, M Mirzajanzadeh, Mirzajanzadeh, S M Shafaroudi, S Bakhtiari (2013). Fatty acids profiling: A selective criterion for screening microalgae strains for biodiesel production. Algal Research, 2: 258–267
H N P Vo, H H Ngo, W Guo, K H Nguyen, S W Chang, D D Nguyen, Y Liu, Y Liu, A Ding, X T Bui (2020). Micropollutants cometabolism of microalgae for wastewater remediation: Effect of carbon sources to cometabolism and degradation products. Water Research, 183: 115974 https://doi.org/10.1016/j.watres.2020.115974
pmid: 32652348
38
A Wishkerman, E Wishkerman (2017). Application note: A novel low-cost open-source LED system for microalgae cultivation. Computers and Electronics in Agriculture, 132: 56–62 https://doi.org/10.1016/j.compag.2016.11.015
39
T You, S M Barnett (2004). Effect of light quality on production of extracellular polysaccharides and growth rate of Porphyridium cruentum. Biochemical Engineering Journal, 19(3): 251–258 https://doi.org/10.1016/j.bej.2004.02.004
40
H S Yun, Y S Kim, H S Yoon (2020). Characterization of Chlorella sorokiniana and Chlorella vulgaris fatty acid components under a wide range of light intensity and growth temperature for their use as biological resources. Heliyon, 6(7): e04447 https://doi.org/10.1016/j.heliyon.2020.e04447
pmid: 32743091
41
Y Zhong, P Jin, J J Cheng (2018). A comprehensive comparable study of the physiological properties of four microalgal species under different light wavelength conditions. Planta, 248(2): 489–498 https://doi.org/10.1007/s00425-018-2899-5
pmid: 29779121
42
L L Zhuang, D Yu, J Zhang, F F Liu, Y H Wu, T Y Zhang, G H Dao, H Y Hu (2018). The characteristics and influencing factors of the attached microalgae cultivation: A review. Renewable & Sustainable Energy Reviews, 94: 1110–1119 https://doi.org/10.1016/j.rser.2018.06.006