Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

邮发代号 80-973

2018 Impact Factor: 3.883

Frontiers of Environmental Science & Engineering  2022, Vol. 16 Issue (7): 87   https://doi.org/10.1007/s11783-021-1495-2
  本期目录
Quorum sensing regulation methods and their effects on biofilm in biological waste treatment systems: A review
Zhuqiu Sun1, Jinying Xi1,2(), Chunping Yang3,4, Wenjie Cong1
1. Environmental Simulation and Pollution Control State Key Joint Laboratory, School of Environment, Tsinghua University, Beijing 100084, China
2. State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), Beijing 100084, China
3. Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525099, China
4. College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
 全文: PDF(487 KB)   HTML
Abstract

• Quorum sensing enhancement and inhibition methods are summarized.

• Effects of quorum sensing regulation on biofilm are reviewed.

• Current knowledge gaps and research challenges are proposed.

Quorum sensing (QS) plays an important role in microbial aggregation control. Recently, the optimization of biological waste treatment systems by QS regulation gained an increasing attention. The effects of QS regulation on treatment performances and biofilm were frequently investigated. To understand the state of art of QS regulation, this review summarizes the methods of QS enhancement and QS inhibition in biological waste treatment systems. Typical QS enhancement methods include adding exogenous QS molecules, adding QS accelerants and cultivating QS bacteria, while typical QS inhibition methods include additions of quorum quenching (QQ) bacteria, QS-degrading enzymes, QS-degrading oxidants, and QS inhibitors. The specific improvements after applying these QS regulation methods in different treatment systems are concluded. In addition, the effects of QS regulation methods on biofilm in biological waste treatment systems are reviewed in terms of biofilm formation, extracellular polymeric substances production, microbial viability, and microbial community. In the end, the knowledge gaps in current researches are analyzed, and the requirements for future study are suggested.

Key wordsQuorum sensing    Biological waste treatment    Biofilm formation
收稿日期: 2021-04-16      出版日期: 2021-11-02
Corresponding Author(s): Jinying Xi   
 引用本文:   
. [J]. Frontiers of Environmental Science & Engineering, 2022, 16(7): 87.
Zhuqiu Sun, Jinying Xi, Chunping Yang, Wenjie Cong. Quorum sensing regulation methods and their effects on biofilm in biological waste treatment systems: A review. Front. Environ. Sci. Eng., 2022, 16(7): 87.
 链接本文:  
https://academic.hep.com.cn/fese/CN/10.1007/s11783-021-1495-2
https://academic.hep.com.cn/fese/CN/Y2022/V16/I7/87
Fig.1  
QS enhancement methods Additives Concentration Bioreactor Indicators Performance* Reference
Adding exogenous QS signaling molecules C8-HSL 100 nmol/L MBBR NH4+-N removal + Huang et al., 2020
Mixture of AHLs (C6-, C8-, 3-OXO-C12-and C14-HSL) 1000 nmol/L SBBR COD removal +3% Hu et al., 2016a
Quinolone 100 nmol/L MFC Power density +30% Monzon et al., 2016
3OC6-HSL 10000 nmol/L MEC Current Liu et al., 2015
C6-HSL 100 nmol/L MBBR NH4+-N removal −20% Fan et al., 2019)
Phenylethanol, tryptophol, tyrosol 10? μmol/L MFC Current density and electrons transfer + Christwardana et al., 2019
Adding accelerator of QS signaling molecules synthesis Boron 60 μmol/L BEFC Voltage output +15 mV Cevik et al., 2020
Fulvic acid 0.5–1 mmol/L Anammox system Nitrogen removal + Liu et al., 2020
Cultivating QS bacteria Pseudomonas aeruginosa, Vibrio harveyi, Xanthomonas campestris NA EGSB COD removal + Ding et al., 2015
Sphingomonas rubra 10 mL bacterium solution with OD600 = 1.5 MBBR COD and NH4+-N removal + Wang et al., 2019
Centrifugation residual Aeromonas sp. A-L3 Strain suspension with a volume ratio of 2% Aerobic granular sludge reactors COD removal +7% Gao et al., 2019
Tab.1  
QS inhibition methods Additives Bioreactor Indicators Performance* Reference
Cultivating quorum quenching (QQ) strains Recombinant E. coli. and Rhodococcus sp. BH4 MBR Transmembrane pressure Oh et al., 2012
Rhodococcus sp. BH4 MBR Chemical oxygen demand (COD) removal Ouyang et al., 2020
Penicillium restrictum CBS 367.48 MBR Sulfamethoxazole and erythromycin + Fakhri et al., 2021
Lactobacillus sp. SBR04MA MBR COD removal Kampouris et al., 2018
Bacillus sp. T5 and Delftia lacustris T6 MBR Transmembrane pressure Yavuztürk Gül and Koyuncu, 2017
Adding degrading enzymes Acylase MBR COD removal Yeon et al., 2009
Porcine kidney acylase I MBR Transmembrane pressure Jiang et al., 2013b
Acylase Nanofiltration Flux profiles + Kim et al., 2011
Degrading QS signaling molecules by ROS Long-wave UV MBR TOC, COD, TN, TP, and NH4+-N removal Zhang et al., 2019b
TiO2 nanoparticles under UV irradiation MBR COD removal + Mehmood et al., 2021
Electric field EMBR Phenol degradation rate + Jiang et al., 2020
Adding QS inhibitors Vanillin RO Biofilm formation Ponnusamy et al., 2009
3,3′,4',5-tetrachlorosalicylanilide MBR Ammonium removal Feng et al., 2020
Piper betle extract MBR Transmembrane pressure Siddiqui et al., 2012
Tab.2  
Fig.2  
Methods of QS inhibition Target signal molecule Bioreactor Wastewater Time EPS production* Reference
QQ consortia AHLs MBR Domestic 59 d −55% (Protein)
−60% (Carbohydrates)
Yu et al., 2018
Facultative QQ consortiums-C6 C6-HSL MBR Domestic 7 d −72% Xu et al., 2020
Facultative QQ consortiums-C8 C8-HSL −36%
Facultative QQ consortiums-C10 C10-HSL −66%
Rhodococcus sp. BH4 AHLs MBR Synthetic and municipal 100 d −9% (Protein) Iqbal et al., 2018
−9% (Carbohydrates)
Rhodococcus sp. BH4 AHLs MBR Synthetic 80 d −70% (Protein) Weerasekara et al., 2016
−50% (Carbohydrates)
Recombinant Escherichia coli TOP10-AiiO AHLs RO Synthetic 109 h −35% (Protein)
−43% (Polysaccharides)
Oh et al., 2017
Acylase-Immobilized Nanofiltration Membrane AHLs Nanofiltration Synthetic 5 d – (Polysaccharides) Kim et al., 2011
Rhodococcus sp. BH4 AHLs MBR Synthetic 30 d −25% (Polysaccharides)
−50% (Protein)
Ergön-Can et al., 2017
Tab.3  
1 N A Al-Shabib, F M Husain, M T Rehman, A A Alyousef, M Arshad, A Khan, J Masood Khan, P Alam, T A Albalawi, S A Shahzad, J B Syed, M F Al-Ajmi (2020). Food color ‘Azorubine’ interferes with quorum sensing regulated functions and obliterates biofilm formed by food associated bacteria: An in vitro and in silico approach. Saudi Journal of Biological Sciences, 27(4): 1080–1090
https://doi.org/10.1016/j.sjbs.2020.01.001 pmid: 32256169
2 S Alibi, W Ben Selma, J Ramos-Vivas, M A Smach, R Touati, J Boukadida, J Navas, H Ben Mansour (2020). Anti-oxidant, antibacterial, anti-biofilm, and anti-quorum sensing activities of four essential oils against multidrug-resistant bacterial clinical isolates. Current Research in Translational Medicine, 68(2): 59–66
https://doi.org/10.1016/j.retram.2020.01.001 pmid: 32192922
3 Q Bao, A Hosoe, M Hosomi, A Terada (2020). Quorum quenching acylase impacts the viability and morphological change of Agrobacterium tumefaciens cells. Journal of Bioscience and Bioengineering, 130(1): 82–88
https://doi.org/10.1016/j.jbiosc.2020.02.005 pmid: 32280054
4 M M Brown, J M Kwiecinski, L M Cruz, A Shahbandi, D A Todd, N B Cech, A R Horswill (2020). Novel peptide from commensal staphylococcus simulans blocks methicillin-resistant staphylococcus aureus quorum sensing and protects host skin from damage. Antimicrobial Agents and Chemotherapy, 64(6): e00172-20
https://doi.org/10.1128/AAC.00172-20 pmid: 32253213
5 B L Buck, M A Azcárate-Peril, T R Klaenhammer (2009). Role of autoinducer-2 on the adhesion ability of Lactobacillus acidophilus. Journal of Applied Microbiology, 107(1): 269–279
https://doi.org/10.1111/j.1365-2672.2009.04204.x pmid: 19302300
6 A Cellini, I Donati, L Fiorentini, E Vandelle, A Polverari, V Venturi, G Buriani, J L Vanneste, F Spinelli (2020). N-acyl homoserine lactones and lux solos regulate social behaviour and virulence of pseudomonas syringae pv. actinidiae. Microbial Ecology, 79(2): 383–396
https://doi.org/10.1007/s00248-019-01416-5 pmid: 31359073
7 E Cevik, H Tombuloglu, I Anıl, M Senel, H Sabit, S Abdulazeez, J F Borgio, M Barghouthi (2020). Direct electricity production from Microalgae Choricystis sp. and investigation of the boron to enhance the electrogenic activity. International Journal of Hydrogen Energy, 45(19): 11330–11340
https://doi.org/10.1016/j.ijhydene.2020.02.077
8 B Chen, M Peng, W Tong, Q Zhang, Z Song (2020). The quorum quenching bacterium bacillus licheniformis T-1 protects Zebrafish against aeromonas hydrophila infection. Probiotics and Antimicrobial Proteins, 12(1): 160–171
https://doi.org/10.1007/s12602-018-9495-7 pmid: 30719608
9 H Chen, A Li, D Cui, Q Wang, D Wu, C Cui, F Ma (2018). N-Acyl-homoserine lactones and autoinducer-2-mediated quorum sensing during wastewater treatment. Applied Microbiology and Biotechnology, 102(3): 1119–1130
https://doi.org/10.1007/s00253-017-8697-3 pmid: 29247368
10 S Chen, X Jing, J Tang, Y Fang, S Zhou (2017). Quorum sensing signals enhance the electrochemical activity and energy recovery of mixed-culture electroactive biofilms. Biosensors & Bioelectronics, 97: 369–376
https://doi.org/10.1016/j.bios.2017.06.024 pmid: 28624619
11 X Chen, S Schauder, N Potier, A Van Dorsselaer, I Pelczer, B L Bassler, F M Hughson (2002). Structural identification of a bacterial quorum-sensing signal containing boron. Nature, 415(6871): 545–549
https://doi.org/10.1038/415545a pmid: 11823863
12 W J Cheng, J W Zhou, P P Zhang, H Z Luo, S Tang, J J Li, S M Deng, A Q Jia (2020). Quorum sensing inhibition and tobramycin acceleration in Chromobacterium violaceum by two natural cinnamic acid derivatives. Applied Microbiology and Biotechnology, 104(11): 5025–5037
https://doi.org/10.1007/s00253-020-10593-0 pmid: 32248442
13 M Christwardana, D Frattini, K D Z Duarte, G Accardo, Y Kwon (2019). Carbon felt molecular modification and biofilm augmentation via quorum sensing approach in yeast-based microbial fuel cells. Applied Energy, 238: 239–248
https://doi.org/10.1016/j.apenergy.2019.01.078
14 T Cui, F Bai, M Sun, X Lv, X Li, D Zhang, H Du (2020). Lactobacillus crustorum ZHG 2–1 as novel quorum-quenching bacteria reducing virulence factors and biofilms formation of Pseudomonas aeruginosa. Lebensmittel-Wissenschaft+ Technologie, 117: 108696
https://doi.org/10.1016/j.lwt.2019.108696
15 M E Davey, N C Caiazza, G A O’Toole (2003). Rhamnolipid surfactant production affects biofilm architecture in Pseudomonas aeruginosa PAO1. Journal of Bacteriology, 185(3): 1027–1036
https://doi.org/10.1128/JB.185.3.1027-1036.2003 pmid: 12533479
16 D G Davies, M R Parsek, J P Pearson, B H Iglewski, J W Costerton, E P Greenberg (1998). The involvement of cell-to-cell signals in the development of a bacterial biofilm. Science, 280(5361): 295–298
https://doi.org/10.1126/science.280.5361.295 pmid: 9535661
17 T R de Kievit, B H Iglewski (2000). Bacterial quorum sensing in pathogenic relationships. Infection and Immunity, 68(9): 4839–4849
https://doi.org/10.1128/IAI.68.9.4839-4849.2000 pmid: 10948095
18 N I Di Marco, C R Pungitore, C S M Lucero-Estrada (2020). Aporphinoid alkaloids inhibit biofilm formation of Yersinia enterocolitica isolated from sausages. Journal of Applied Microbiology, 129(4): 1029–1042
https://doi.org/10.1111/jam.14664 pmid: 32279402
19 S P Diggle, P Cornelis, P Williams, M Cámara (2006). 4-quinolone signalling in Pseudomonas aeruginosa: Old molecules, new perspectives. International Journal of Medical Microbiology, 296(2–3): 83–91
https://doi.org/10.1016/j.ijmm.2006.01.038 pmid: 16483840
20 Y Ding, H Feng, W Huang, D Shen, M Wang (2015). A sustainable method for effective regulation of anaerobic granular sludge: Artificially increasing the concentration of signal molecules by cultivating a secreting strain. Bioresource Technology, 196: 273–278
https://doi.org/10.1016/j.biortech.2015.07.066 pmid: 26253911
21 A Eberhard, A L Burlingame, C Eberhard, G L Kenyon, K H Nealson, N J Oppenheimer (1981). Structural identification of autoinducer of Photobacterium fischeri luciferase. Biochemistry, 20(9): 2444–2449
https://doi.org/10.1021/bi00512a013 pmid: 7236614
22 J Engebrecht, M Silverman (1984). Identification of genes and gene products necessary for bacterial bioluminescence. Proceedings of the National Academy of Sciences of the United States of America, 81(13): 4154–4158
https://doi.org/10.1073/pnas.81.13.4154 pmid: 6377310
23 T Ergön-Can, B Köse-Mutlu, İ Koyuncu, C H Lee (2017). Biofouling control based on bacterial quorum quenching with a new application: Rotary microbial carrier frame. Journal of Membrane Science, 525: 116–124 doi:10.1016/j.memsci.2016.10.036
24 H Fakhri, A Shahi, S Ovez, S Aydin (2021). Bioaugmentation with immobilized endophytic Penicillium restrictum to improve quorum quenching activity for biofouling control in an aerobic hollow-fiber membrane bioreactor treating antibiotic-containing wastewater. Ecotoxicology and Environmental Safety, 210: 111831
https://doi.org/10.1016/j.ecoenv.2020.111831 pmid: 33388591
25 X Fan, P Peng, H Huang, C Peng, Y Gao, H Ren (2019). Undesirable effects of exogenous N-acyl homoserine lactones on moving bed biofilm reactor treating medium-strength synthetic wastewater. Science of the Total Environment, 696: 134061
https://doi.org/10.1016/j.scitotenv.2019.134061 pmid: 31465921
26 Y Fang, C Deng, J Chen, J Lü, S Chen, S Zhou (2018). Accelerating the start-up of the cathodic biofilm by adding acyl-homoserine lactone signaling molecules. Bioresource Technology, 266: 548–554
https://doi.org/10.1016/j.biortech.2018.07.095 pmid: 30049528
27 X Feng, W Guo, H Zheng, S Yang, J Du, Q Wu, H Luo, X Zhou, W Jin, N Ren (2020). Inhibition of biofouling in membrane bioreactor by metabolic uncoupler based on controlling microorganisms accumulation and quorum sensing signals secretion. Chemosphere, 245: 125363
https://doi.org/10.1016/j.chemosphere.2019.125363 pmid: 31877457
28 R Fernández-Piñar, M Cámara, J F Dubern, J L Ramos, M Espinosa-Urgel (2011). The Pseudomonas aeruginosa quinolone quorum sensing signal alters the multicellular behaviour of Pseudomonas putida KT2440. Research in Microbiology, 162(8): 773–781
https://doi.org/10.1016/j.resmic.2011.06.013 pmid: 21742029
29 M Gao, Y Liu, Z Liu, H Li, A Zhang (2019). Strengthening of aerobic sludge granulation by the endogenous acylated homoserine lactones-secreting strain Aeromonas sp. A-L3. Biochemical Engineering Journal, 151: 107329
https://doi.org/10.1016/j.bej.2019.107329
30 A M Holban, M C Gestal, A M Grumezescu (2016). Control of biofilm-associated infections by signaling molecules and nanoparticles. International Journal of Pharmaceutics, 510(2): 409–418
https://doi.org/10.1016/j.ijpharm.2016.02.044 pmid: 26945736
31 H Hu, J He, J Liu, H Yu, J Tang, J Zhang (2016a). Role of N-acyl-homoserine lactone (AHL) based quorum sensing on biofilm formation on packing media in wastewater treatment process. RSC Advances, 6(14): 11128–11139
https://doi.org/10.1039/C5RA23466B
32 H Hu, J He, J Liu, H Yu, J Zhang (2016b). Biofilm activity and sludge characteristics affected by exogenous N-acyl homoserine lactones in biofilm reactors. Bioresource Technology, 211: 339–347
https://doi.org/10.1016/j.biortech.2016.03.068 pmid: 27030953
33 H Hu, J He, H Yu, J Liu, J Zhang (2017). A strategy to speed up formation and strengthen activity of biofilms at low temperature. RSC Advances, 7(37): 22788–22796
https://doi.org/10.1039/C7RA02223A
34 H Huang, X Fan, P Peng, C Peng, Y Gao, X Zhang, H Ren (2020). Two birds with one stone: Simultaneous improvement of biofilm formation and nitrogen transformation in MBBR treating high ammonia nitrogen wastewater via exogenous N-acyl homoserine lactones. Chemical Engineering Journal, 386: 124001
https://doi.org/10.1016/j.cej.2019.124001
35 J Huang, Y Shi, G Zeng, Y Gu, G Chen, L Shi, Y Hu, B Tang, J Zhou (2016). Acyl-homoserine lactone-based quorum sensing and quorum quenching hold promise to determine the performance of biological wastewater treatments: An overview. Chemosphere, 157: 137–151
https://doi.org/10.1016/j.chemosphere.2016.05.032 pmid: 27213243
36 J Huang, K Yi, G Zeng, Y Shi, Y Gu, L Shi, H Yu (2019). The role of quorum sensing in granular sludge: Impact and future application: A review. Chemosphere, 236: 124310
https://doi.org/10.1016/j.chemosphere.2019.07.041 pmid: 31344626
37 T Iqbal, K Lee, C H Lee, K H Choo (2018). Effective quorum quenching bacteria dose for anti-fouling strategy in membrane bioreactors utilizing fixed-sheet media. Journal of Membrane Science, 562: 18–25
https://doi.org/10.1016/j.memsci.2018.05.031
38 B Jiang, Q Zeng, Y Hou, H Li, J Liu, J Xu, S Shi, F Ma (2020). Impacts of long-term electric field applied on the membrane fouling mitigation and shifts of microbial communities in EMBR for treating phenol wastewater. Science of the Total Environment, 716: 137139
https://doi.org/10.1016/j.scitotenv.2020.137139 pmid: 32045761
39 Q Jiang, J Rentschler, R Perrone, K Liu (2013a). Application of ceramic membrane and ion-exchange for the treatment of the flowback water from Marcellus shale gas production. Journal of Membrane Science, 431: 55–61
https://doi.org/10.1016/j.memsci.2012.12.030
40 W Jiang, S Xia, J Liang, Z Zhang, S W Hermanowicz (2013b). Effect of quorum quenching on the reactor performance, biofouling and biomass characteristics in membrane bioreactors. Water Research, 47(1): 187–196
https://doi.org/10.1016/j.watres.2012.09.050 pmid: 23116778
41 V C Kalia (2013). Quorum sensing inhibitors: An overview. Biotechnology Advances, 31(2): 224–245
https://doi.org/10.1016/j.biotechadv.2012.10.004 pmid: 23142623
42 I D Kampouris, P D Karayannakidis, D C Banti, D Sakoula, D Konstantinidis, M Yiangou, P E Samaras (2018). Evaluation of a novel quorum quenching strain for MBR biofouling mitigation. Water Research, 143: 56–65
https://doi.org/10.1016/j.watres.2018.06.030 pmid: 29940362
43 L Katebian, E Gomez, L Skillman, D Li, G Ho, S C Jiang (2016). Inhibiting quorum sensing pathways to mitigate seawater desalination RO membrane biofouling. Desalination, 393: 135–143
https://doi.org/10.1016/j.desal.2016.01.013
44 J H Kim, D C Choi, K M Yeon, S R Kim, C H Lee (2011). Enzyme-immobilized nanofiltration membrane to mitigate biofouling based on quorum quenching. Environmental Science & Technology, 45(4): 1601–1607
https://doi.org/10.1021/es103483j pmid: 21204565
45 S Kjelleberg, S Molin (2002). Is there a role for quorum sensing signals in bacterial biofilms? Current Opinion in Microbiology, 5(3): 254–258
https://doi.org/10.1016/S1369-5274(02)00325-9 pmid: 12057678
46 H Lade, D Paul, J H Kweon (2014).N-acyl homoserine lactone-mediated quorum sensing with special reference to use of quorum quenching bacteria in membrane biofouling control. BioMed Research International, 2014: 162584
47 K Lee, J S Park, T Iqbal, C H Nahm, P K Park, K H Choo (2018a). Membrane biofouling behaviors at cold temperatures in pilot-scale hollow fiber membrane bioreactors with quorum quenching. Biofouling, 34(8): 912–924
https://doi.org/10.1080/08927014.2018.1515925 pmid: 30369244
48 K Lee, H Yu, X Zhang, K H Choo (2018b). Quorum sensing and quenching in membrane bioreactors: Opportunities and challenges for biofouling control. Bioresource Technology, 270: 656–668
https://doi.org/10.1016/j.biortech.2018.09.019 pmid: 30213542
49 A J Li, B L Hou, M X Li (2015). Cell adhesion, ammonia removal and granulation of autotrophic nitrifying sludge facilitated by N-acyl-homoserine lactones. Bioresource Technology, 196: 550–558
https://doi.org/10.1016/j.biortech.2015.08.022 pmid: 26295441
50 T Li, X Sun, H Chen, B He, Y Mei, D Wang, J Li (2020). Methyl anthranilate: A novel quorum sensing inhibitor and anti-biofilm agent against Aeromonas sobria. Food Microbiology, 86: 103356
https://doi.org/10.1016/j.fm.2019.103356 pmid: 31703863
51 Y Li, W Hao, J Lv, Y Wang, C Zhong, J Zhu (2014). The role of N-acyl homoserine lactones in maintaining the stability of aerobic granules. Bioresource Technology, 159: 305–310
https://doi.org/10.1016/j.biortech.2014.02.090 pmid: 24657763
52 J Liu, F Sun, P Zhang, Y Zhou (2021a). Integrated powdered activated carbon and quorum quenching strategy for biofouling control in industrial wastewater membrane bioreactor. Journal of Cleaner Production, 279: 123551
https://doi.org/10.1016/j.jclepro.2020.123551
53 L Liu, M Ji, F Wang, Z Tian, T Wang, S Wang, S Wang, Z Yan (2020). Insight into the short-term effect of fulvic acid on nitrogen removal performance and N-acylated-L-homoserine lactones (AHLs) release in the anammox system. Science of the Total Environment, 704: 135285
https://doi.org/10.1016/j.scitotenv.2019.135285 pmid: 31822421
54 T Liu, J Xu, R Tian, X Quan (2021b). Enhanced simultaneous nitrification and denitrification via adding N-acyl-homoserine lactones (AHLs) in integrated floating fixed-film activated sludge process. Biochemical Engineering Journal, 166: 107884
https://doi.org/10.1016/j.bej.2020.107884
55 W Liu, W Cai, A Ma, G Ren, Z Li, G Zhuang, A Wang (2015). Improvement of bioelectrochemical property and energy recovery by acylhomoserine lactones (AHLs) in microbial electrolysis cells (MECs). Journal of Power Sources, 284: 56–59
https://doi.org/10.1016/j.jpowsour.2015.03.007
56 Q Lu, J Yu, X Yang, J Wang, L Wang, Y Lin, L Lin (2010). Ambroxol interferes with Pseudomonas aeruginosa quorum sensing. International Journal of Antimicrobial Agents, 36(3): 211–215
https://doi.org/10.1016/j.ijantimicag.2010.05.007 pmid: 20580207
57 L Lv, W Li, Z Zheng, D Li, N Zhang (2018). Exogenous acyl-homoserine lactones adjust community structures of bacteria and methanogens to ameliorate the performance of anaerobic granular sludge. Journal of Hazardous Materials, 354: 72–80
https://doi.org/10.1016/j.jhazmat.2018.04.075 pmid: 29729601
58 M J Lynch, S Swift, D F Kirke, C W Keevil, C E R Dodd, P Williams (2002). The regulation of biofilm development by quorum sensing in Aeromonas hydrophila. Environmental Microbiology, 4(1): 18–28
https://doi.org/10.1046/j.1462-2920.2002.00264.x pmid: 11966822
59 H Ma, S Ma, W Luo, L Ding, J Wang, H Ren (2019). Long-term exogenous addition of synthetic acyl homoserine lactone enhanced the anaerobic granulation process. Science of the Total Environment, 696: 133809
https://doi.org/10.1016/j.scitotenv.2019.133809 pmid: 31470321
60 N R Maddela, F Meng (2020). Discrepant roles of a quorum quenching bacterium (Rhodococcus sp. BH4) in growing dual-species biofilms. Science of the Total Environment, 713: 136402
https://doi.org/10.1016/j.scitotenv.2019.136402 pmid: 31955076
61 N R Maddela, B Sheng, S Yuan, Z Zhou, R Villamar-Torres, F Meng (2019). Roles of quorum sensing in biological wastewater treatment: A critical review. Chemosphere, 221: 616–629
https://doi.org/10.1016/j.chemosphere.2019.01.064 pmid: 30665091
62 C T Mehmood, H Waheed, W Tan, Y Xiao (2021). Photocatalytic quorum quenching: A new antifouling and in-situ membrane cleaning strategy for an external membrane bioreactor coupled to UASB. Journal of Environmental Chemical Engineering, 9(4): 105470
https://doi.org/10.1016/j.jece.2021.105470
63 O Monzon, Y Yang, Q Li, P J J Alvarez (2016). Quorum sensing autoinducers enhance biofilm formation and power production in a hypersaline microbial fuel cell. Biochemical Engineering Journal, 109: 222–227
https://doi.org/10.1016/j.bej.2016.01.023
64 H S Oh, C H Lee (2018). Origin and evolution of quorum quenching technology for biofouling control in MBRs for wastewater treatment. Journal of Membrane Science, 554: 331–345
https://doi.org/10.1016/j.memsci.2018.03.019
65 H S Oh, C H Tan, J H Low, M Rzechowicz, M F Siddiqui, H Winters, S Kjelleberg, A G Fane, S A Rice (2017). Quorum quenching bacteria can be used to inhibit the biofouling of reverse osmosis membranes. Water Research, 112: 29–37
https://doi.org/10.1016/j.watres.2017.01.028 pmid: 28129553
66 H S Oh, K M Yeon, C S Yang, S R Kim, C H Lee, S Y Park, J Y Han, J K Lee (2012). Control of membrane biofouling in MBR for wastewater treatment by quorum quenching bacteria encapsulated in microporous membrane. Environmental Science & Technology, 46(9): 4877–4884
https://doi.org/10.1021/es204312u pmid: 22471519
67 Y Ouyang, Y Hu, J Huang, Y Gu, Y Shi, K Yi, Y Yang (2020). Effects of exogenous quorum quenching on microbial community dynamics and biofouling propensity of activated sludge in MBRs. Biochemical Engineering Journal, 157: 107534
https://doi.org/10.1016/j.bej.2020.107534
68 J Pan, J Hu, B Liu, J Li, D Wang, C Bu, X Wang, K Xiao, S Liang, J Yang, H Hou (2020). Enhanced quorum sensing of anode biofilm for better sensing linearity and recovery capability of microbial fuel cell toxicity sensor. Environmental Research, 181: 108906
https://doi.org/10.1016/j.envres.2019.108906 pmid: 31740039
69 P Parmar, A Shukla, P Rao, M Saraf, B Patel, D Goswami (2020). The rise of gingerol as anti-QS molecule: Darkest episode in the LuxR-mediated bioluminescence saga. Bioorganic Chemistry, 99: 103823
https://doi.org/10.1016/j.bioorg.2020.103823 pmid: 32283347
70 P Peng, H Huang, H Ren, H Ma, Y Lin, J Geng, K Xu, Y Zhang, L Ding (2018). Exogenous N-acyl homoserine lactones facilitate microbial adhesion of high ammonia nitrogen wastewater on biocarrier surfaces. Science of the Total Environment, 624: 1013–1022
https://doi.org/10.1016/j.scitotenv.2017.12.248 pmid: 29929218
71 S N Peterson, C K Sung, R Cline, B V Desai, E C Snesrud, P Luo, J Walling, H Li, M Mintz, G Tsegaye, P C Burr, Y Do, S Ahn, J Gilbert, R D Fleischmann, D A Morrison (2004). Identification of competence pheromone responsive genes in Streptococcus pneumoniae by use of DNA microarrays. Molecular Microbiology, 51(4): 1051–1070
https://doi.org/10.1046/j.1365-2958.2003.03907.x pmid: 14763980
72 S Phanwilai, N Kangwannarakul, P Noophan, T Kasahara, A Terada, J Munakata-Marr, L A Figueroa (2020). Nitrogen removal efficiencies and microbial communities in full-scale IFAS and MBBR municipal wastewater treatment plants at high COD:N ratio. Frontiers of Environmental Science & Engineering, 14(6): 115
73 K Ponnusamy, D Paul, J H Kweon (2009). Inhibition of quorum sensing mechanism and aeromonas hydrophila biofilm formation by vanillin. Environmental Engineering Science, 26(8): 1359–1363
https://doi.org/10.1089/ees.2008.0415
74 X Qin, G K Thota, R Singh, R Balamurugan, F M Goycoolea (2020). Synthetic homoserine lactone analogues as antagonists of bacterial quorum sensing. Bioorganic Chemistry, 98: 103698
https://doi.org/10.1016/j.bioorg.2020.103698 pmid: 32217369
75 S Qiu, J Liu, L Zhang, Q Zhang, Y Peng (2020). Sludge fermentation liquid addition attained advanced nitrogen removal in low C/N ratio municipal wastewater through short-cut nitrification-denitrification and partial anammox. Frontiers of Environmental Science & Engineering, 15(2): 26
76 Y Sakuragi, R Kolter (2007). Quorum-sensing regulation of the biofilm matrix genes (pel) of Pseudomonas aeruginosa. Journal of Bacteriology, 189(14): 5383–5386
https://doi.org/10.1128/JB.00137-07 pmid: 17496081
77 C Shen, M T Islam, Y Masuda, K I Honjoh, T Miyamoto (2020). Transcriptional changes involved in inhibition of biofilm formation by ε-polylysine in Salmonella Typhimurium. Applied Microbiology and Biotechnology, 104(12): 5427–5436 doi:10.1007/s00253-020-10575-2
pmid: 32307570
78 Y Shi, J Huang, G Zeng, Y Gu, Y Chen, Y Hu, B Tang, J Zhou, Y Yang, L Shi (2017). Exploiting extracellular polymeric substances (EPS) controlling strategies for performance enhancement of biological wastewater treatments: An overview. Chemosphere, 180: 396–411
https://doi.org/10.1016/j.chemosphere.2017.04.042 pmid: 28419953
79 M F Siddiqui, M Rzechowicz, W Harvey, A W Zularisam, G F Anthony (2015). Quorum sensing based membrane biofouling control for water treatment: A review. Journal of Water Process Engineering, 7: 112–122
https://doi.org/10.1016/j.jwpe.2015.06.003
80 M F Siddiqui, M Sakinah, L Singh, A W Zularisam (2012). Targeting N-acyl-homoserine-lactones to mitigate membrane biofouling based on quorum sensing using a biofouling reducer. Journal of Biotechnology, 161(3): 190–197
https://doi.org/10.1016/j.jbiotec.2012.06.029 pmid: 22796090
81 P Sivasankar, S Poongodi, P Seedevi, M Sivakumar, T Murugan, S Loganathan (2019). Bioremediation of wastewater through a quorum sensing triggered MFC: A sustainable measure for waste to energy concept. Journal of Environmental Management, 237: 84–93
https://doi.org/10.1016/j.jenvman.2019.01.075 pmid: 30780057
82 A Soler, L Arregui, M Arroyo, J A Mendoza, A Muras, C Álvarez, C García-Vera, D Marquina, A Santos, S Serrano (2018). Quorum sensing versus quenching bacterial isolates obtained from MBR plants treating leachates from municipal solid waste. International Journal of Environmental Research and Public Health, 15(5): 1019
https://doi.org/10.3390/ijerph15051019 pmid: 29783658
83 M H J Sturme, M Kleerebezem, J Nakayama, A D L Akkermans, E E Vaughan, W M de Vos (2002). Cell to cell communication by autoinducing peptides in gram-positive bacteria. Antonie van Leeuwenhoek, 81: 233–243
https://doi.org/10.1023/A:1020522919555 pmid: 12448722
84 C H Tan, K S Koh, C Xie, M Tay, Y Zhou, R Williams, W J Ng, S A Rice, S Kjelleberg (2014). The role of quorum sensing signalling in EPS production and the assembly of a sludge community into aerobic granules.The ISME Journal, 8(6): 1186–1197
https://doi.org/10.1038/ismej.2013.240 pmid: 24430488
85 M Teplitski, U Mathesius, K P Rumbaugh (2011). Perception and degradation of N-acyl homoserine lactone quorum sensing signals by mammalian and plant cells. Chemical Reviews, 111(1): 100–116
https://doi.org/10.1021/cr100045m pmid: 20536120
86 N B Turan, D S Chormey, Ç Büyükpınar, G O Engin, S Bakirdere (2017). Quorum sensing: Little talks for an effective bacterial coordination. Trends in Analytical Chemistry, 91: 1–11
https://doi.org/10.1016/j.trac.2017.03.007
87 H Wang, L Liao, S Chen, L H Zhang (2020a). A quorum quenching bacterial isolate contains multiple substrate-inducible genes conferring degradation of diffusible signal factor. Applied and Environmental Microbiology, 86(7): e02930–19
https://doi.org/10.1128/AEM.02930-19 pmid: 31980426
88 H Wang, D Ma, W Shi, Z Yang, Y Cai, B Gao (2021a). Formation of disinfection by-products during sodium hypochlorite cleaning of fouled membranes from membrane bioreactors. Frontiers of Environmental Science & Engineering, 15(5): 102
89 J Wang, Q Liu, S Ma, H Hu, B Wu, X X Zhang, H Ren (2019). Distribution characteristics of N-acyl homoserine lactones during the moving bed biofilm reactor biofilm development process: Effect of carbon/nitrogen ratio and exogenous quorum sensing signals. Bioresource Technology, 289: 121591
https://doi.org/10.1016/j.biortech.2019.121591 pmid: 31230907
90 M Wang, L Zhao, H Wu, C Zhao, Q Gong, W Yu (2020b). Cladodionen is a potential quorum sensing inhibitor against Pseudomonas aeruginosa. Marine Drugs, 18(4): 205
https://doi.org/10.3390/md18040205 pmid: 32290259
91 N Wang, J Gao, Y Liu, Q Wang, X Zhuang, G Zhuang (2021b). Realizing the role of N-acyl-homoserine lactone-mediated quorum sensing in nitrification and denitrification: A review. Chemosphere, 274: 129970
https://doi.org/10.1016/j.chemosphere.2021.129970 pmid: 33979914
92 X Wang, W Wang, Y Li, J Zhang, Y Zhang, J Li (2018). Biofilm activity, ammonia removal and cell growth of the heterotrophic nitrifier, Acinetobacter sp., facilitated by exogenous N-acyl-homoserine lactones. RSC Advances, 8(54): 30783–30793
https://doi.org/10.1039/C8RA05545A
93 N A Weerasekara, K H Choo, C H Lee (2016). Biofouling control: Bacterial quorum quenching versus chlorination in membrane bioreactors. Water Research, 103: 293–301
https://doi.org/10.1016/j.watres.2016.07.049 pmid: 27474939
94 M Whiteley, S P Diggle, E P Greenberg (2017). Progress in and promise of bacterial quorum sensing research. Nature, 551(7680): 313–320
https://doi.org/10.1038/nature24624 pmid: 29144467
95 X Xiao, W W Zhu, Q Y Liu, H Yuan, W W Li, L J Wu, Q Li, H Q Yu (2016). Impairment of biofilm formation by TiO2 photocatalysis through quorum quenching. Environmental Science & Technology, 50(21): 11895–11902
https://doi.org/10.1021/acs.est.6b03134 pmid: 27690228
96 Y Xiao, H Waheed, K Xiao, I Hashmi, Y Zhou (2018). In tandem effects of activated carbon and quorum quenching on fouling control and simultaneous removal of pharmaceutical compounds in membrane bioreactors. Chemical Engineering Journal, 341: 610–617
https://doi.org/10.1016/j.cej.2018.02.073
97 F Xiong, X Zhao, D Wen, Q Li (2020). Effects of N-acyl-homoserine lactones-based quorum sensing on biofilm formation, sludge characteristics, and bacterial community during the start-up of bioaugmented reactors. Science of the Total Environment, 735: 139449
https://doi.org/10.1016/j.scitotenv.2020.139449 pmid: 32473427
98 B Xu, T C Albert Ng, S Huang, X Shi, H Y Ng (2020). Feasibility of isolated novel facultative quorum quenching consortiums for fouling control in an AnMBR. Water Research, 169: 115251
https://doi.org/10.1016/j.watres.2019.115251 pmid: 31706123
99 Y Xu, Z Lu, W Sun, X Zhang (2021). Influence of pore structure on biologically activated carbon performance and biofilm microbial characteristics. Frontiers of Environmental Science & Engineering, 15(6): 131
100 E A Yates, B Philipp, C Buckley, S Atkinson, S R Chhabra, R E Sockett, M Goldner, Y Dessaux, M Cámara, H Smith, P Williams (2002). N-acylhomoserine lactones undergo lactonolysis in a pH-, temperature-, and acyl chain length-dependent manner during growth of Yersinia pseudotuberculosis and Pseudomonas aeruginosa. Infection and Immunity, 70(10): 5635–5646
https://doi.org/10.1128/IAI.70.10.5635-5646.2002 pmid: 12228292
101 B Yavuztürk Gül, I Koyuncu (2017). Assessment of new environmental quorum quenching bacteria as a solution for membrane biofouling. Process Biochemistry, 61: 137–146
https://doi.org/10.1016/j.procbio.2017.05.030
102 K M Yeon, C H Lee, J Kim (2009). Magnetic enzyme carrier for effective biofouling control in the membrane bioreactor based on enzymatic quorum quenching. Environmental Science & Technology, 43(19): 7403–7409
https://doi.org/10.1021/es901323k pmid: 19848153
103 Y C Yong, J J Zhong (2010). N-Acylated homoserine lactone production and involvement in the biodegradation of aromatics by an environmental isolate of Pseudomonas aeruginosa. Process Biochemistry, 45(12): 1944–1948
https://doi.org/10.1016/j.procbio.2010.05.006
104 H Yu, F Qu, X Zhang, P Wang, G Li, H Liang (2018). Effect of quorum quenching on biofouling and ammonia removal in membrane bioreactor under stressful conditions. Chemosphere, 199: 114–121
https://doi.org/10.1016/j.chemosphere.2018.02.022 pmid: 29433024
105 B Zhang, W Li, Y Guo, Z Zhang, W Shi, F Cui, P N L Lens, J H Tay (2020). A sustainable strategy for effective regulation of aerobic granulation: Augmentation of the signaling molecule content by cultivating AHL-producing strains. Water Research, 169: 115193
https://doi.org/10.1016/j.watres.2019.115193 pmid: 31670083
106 J Zhang, J Li, B H Zhao, Y C Zhang, X J Wang, G H Chen (2019a). Long-term effects of N-acyl-homoserine lactone-based quorum sensing on the characteristics of ANAMMOX granules in high-loaded reactors. Chemosphere, 218: 632–642
https://doi.org/10.1016/j.chemosphere.2018.11.170 pmid: 30502702
107 K Zhang, X Zheng, D S Shen, M Z Wang, H J Feng, H Z He, S Wang, J H Wang (2015). Evidence for existence of quorum sensing in a bioaugmented system by acylated homoserine lactone-dependent quorum quenching. Environmental Science and Pollution Research International, 22(8): 6050–6056
https://doi.org/10.1007/s11356-014-3795-6 pmid: 25382500
108 Q Zhang, N S Fan, J J Fu, B C Huang, R C Jin (2021). Role and application of quorum sensing in anaerobic ammonium oxidation (anammox) process: A review. Critical Reviews in Environmental Science and Technology, 51(6): 626–648
https://doi.org/10.1080/10643389.2020.1738166
109 X Zhang, K Lee, H Yu, N Mameda, K H Choo (2019b). Photolytic quorum quenching: A new anti-biofouling strategy for membrane bioreactors. Chemical Engineering Journal, 378: 122235
https://doi.org/10.1016/j.cej.2019.122235
110 Z C Zhao, G J Xie, B F Liu, D F Xing, J Ding, H J Han, N Q Ren (2021). A review of quorum sensing improving partial nitritation-anammox process: Functions, mechanisms and prospects. Science of the Total Environment, 765: 142703
https://doi.org/10.1016/j.scitotenv.2020.142703 pmid: 33069466
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed