Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

邮发代号 80-973

2018 Impact Factor: 3.883

Frontiers of Environmental Science & Engineering  2022, Vol. 16 Issue (4): 45   https://doi.org/10.1007/s11783-021-1479-2
  本期目录
Cultivation of Chlorella sp. HQ in inland saline-alkaline water under different light qualities
Xiaoya Liu, Yu Hong(), Yu Liu
Beijing Key Laboratory for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
 全文: PDF(965 KB)   HTML
Abstract

• Optimal growth of Chlorella in inland saline-alkaline water was achieved by blue LED.

• Lipids of Chlorella sp. HQ were mainly composed of C16:0 and C18:2 under various LEDs.

• The BiodieselAnalyzer© software was used to evaluate the Chlorella biodiesel quality.

Chlorella sp. HQ was a high-quality feedstock for biodiesel production.

Inland saline-alkaline water can be used for the low-cost cultivation of microalgae, but whether algal biomass under various light sources has the potential to produce biodiesel remains to be developed. Herein, the influence of different light-emitting diode (LEDs) light colors (blue, red, white, mixed blue-red, and mixed blue-white LED) on the growth performance, lipid accumulation, and fatty acid composition of Chlorella sp. HQ cultivated in inland saline-alkaline water was investigated. The highest algal density was obtained under blue LEDs at the end of cultivation, reaching 1.93±0.03 × 107 cells/mL. White LEDs can improve biomass yield, total lipid yield, and triacylglycerol yield per algal cell. The main fatty acid components of Chlorella from inland saline-alkaline water were palmitic acid and linoleic acid. The BiodieselAnalyzer© software was used to predict algal biodiesel quality by estimating different quality parameters. The cetane number, kinematic viscosity, and density of Chlorella biodiesel were 51.714–67.69, 3.583–3.845 mm2/s, and 0.834–0.863 g/cm3, respectively. This further proved that the Chlorella biomass obtained from inland saline-alkaline water has the potential to be used as a high-quality biodiesel feedstock.

Key wordsLight quality    Chlorella    Inland saline-alkaline water    Fatty acid    Biodiesel property
收稿日期: 2021-03-18      出版日期: 2021-08-11
Corresponding Author(s): Yu Hong   
 引用本文:   
. [J]. Frontiers of Environmental Science & Engineering, 2022, 16(4): 45.
Xiaoya Liu, Yu Hong, Yu Liu. Cultivation of Chlorella sp. HQ in inland saline-alkaline water under different light qualities. Front. Environ. Sci. Eng., 2022, 16(4): 45.
 链接本文:  
https://academic.hep.com.cn/fese/CN/10.1007/s11783-021-1479-2
https://academic.hep.com.cn/fese/CN/Y2022/V16/I4/45
Fig.1  
Fig.2  
Light sources K (107 cells/mL) r (d?1) Rmax
(107 cells/(mL×d))
Blue light 2.22±0.32 0.26±0.05 0.14±0.02
Red light 1.80±0.11 0.30±0.03 0.14±0.02
White light 1.28±0.03 0.32±0.03 0.10±0.01
Blue-red light 1.91±0.18 0.25±0.03 0.12±0.02
Blue-white light 1.90±0.33 0.24±0.04 0.11±0.02
Tab.1  
Fig.3  
Wastewater Microalgae Biomass productivity (mg/L/d) Lipid content (%) Ref.
Municipal wastewater Chorella inutissima 995 14 Fatima et al., 2019
Municipal wastewater Chlorella vulgaris 129 26.41 Hena et al., 2015
Swine wastewater Tribonema sp. 145.71 55.4 Huo et al., 2020
Swine manure Chlorella vulgaris 157.14 17.4 Deng et al., 2017
Domestic treatment plant Chlorella sp. ISTLA1 50 43.8 Mishra et al., 2018
Textile wastewater Chlorella pyrenoidosa 12.97 Brar et al., 2019
Saline-alkaline water Chlorella sp. HQ 8.75–13.21 55.76–73.46 This study
Tab.2  
Fig.4  
Fatty acid Fatty acid yield (μg/mL)
Blue light Red light White light Blue-red light Blue-white light
C14:0 0.06±0.01 0.08±0.01 0.27±0.02
C16:0 2.06±0.10 2.38±0.21 3.41±0.20 5.04±0.25 2.75±0.19
C16:1 0.71±0.06 0.88±0.06 1.21±0.08 2.03±0.15 0.65±0.07
C17:0 0.11±0.01 0.1±0.01 0.2±0.03 0.32±0.02 0.16±0.01
C17:1 0.11±0.01 0.19±0.02 0.17±0.01 0.37±0.03 0.21±0.01
C18:0 0.41±0.03 0.72±0.08 1.13±0.06 1.55±0.05 0.85±0.05
C18:1 0.34±0.03 0.79±0.07 0.86±0.03 1.00±0.07 0.56±0.05
C18:2 2.77±0.21 4.01±0.26 4.33±0.26 7.52±0.71 0.04±0.00
C24:0 0.11±0.01 0.19±0.02 0.29±0.03 0.57±0.05 0.23±0.02
Total
conconcontent
6.62±0.38 9.32±0.50 11.69±0.94 18.67±0.88 5.44±0.23
Tab.3  
Fig.5  
Fig.6  
Properties Units Chlorella sp. HQ (This study) Chlorella vulgarisa) Chlorella salina a) Soybean b)
Blue LED Red LED White LED Blue-red LED Blue-white LED
DU (degree of unsaturation) 101.33 106.02 94.30 99.87 27.85 116.59 99.78 122.00
SV (saponification value) mg/g 203.41 201.37 203.24 202.01 201.45 194.00 180.97
IV (iodine value) g I2/100 g 92.37 96.40 85.80 90.77 25.35 135.26 117.92 116.64
CN (cetane number) 52.35 51.71 53.85 52.90 67.69 44.00 49.93
LCSF (long chain saturated factor) 6.17 6.43 7.75 6.85 12.83 6.71 6.07 3.10
CFPP (cold filter plugging point) °C 2.90 3.73 7.88 5.05 23.82 4.60 2.58 −6.74
CP (cloud point) °C 11.36 8.43 10.36 9.20 21.60 2.66 6.32 0.79
PP (pour point) °C 5.51 2.33 4.43 3.17 16.62
APE (allylic position equivalent) 88.90 94.53 81.47 85.94 11.61 77.99 70.38 69.00
BAPE (bis-allylic position equivalent) 41.85 43.04 37.04 40.30 0.68 115.41 95.65 146.00
OS (oxidation stability) h 5.41 5.33 5.77 5.52 176.02
HHV (higher heating value) 38.69 38.58 38.80 38.59 37.89
υ (kinematic viscosity) mm2/s 3.58 3.59 3.67 3.62 3.85
ρ (density) g/cm3 0.86 0.86 0.86 0.86 0.83
Tab.4  
1 A Ben-Amotz, A Shaish, M Avron (1989). Mode of action of the massively accumulated beta-carotene of Dunaliella bardawil in protecting the alga against damage by excess irradiation. Plant Physiology, 91(3): 1040–1043
https://doi.org/10.1104/pp.91.3.1040 pmid: 16667108
2 E G Bligh, W J Dyer (1959). A rapid method of total lipid extraction and purification. Canadian Journal of Biochemistry and Physiology, 37(8): 911–917
https://doi.org/10.1139/o59-099 pmid: 13671378
3 A Brar, M Kumar, V Vivekanand, N Pareek (2019). Phycoremediation of textile effluent contaminated water bodies employing microalgae: Nutrient sequestration and biomass production studies. International Journal of Environmental Science and Technology, 16(12): 7757–7768
https://doi.org/10.1007/s13762-018-2133-9
4 H Campos, W J Boeing, B N Dungan, T Schaub (2014). Cultivating the marine microalga Nannochloropsis salina under various nitrogen sources: Effect on biovolume yields, lipid content and composition, and invasive organisms. Biomass and Bioenergy, 66: 301–307
https://doi.org/10.1016/j.biombioe.2014.04.005
5 F Di Caprio, L Tayou Nguemna, M Stoller, M Giona, F Pagnanelli (2021). Microalgae cultivation by uncoupled nutrient supply in sequencing batch reactor (SBR) integrated with olive mill wastewater treatment. Chemical Engineering Journal, 410: 128417
https://doi.org/10.1016/j.cej.2021.128417
6 X Y Deng, K Gao, R C Zhang, M Addy, Q Lu, H Y Ren, P Chen, Y H Liu, R Ruan (2017). Growing Chlorella vulgaris on thermophilic anaerobic digestion swine manure for nutrient removal and biomass production. Bioresource Technology, 243: 417–425
https://doi.org/10.1016/j.biortech.2017.06.141 pmid: 28688324
7 N Fatima, V Kumar, B S Rawat, K K Jaiswal (2019). Enhancing algal biomass production and nutrients removal from municipal wastewater via a novel mini photocavity bioreactor. Biointerface Research in Applied Chemistry, 10: 4714–4720
https://doi.org/10.33263/BRIAC101.714720
8 G Fiutak, M Michalczyk (2020). Effect of artificial light source on pigments, thiocyanates and ascorbic acid content in kale sprouts (Brassica oleracea L. var. Sabellica L.). Food Chemistry, 330: 127189.
pmid: 32521396
9 K Gopalakrishnan, J Roostaei, Y Zhang (2018). Mixed culture of Chlorella sp. and wastewater wild algae for enhanced biomass and lipid accumulation in artificial wastewater medium. Frontiers of Environmental Science & Engineering, 12(4): 14
https://doi.org/10.1007/s11783-018-1075-2
10 M S Graboski, R L McCormick (1998). Combustion of fat and vegetable oil derived fuels in diesel engines. Progress in Energy and Combustion Science 24: 125–164
https://doi.org/10.1016/S0360-1285(97)00034-8
11 S Hena, N Abida, S Tabassum (2015). Screening of facultative strains of high lipid producing microalgae for treating surfactant mediated municipal wastewater. RSC Advances, 5(120): 98805–98813
https://doi.org/10.1039/C5RA20019A
12 S H Ho, A Nakanishi, X Ye, J S Chang, C Y Chen, T Hasunuma, A Kondo (2015). Dynamic metabolic profiling of the marine microalga Chlamydomonas sp. JSC4 and enhancing its oil production by optimizing light intensity. Biotechnology for Biofuels, 8(1): 48–64
https://doi.org/10.1186/s13068-015-0226-y pmid: 25802553
13 S Huo, J Liu, F Zhu, S Basheer, D Necas, R Zhang, K Li, D Chen, P Cheng, K Cobb, P Chen, B Brandel, R Ruan (2020). Post treatment of swine anaerobic effluent by weak electric field following intermittent vacuum assisted adjustment of N:P ratio for oil-rich filamentous microalgae production. Bioresource Technology, 314: 123718
https://doi.org/10.1016/j.biortech.2020.123718 pmid: 32599529
14 J Hwang, N Maier (2019). Effects of LED-controlled spatially-averaged light intensity and wavelength on Neochloris oleoabundans growth and lipid composition. Algal Research, 41: 101573.
https://doi.org/10.1016/j.algal.2019.101573
15 M Islam, M Magnusson, R Brown, G Ayoko, M Nabi, K Heimann (2013). Microalgal species selection for biodiesel production based on fuel properties derived from fatty acid profiles. Energies, 6(11): 5676–5702
https://doi.org/10.3390/en6115676
16 D G Kim, C Lee, S M Park, Y E Choi (2014). Manipulation of light wavelength at appropriate growth stage to enhance biomass productivity and fatty acid methyl ester yield using Chlorella vulgaris. Bioresource Technology, 159: 240–248
https://doi.org/10.1016/j.biortech.2014.02.078 pmid: 24657754
17 S H Kim, I Y Sunwoo, H J Hong, C C Awah, G T Jeong, S K Kim (2019). Lipid and unsaturated fatty acid productions from three microalgae using nitrate and light-emitting diodes with complementary LED wavelength in a two-phase culture system. Bioprocess and Biosystems Engineering, 42(9): 1517–1526
https://doi.org/10.1007/s00449-019-02149-y pmid: 31111212
18 G Knothe (2002). Structure indices in FA chemistry. How relevant is the iodine value? Journal of the American Oil Chemists’ Society, 79(9): 847–854
https://doi.org/10.1007/s11746-002-0569-4
19 G Knothe, A C Matheaus, T W Ryan III (2003). Cetane numbers of branched and straight chain fatty esters determined in an ignition quality tester. Fuel, 82(8): 971–975
https://doi.org/10.1016/S0016-2361(02)00382-4
20 D Li, Y Yuan, D Cheng, Q Zhao (2019). Effect of light quality on growth rate, carbohydrate accumulation, fatty acid profile and lutein biosynthesis of Chlorella sp. AE10. Bioresource Technology, 291: 121783
https://doi.org/10.1016/j.biortech.2019.121783 pmid: 31326682
21 X Li, H Y Hu, J Yang, Y H Wu (2010). Enhancement effect of ethyl-2-methyl acetoacetate on triacylglycerols production by a freshwater microalga, Scenedesmus sp. LX1. Bioresource Technology, 101(24): 9819–9821
https://doi.org/10.1016/j.biortech.2010.07.103
22 P Liu, Z Yang, Y Hong, Y Hou (2018). An in situ method for synthesis of magnetic nanomaterials and efficient harvesting for oleaginous microalgae in algal culture. Algal Research, 31:173–182
https://doi.org/10.1016/j.algal.2018.02.013
23 X Liu, Y Hong, Y He, Y Liu (2019). Growth and high-valued products accumulation characteristics of microalgae in saline-alkali leachate from Inner Mongolia. Environmental Science and Pollution Research International, 26(36): 36985–36992
https://doi.org/10.1007/s11356-019-06842-z pmid: 31745799
24 X Y Liu, Y Hong, W P Gu (2021). Influence of light quality on Chlorella growth, photosynthetic pigments and high-valued products accumulation in coastal saline-alkali leachate. Journal of Water Reuse and Desalination, 11(2): 301–311
https://doi.org/10.2166/wrd.2021.088
25 X Y Liu, Y Hong, Y T He, W P Gu (2020). Comparison of oleaginous microalgal growth and lipid accumulation in saline-alkali leachate: A case from Shandong Province. Desalination and Water Treatment, 187: 390–398
https://doi.org/10.5004/dwt.2020.25477
26 Q F Lv, L S Jiang, B Ma, B H Zhao, Z S Huo (2018). A study on the effect of the salt content on the solidification of sulfate saline soil solidified with an alkali-activated geopolymer. Construction & Building Materials, 176: 68–74
https://doi.org/10.1016/j.conbuildmat.2018.05.013
27 V Makareviciene, E Sendzikiene, I Gaide (2021). Application of heterogeneous catalysis to biodiesel synthesis using microalgae oil. Frontiers of Environmental Science & Engineering, 15(5): 97
https://doi.org/10.1007/s11783-020-1343-9
28 A Mishra, K Medhi, N Maheshwari, S Srivastava, I S Thakur (2018). Biofuel production and phycoremediation by Chlorella sp. ISTLA1 isolated from landfill site. Bioresource Technology, 253: 121–129
https://doi.org/10.1016/j.biortech.2017.12.012 pmid: 29335189
29 H Oldenhof, V Zachleder, H Van Den Ende (2006). Blue- and red-light regulation of the cell cycle in Chlamydomonas reinhardtii (Chlorophyta). European Journal of Phycology, 41(3): 313–320
https://doi.org/10.1080/09670260600699920
30 S Pereira, A Otero (2019). Effect of light quality on carotenogenic and non-carotenogenic species of the genus Dunaliella under nitrogen deficiency. Algal Research, 44: 101725
https://doi.org/10.1016/j.algal.2019.101725
31 L F Ramírez-Verduzco, J E Rodríguez-Rodríguez, A D R Jaramillo-Jacob (2012). Predicting cetane number, kinematic viscosity, density and higher heating value of biodiesel from its fatty acid methyl ester composition. Fuel, 91(1): 102–111
https://doi.org/10.1016/j.fuel.2011.06.070
32 P H Ravelonandro, D H Ratianarivo, C Joannis-Cassan, A Isambert, M Raherimandimby (2008). Influence of light quality and intensity in the cultivation of Spirulina platensis from Toliara (Madagascar) in a closed system. Journal of Chemical Technology and Biotechnology (Oxford, Oxfordshire), 83(6): 842–848
https://doi.org/10.1002/jctb.1878
33 E S Salama, A N Kabra, M K Ji, J R Kim, B Min, B H Jeon (2014). Enhancement of microalgae growth and fatty acid content under the influence of phytohormones. Bioresource Technology, 172: 97–103
https://doi.org/10.1016/j.biortech.2014.09.002 pmid: 25247249
34 H Sudibyo, Y S Pradana, T T Samudra, A Budiman, Indarto, E A Suyono (2017). Study of cultivation under different colors of light and growth kinetic study of Chlorella zofingiensis Dönz for biofuel production. Energy Procedia, 105: 270–276
https://doi.org/10.1016/j.egypro.2017.03.313
35 A F Talebi, S K Mohtashami, M Tabatabaei, M Tohidfar, A Bagheri, M Zeinalabedini, H H Mirzaei, M Mirzajanzadeh, Mirzajanzadeh, S M Shafaroudi, S Bakhtiari (2013). Fatty acids profiling: A selective criterion for screening microalgae strains for biodiesel production. Algal Research, 2: 258–267
36 A F Talebi, M Tabatabaei, Y Chisti (2014). BiodieselAnalyzer©: A user-friendly software for predicting the properties of prospective biodiesel. Biofuel Research Journal, 2: 55–57
https://doi.org/10.18331/BRJ2015.1.2.4
37 H N P Vo, H H Ngo, W Guo, K H Nguyen, S W Chang, D D Nguyen, Y Liu, Y Liu, A Ding, X T Bui (2020). Micropollutants cometabolism of microalgae for wastewater remediation: Effect of carbon sources to cometabolism and degradation products. Water Research, 183: 115974
https://doi.org/10.1016/j.watres.2020.115974 pmid: 32652348
38 A Wishkerman, E Wishkerman (2017). Application note: A novel low-cost open-source LED system for microalgae cultivation. Computers and Electronics in Agriculture, 132: 56–62
https://doi.org/10.1016/j.compag.2016.11.015
39 T You, S M Barnett (2004). Effect of light quality on production of extracellular polysaccharides and growth rate of Porphyridium cruentum. Biochemical Engineering Journal, 19(3): 251–258
https://doi.org/10.1016/j.bej.2004.02.004
40 H S Yun, Y S Kim, H S Yoon (2020). Characterization of Chlorella sorokiniana and Chlorella vulgaris fatty acid components under a wide range of light intensity and growth temperature for their use as biological resources. Heliyon, 6(7): e04447
https://doi.org/10.1016/j.heliyon.2020.e04447 pmid: 32743091
41 Y Zhong, P Jin, J J Cheng (2018). A comprehensive comparable study of the physiological properties of four microalgal species under different light wavelength conditions. Planta, 248(2): 489–498
https://doi.org/10.1007/s00425-018-2899-5 pmid: 29779121
42 L L Zhuang, D Yu, J Zhang, F F Liu, Y H Wu, T Y Zhang, G H Dao, H Y Hu (2018). The characteristics and influencing factors of the attached microalgae cultivation: A review. Renewable & Sustainable Energy Reviews, 94: 1110–1119
https://doi.org/10.1016/j.rser.2018.06.006
[1] FSE-21064-OF-LXY_suppl_1 Download
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed