Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

邮发代号 80-973

2018 Impact Factor: 3.883

Frontiers of Environmental Science & Engineering  2022, Vol. 16 Issue (4): 50   https://doi.org/10.1007/s11783-021-1484-5
  本期目录
Pelagic-benthic coupling of the microbial food web modifies nutrient cycles along a cascade-dammed river
Nan Yang1, Linqiong Wang2, Li Lin3,4, Yi Li1(), Wenlong Zhang1, Lihua Niu1, Huanjun Zhang1, Longfei Wang1
1. Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
2. College of Oceanography, Hohai University, Nanjing 210098, China
3. Department of Basin Water Environment, Changjiang River Scientific Research Institute, Wuhan 430010, China
4. Hubei Provincial Key Laboratory of Basin Water Resources and Ecological Environment Sciences, Changjiang River Scientific Research Institute, Wuhan 430010, China
 全文: PDF(1885 KB)   HTML
Abstract

• Structure of multi-trophic microbial groups were analyzed using DNA metabarcoding.

• Discontinuity and trophic interactions were observed along the dam-fragmented river.

• C, N and P cycles are driven by top-down and bottom-up forces of microbial food web.

• Pelagic-benthic coupling may intensify nutrient accumulation in the river system.

Cascade dams disrupt the river continuum, altering hydrology, biodiversity and nutrient flux. Describing the diversity of multi-trophic microbiota and assessing microbial contributions to the ecosystem processes are prerequisites for the restoration of these aquatic systems. This study investigated the microbial food web structure along a cascade-dammed river, paying special attention to the multi-trophic relationships and the potential role of pelagic-benthic coupling in nutrient cycles. Our results revealed the discontinuity in bacterial and eukaryotic community composition, functional group proportion, as well as α-diversity due to fragmentation by damming. The high microbial dissimilarity along the river, with the total multi-trophic β-diversity was 0.84, was almost completely caused by species replacement. Synchronization among trophic levels suggests potential interactions of the pelagic and the benthic groups, of which the β-diversities were primarily influenced by geographic and environmental factors, respectively. Dam-induced environmental variations, especially hydrological and nutrient variables, potentially influence the microbial food web via both top-down and bottom-up forces. We proposed that the cycles of carbon, nitrogen and phosphorus are influenced by multi-trophic groups through autotrophic and heterotrophic processes, predator–prey relationships, as well as the release of nutrients mainly by microfauna. Our results advance the notion that pelagic-benthic trophic coupling may intensify the accumulation of organic carbon, ammonium and inorganic phosphorus, thereby changing the biogeochemical patterns along river systems. As a consequence, researchers should pay more attention to the multi-trophic studies when assessing the environmental impacts, and to provide the necessary guidance for the ecological conservation and restoration of the dam-regulated systems.

Key wordsReservoir    Multi-trophic    Beta diversity    Predator-prey    Nutrient accumulation
收稿日期: 2021-05-17      出版日期: 2021-09-07
Corresponding Author(s): Yi Li   
 引用本文:   
. [J]. Frontiers of Environmental Science & Engineering, 2022, 16(4): 50.
Nan Yang, Linqiong Wang, Li Lin, Yi Li, Wenlong Zhang, Lihua Niu, Huanjun Zhang, Longfei Wang. Pelagic-benthic coupling of the microbial food web modifies nutrient cycles along a cascade-dammed river. Front. Environ. Sci. Eng., 2022, 16(4): 50.
 链接本文:  
https://academic.hep.com.cn/fese/CN/10.1007/s11783-021-1484-5
https://academic.hep.com.cn/fese/CN/Y2022/V16/I4/50
Sites Longitude Latitude
S1 (Danjiangkou Reservoir) 111°29'52" 32°33'45"
S2 111°30'33" 32°32'50"
S3 (Wangfuzhou Reservoir) 111°40'6" 32°25'16"
S4 111°48'1" 32°8'41"
S5 112°5'57" 32°1'59"
S6 (Cuijiaying Reservoir) 112°10'54" 31°58'27"
S7 112°16'10" 31°44'51"
S8 112°24'28" 31°19'23"
S9 112°33'32" 31°9'20"
S10 112°35'32" 30°52'12"
S11 (Xinglong Reservoir) 112°41'27" 30°35'55"
S12 113°4'38" 30°29'5"
S13 113°24'30" 30°24'31"
S14 113°57'48" 30°41'14"
S15 114°17'36" 30°34'13"
Tab.1  
Fig.1  
Fig.2  
Fig.3  
Groups Environmental factors Geographic factors
βSIM βNES βSOR βSIM βNES βSOR
Multi-trophic 0.34** 0.04 0.37** -0.09 0.75** 0.29*
Pelagic bacteria 0.00 0.23* 0.21* 0.06 0.65** 0.61**
Pelagic fungi 0.10 -0.05 0.10 0.35** -0.03 0.42**
Pelagic phytoplankton 0.16 -0.10 0.11 0.49** 0.17 0.53**
Pelagic protozoan 0.10 0.04 0.13 0.51** -0.20 0.42**
Pelagic zooplankton 0.08 -0.12 0.03 0.48** -0.22 0.47**
Benthic bacteria 0.25* 0.11 0.33** -0.22 0.42** -0.08
Benthic fungi 0.31* 0.04 0.31* -0.09 0.34** 0.12
Benthic algae 0.14 0.02 0.21* -0.35 0.63** 0.17
Benthic protozoan 0.20* 0.08 0.31** 0.10 0.06 0.17
Benthic zoobenthos 0.31** 0.05 0.32** 0.06 0.07 0.09
Tab.2  
Fig.4  
1 P A P Antiqueira, O L Petchey, V P Dos Santos, m De Oliveira Valéria, G Q Romero (2018). Environmental change and predator diversity drive alpha and beta diversity in freshwater macro and microorganisms. Global Change Biology, 24(8): 3715–3728
2 A Baselga (2010). Partitioning the turnover and nestedness components of beta diversity. Global Ecology and Biogeography, 19(1): 134–143
https://doi.org/10.1111/j.1466-8238.2009.00490.x
3 A Baselga, C D L Orme (2012). betapart: an R package for the study of beta diversity. Methods in Ecology and Evolution, 3(5): 808–812
https://doi.org/10.1111/j.2041-210X.2012.00224.x
4 I Bista, G R Carvalho, K Walsh, M Seymour, M Hajibabaei, D Lallias, M Christmas, S Creer (2017). Annual time-series analysis of aqueous eDNA reveals ecologically relevant dynamics of lake ecosystem biodiversity. Nature Communications, 8: 14087
https://doi.org/10.1038/ncomms14087 pmid: 28098255
5 S Bonaglia, F J A Nascimento, M Bartoli, I Klawonn, V Brüchert (2014). Meiofauna increases bacterial denitrification in marine sediments. Nature Communications, 5: 5133
https://doi.org/10.1038/ncomms6133 pmid: 25318852
6 J G Caporaso, J Kuczynski, J Stombaugh, K Bittinger, F D Bushman, E K Costello, N Fierer, A G Peña, J K Goodrich, J I Gordon, G A Huttley, S T Kelley, D Knights, J E Koenig, R E Ley, C A Lozupone, D McDonald, B D Muegge, M Pirrung, J Reeder, J R Sevinsky, P J Turnbaugh, W A Walters, J Widmann, T Yatsunenko, J Zaneveld, R Knight (2010). QIIME allows analysis of high-throughput community sequencing data. Nature Methods, 7(5): 335–336
https://doi.org/10.1038/nmeth.f.303 pmid: 20383131
7 J Chen, P Wang, C Wang, X Wang, L Miao, S Liu, Q Yuan (2018). Bacterial communities in riparian sediments: A large-scale longitudinal distribution pattern and response to dam construction. Frontiers in Microbiology, 9: 999
8 M Chen, F Chen, B Zhao, Q L Wu, F Kong (2010). Seasonal variation of microbial eukaryotic community composition in the large, shallow, subtropical Taihu Lake, China. Aquatic Ecology, 44: 1–12
https://doi.org/10.1007/s10452-009-9254-7
9 Q Chen, W Shi, J Huisman, S C Maberly, J Zhang, J Yu, Y Chen, D Tonina, Q Yi (2020). Hydropower reservoirs on the upper Mekong River modify nutrient bioavailability downstream. National Science Review, 7(9): 1449–1457
https://doi.org/10.1093/nsr/nwaa026
10 C D Domingues, L H S da Silva, L M Rangel, L de Magalhães, A de Melo Rocha, L M Lobão, R Paiva, F Roland, H Sarmento (2017). Microbial food-web drivers in tropical reservoirs. Microbial Ecology, 73: 505–520
https://doi.org/10.1007/s00248-016-0899-1 pmid: 27900461
11 N C L dos E Santos, J D García-Berthou, T M Dias, I D P Lopes, W Affonso, L C Severi, A Gomes, A Agostinho (2018). Cumulative ecological effects of a Neotropical reservoir cascade across multiple assemblages. Hydrobiologia, 819: 77–91
https://doi.org/10.1007/s10750-018-3630-z
12 R C Edgar (2010). Search and clustering orders of magnitude faster than BLAST. Bioinformatics (Oxford, England), 26(19): 2460–2461
https://doi.org/10.1093/bioinformatics/btq461 pmid: 20709691
13 Q Gao, Z Tao, C Shen, Y Sun, W Yi, C Xing (2002). Riverine organic carbon in the Xijiang River (South China): seasonal variation in content and flux budget. Environmental Geology, 41: 826–832
https://doi.org/10.1007/s00254-001-0460-4
14 G Grenouillet, S Brosse, L Tudesque, S Lek, Y Baraille, G Loot (2008). Concordance among stream assemblages and spatial autocorrelation along a fragmented gradient. Diversity & Distributions, 14(4): 592–603
https://doi.org/10.1111/j.1472-4642.2007.00443.x
15 K M Handley (2019). Determining microbial roles in ecosystem function: Redefining microbial food webs and transcending kingdom barriers. mSystems, 4(3): e00153–19
https://doi.org/10.1128/mSystems.00153-19 pmid: 31164408
16 A Jamoneau, S I Passy, J Soininen, T Leboucher, J Tison-Rosebery (2018). Beta diversity of diatom species and ecological guilds: Response to environmental and spatial mechanisms along the stream watercourse. Freshwater Biology, 63: 62–73
https://doi.org/10.1111/fwb.12980
17 M Kathol, H Fischer, M Weitere (2011). Contribution of biofilm-dwelling consumers to pelagic-benthic coupling in a large river. Freshwater Biology, 56(6): 1160–1172
https://doi.org/10.1111/j.1365-2427.2010.02561.x
18 C R J Kavazos, M J Huggett, U Mueller, P Horwitz (2018). Bacterial and ciliate biofilm community structure at different spatial levels of a salt lake meta-community. FEMS Microbiology Ecology, 94(10): fiy148
https://doi.org/10.1093/femsec/fiy148 pmid: 30124812
19 N Keeley, S A Wood, X Pochon (2018). Development and preliminary validation of a multi-trophic metabarcoding biotic index for monitoring benthic organic enrichment. Ecological Indicators, 85: 1044–1057
https://doi.org/10.1016/j.ecolind.2017.11.014
20 M Kiljunen, H Peltonen, M Lehtiniemi, L Uusitalo, T Sinisalo, J Norkko, M Kunnasranta, J Torniainen, A J Rissanen, J Karjalainen (2020). Benthic-pelagic coupling and trophic relationships in northern Baltic Sea food webs. Limnology and Oceanography, 65(8): 1706–1722
https://doi.org/10.1002/lno.11413
21 J Li, S Dong, Z Yang, M Peng, S Liu, X Li (2012). Effects of cascade hydropower dams on the structure and distribution of riparian and upland vegetation along the middle-lower Lancang-Mekong River. Forest Ecology and Management, 284: 251–259
https://doi.org/10.1016/j.foreco.2012.07.050
22 Y Li, G Gal, V Makler-Pick, A M Waite, L C Bruce, M R Hipsey (2014). Examination of the role of the microbial loop in regulating lake nutrient stoichiometry and phytoplankton dynamics. Biogeosciences, 11(11): 2939–2960
https://doi.org/10.5194/bg-11-2939-2014
23 B Lischke, T Mehner, S Hilt, K Attermeyer, M Brauns, S Brothers, H P Grossart, J Köhler, K Scharnweber, U Gaedke (2017). Benthic carbon is inefficiently transferred in the food webs of two eutrophic shallow lakes. Freshwater Biology, 62(10): 1693–1706
https://doi.org/10.1111/fwb.12979
24 T Maavara, Q Chen, K Van Meter, L E Brown, J Zhang, J Ni, C Zarfl (2020). River dam impacts on biogeochemical cycling. Nature Reviews Earth & Environment, 1: 103–116
https://doi.org/10.1038/s43017-019-0019-0
25 C Martinez-Almoyna, W Thuiller, L Chalmandrier, M Ohlmann, A Foulquier, J C Clément, L Zinger, T Münkemüller (2019). Multi-trophic β-diversity mediates the effect of environmental gradients on the turnover of multiple ecosystem functions. Functional Ecology, 33(10): 2053–2064
https://doi.org/10.1111/1365-2435.13393
26 J J Middelburg (2018). Reviews and syntheses: to the bottom of carbon processing at the seafloor. Biogeosciences, 15: 413–427
https://doi.org/10.5194/bg-15-413-2018
27 M Moitra, L Leff (2015). Bacterial community composition and function along a river to reservoir transition. Hydrobiologia, 747: 201–215
https://doi.org/10.1007/s10750-014-2140-x
28 V Molina, C E Morales, L Farías, M Cornejo, M Graco, Y Eissler, L A Cuevas (2012). Potential contribution of planktonic components to ammonium cycling in the coastal area off central-southern Chile during non-upwelling conditions. Progress in Oceanography, 92–95: 43–49
https://doi.org/10.1016/j.pocean.2011.07.006
29 M Montagna, A Berruti, V Bianciotto, P Cremonesi, R Giannico, F Gusmeroli, E Lumini, S Pierce, F Pizzi, F Turri, G Gandini (2018). Differential biodiversity responses between kingdoms (plants, fungi, bacteria and metazoa) along an Alpine succession gradient. Molecular Ecology, 27(18): 3671–3685
https://doi.org/10.1111/mec.14817 pmid: 30146795
30 J R Mor, A Ruhí, E Tornés, H Valcárcel, I Muñoz, S Sabater (2018). Dam regulation and riverine food-web structure in a Mediterranean river. Science of the Total Environment, 625: 301–310
https://doi.org/10.1016/j.scitotenv.2017.12.296 pmid: 29289778
31 A S Mori, F Isbell, R Seidl (2018). β-Diversity, community assembly, and ecosystem functioning. Trends in Ecology & Evolution, 33(7): 549–564
https://doi.org/10.1016/j.tree.2018.04.012 pmid: 29807839
32 A M Oliverio, J F Power, A Washburne, S C Cary, M B Stott, N Fierer (2018). The ecology and diversity of microbial eukaryotes in geothermal springs. The ISME journal, 12(8): 1918–1928
https://doi.org/10.1038/s41396-018-0104-2 pmid: 29662145
33 A Özen, Ü N Tavşanoğlu, A İ Çakıroğlu, E E Levi, E Jeppesen, M Beklioğlu (2018). Patterns of microbial food webs in Mediterranean shallow lakes with contrasting nutrient levels and predation pressures. Hydrobiologia, 806: 13–27
https://doi.org/10.1007/s10750-017-3329-6
34 M Palmer, A Ruhi (2019). Linkages between flow regime, biota, and ecosystem processes: Implications for river restoration. Science, 365(6459): eaaw2087
https://doi.org/10.1126/science.aaw2087 pmid: 31604208
35 A Pusceddu, C Fiordelmondo, R Danovaro (2005). Sediment resuspension effects on the benthic microbial loop in experimental microcosms. Microbial Ecology, 50(4): 602–613
https://doi.org/10.1007/s00248-005-5051-6 pmid: 16341638
36 S Ritz, M Eßer, H Arndt, M Weitere (2017). Large-scale patterns of biofilm-dwelling ciliate communities in a river network: Only small effects of stream order. International Review of Hydrobiology, 102(5–6): 114–124
https://doi.org/10.1002/iroh.201601880
37 T Rognes, T Flouri, B Nichols, C Quince, F Mahé (2016). VSEARCH: A versatile open source tool for metagenomics. PeerJ, 4: e2584
https://doi.org/10.7717/peerj.2584 pmid: 27781170
38 R Schmidt, D Ulanova, L Y Wick, H B Bode, P Garbeva (2019). Microbe-driven chemical ecology: Past, present and future. The ISME journal, 13(11): 2656–2663
https://doi.org/10.1038/s41396-019-0469-x pmid: 31289346
39 M Schratzberger, J Ingels (2018). Meiofauna matters: The roles of meiofauna in benthic ecosystems. Journal of Experimental Marine Biology and Ecology, 502: 12–25
https://doi.org/10.1016/j.jembe.2017.01.007
40 D Singh, J W F Slik, Y S Jeon, K W Tomlinson, X Yang, J Wang, D Kerfahi, D L Porazinska, J M Adams (2019). Tropical forest conversion to rubber plantation affects soil micro- & mesofaunal community & diversity. Scientific Reports, 9: 5893
https://doi.org/10.1038/s41598-019-42333-4 pmid: 30971738
41 J B Socolar, J J Gilroy, W E Kunin, D P Edwards (2016). How should beta-diversity inform biodiversity conservation? Trends in Ecology & Evolution, 31(1): 67–80
https://doi.org/10.1016/j.tree.2015.11.005 pmid: 26701706
42 M Šolić, D Šantić, S Šestanović, N Bojanić, S Jozić, M Ordulj, A Vrdoljak Tomaš, G Kušpilić (2020). Changes in the trophic pathways within the microbial food web in the global warming scenario: an experimental study in the Adriatic Sea. Microorganisms, 8(4): 510
https://doi.org/10.3390/microorganisms8040510 pmid: 32260074
43 T Stoeck, D Bass, M Nebel, R Christen, M D M Jones, H W Breiner, T A Richards (2010). Multiple marker parallel tag environmental DNA sequencing reveals a highly complex eukaryotic community in marine anoxic water. Molecular Ecology, 19(s1): 21–31
https://doi.org/10.1111/j.1365-294X.2009.04480.x pmid: 20331767
44 T F Thingstad, R G J Bellerby, G Bratbak, K Y Børsheim, J K Egge, M Heldal, A Larsen, C Neill, J Nejstgaard, S Norland, R A Sandaa, E F Skjoldal, T Tanaka, R Thyrhaug, B Töpper (2008). Counterintuitive carbon-to-nutrient coupling in an Arctic pelagic ecosystem. Nature, 455(7211): 387–390
https://doi.org/10.1038/nature07235 pmid: 18716617
45 K Timpe, D Kaplan (2017). The changing hydrology of a dammed Amazon. Science Advances, 3(11): e1700611
https://doi.org/10.1126/sciadv.1700611 pmid: 29109972
46 T van Dael, T De Cooman, M Verbeeck, E Smolders (2020). Sediment respiration contributes to phosphate release in lowland surface waters. Water Research, 168: 115168
https://doi.org/10.1016/j.watres.2019.115168 pmid: 31627137
47 S P Volvoikar, G N Nayak, A Mazumdar, A Peketi (2014). Reconstruction of depositional environment of a tropical estuary and response of δ13Corg and TOC/TN signatures to changing environmental conditions. Estuarine, Coastal and Shelf Science, 139: 137–147
https://doi.org/10.1016/j.ecss.2014.01.001
48 X Wang, P Wang, C Wang, J Chen, L Miao, Q Yuan, S Liu, T Feng (2020). Do bacterioplankton respond equally to different river regulations? A quantitative study in the single-dammed Yarlung Tsangpo River and the cascade-dammed Lancang River. Environmental Research, 191: 110194
https://doi.org/10.1016/j.envres.2020.110194 pmid: 32919971
49 M Weitere, M Erken, N Majdi, H Arndt, H Norf, M Reinshagen, W Traunspurger, A Walterscheid, J K Wey (2018). The food web perspective on aquatic biofilms. Ecological Monographs, 88(4): 543–559
https://doi.org/10.1002/ecm.1315
50 A Z Worden, M J Follows, S J Giovannoni, S Wilken, A E Zimmerman, P J Keeling (2015). Rethinking the marine carbon cycle: Factoring in the multifarious lifestyles of microbes. Science, 347(6223): 1257594
https://doi.org/10.1126/science.1257594 pmid: 25678667
51 B Wu, J Tian, C Bai, M Xiang, J Sun, X Liu (2013). The biogeography of fungal communities in wetland sediments along the Changjiang River and other sites in China. The ISME journal, 7(7): 1299–1309
https://doi.org/10.1038/ismej.2013.29 pmid: 23446835
52 N Yang, Y Li, W Zhang, L Lin, B Qian, L Wang, L Niu, H Zhang (2020). Cascade dam impoundments restrain the trophic transfer efficiencies in benthic microbial food web. Water Research, 170: 115351
https://doi.org/10.1016/j.watres.2019.115351 pmid: 31810033
53 Y Yu, C Lee, J Kim, S Hwang (2005). Group-specific primer and probe sets to detect methanogenic communities using quantitative real-time polymerase chain reaction. Biotechnology and Bioengineering, 89(6): 670–679
https://doi.org/10.1002/bit.20347 pmid: 15696537
54 F Zhang, H Zhang, Y Yuan, D Liu, C Zhu, D Zheng, G Li, Y Wei, D Sun (2020a). Different response of bacterial community to the changes of nutrients and pollutants in sediments from an urban river network. Frontiers of Environmental Science & Engineering, 14: 2810.1007/s11783-019-1207-3
55 Y Zhang, M Pavlovska, E Stoica, I Prekrasna, J Yang, J Slobodnik, X Zhang, E Dykyi (2020b). Holistic pelagic biodiversity monitoring of the Black Sea via eDNA metabarcoding approach: From bacteria to marine mammals. Environment International, 135: 105307
https://doi.org/10.1016/j.envint.2019.105307 pmid: 31881429
56 K Zou, E Thébault, G Lacroix, S Barot (2016). Interactions between the green and brown food web determine ecosystem functioning. Functional Ecology, 30(8): 1454–1465
https://doi.org/10.1111/1365-2435.12626
[1] FSE-21065-OF-YN_suppl_1 Download
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed