Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

邮发代号 80-973

2018 Impact Factor: 3.883

Frontiers of Environmental Science & Engineering  2023, Vol. 17 Issue (1): 10   https://doi.org/10.1007/s11783-023-1610-7
  本期目录
Enrichment and transfer of polycyclic aromatic hydrocarbons (PAHs) through dust aerosol generation from soil to the air
Qianqian Gao1,2, Xiaojing Zhu1,2, Qihuang Wang1,2, Kaili Zhou1,2, Xiaohui Lu1,2, Zimeng Wang1,2(), Xiaofei Wang1,2()
1. Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
2. Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
 全文: PDF(3868 KB)   HTML
Abstract

● Compositional patterns of PAHs in dust aerosol vary from soil during dust generation.

● The EF of PAH in dust aerosol is affected by soil texture and soil PAH concentration.

● The sizes of dust aerosol play an important role in the enrichment of HMW-PAHs.

Polycyclic aromatic hydrocarbons (PAHs) are major organic pollutants in soil. It is known that they are released to the atmosphere by wind via dust aerosol generation. However, it remains unclear how these pollutants are transferred through the air/soil interface. In this study, dust aerosols were generated in the laboratory using soils (sandy loam and loam) with various physicochemical properties. The PAH concentrations of these soils and their generated dust aerosol were measured, showing that the enrichment factors (EFs) of PAHs were affected by soil texture, PAH contamination level, molecular weight of PAH species and aerosol sizes. The PAHs with higher EFs (6.24–123.35 in dust PM2.5; 7.02–47.65 in dust PM10) usually had high molecular weights with more than four aromatic rings. In addition, the positive correlation between EFs of PAHs and the total OCaerosol content of dust aerosol in different particle sizes was also statistically significant (r = 0.440, P < 0.05). This work provides insights into the relationship between atmospheric PAHs and the contaminated soils and the transfer process of PAHs through the soil-air interface.

Key wordsDust aerosols    Enrichment factors (EFs)    Polycyclic aromatic hydrocarbons (PAHs)
收稿日期: 2022-04-21      出版日期: 2022-08-26
Corresponding Author(s): Zimeng Wang,Xiaofei Wang   
 引用本文:   
. [J]. Frontiers of Environmental Science & Engineering, 2023, 17(1): 10.
Qianqian Gao, Xiaojing Zhu, Qihuang Wang, Kaili Zhou, Xiaohui Lu, Zimeng Wang, Xiaofei Wang. Enrichment and transfer of polycyclic aromatic hydrocarbons (PAHs) through dust aerosol generation from soil to the air. Front. Environ. Sci. Eng., 2023, 17(1): 10.
 链接本文:  
https://academic.hep.com.cn/fese/CN/10.1007/s11783-023-1610-7
https://academic.hep.com.cn/fese/CN/Y2023/V17/I1/10
Fig.1  
PAHs name S1 S2 S3 S4 S5
PHA (ng/g) STD PHA (ng/g) STD PHA (ng/g) STD PHA (ng/g) STD PHA (ng/g) STD
Naphthalene (NAP) 0.2724 0.0563 4.0363 0.8340 4.287 0.8858 4.819 1.570 1.078 0.2227
Acenaphthylene (ANY) 7.262 0.9800 14.0758 1.899 4.360 0.5883 0.9062 0.1278 3.930 0.5303
Acenaphthene (ANA) ND ND ND ND 2.952 0.3821 ND ND ND ND
Fluorene (FLU) 3.739 0.5158 8.592 1.186 28.19 3.890 2.649 0.6168 5.355 0.7389
Phenanthrene (PHE) 42.68 5.038 83.32 9.837 294.4 34.76 17.59 3.321 84.19 9.939
Anthracene (ANT) 7.062 0.9368 18.06 2.397 64.48 8.554 3.456 1.427 7.545 1.001
Fluoranthene (FLT) 73.37 9.896 133.6 18.02 64.40 8.687 6.600 2.607 57.01 7.689
Pyrene (PYR) 39.11 5.806 74.80 11.10 249.2 36.99 7.494 2.123 24.85 3.689
Benz[a]anthracene (BaA) 19.15 3.021 45.38 7.160 135.8 21.43 0.6548 1.134 39.77 6.275
Chrysene (CHR) 42.02 5.532 86.13 11.34 262.0 34.49 3.416 2.561 36.18 4.763
Benzo(b)fluoranthene (BbF) 6.575 1.621 8.805 2.171 3.707 0.9141 2.226 1.877 7.668 1.891
Benzo(k)fluoranthene (BkF) 5.778 1.509 7.708 2.007 3.295 0.8581 1.830 1.506 6.725 1.752
Benzo(a)pyrene (BaP) 2.721 0.699 3.796 0.9749 4.552 1.169 0.5105 0.3467 2.038 0.5232
Indeno[1,2,3-cd] pyrene (IPY) 3.809 1.015 5.653 1.507 1.575 0.4197 0.1337 0.2316 4.265 1.137
Dibenz[a,h]anthracene (DBA) 0.3499 0.0950 0.6298 0.1710 2.645 0.7180 ND ND ND ND
Benzo[ghi]perylene (BPE) 4.446 1.145 5.741 1.478 4.912 1.265 0.5517 0.4390 3.613 0.9300
Σ PAHs (ng/g) 258.3 500.3 1130 52.83 284.2
Tab.1  
Fig.2  
Fig.3  
Fig.4  
Fig.5  
Fig.6  
1 S C Alfaro ( 2008). Influence of soil texture on the binding energies of fine mineral dust particles potentially released by wind erosion. Geomorphology, 93( 3 – 4): 157– 167
https://doi.org/10.1016/j.geomorph.2007.02.012
2 S O Baek, M E Goldstone, P W W Kirk, J N Lester, R Perry ( 1991). Phase distribution and particle-size dependence of polycyclic aromatic-hydrocarbons in the urban atmosphere. Chemosphere, 22( 5 – 6): 503– 520
https://doi.org/10.1016/0045-6535(91)90062-I
3 M Bandowe B a, M A Nkansah, S Leimer, D Fischer, G Lammel, Y M Han. (2019). Chemical (C, N, S, black carbon, soot and char) and stable carbon isotope composition of street dusts from a major West African metropolis: implications for source apportionment and exposure. Science of the Total Environment, 655 : 1468– 1478
https://doi.org/10.1016/j.scitotenv.2018.11.089
4 V Bansal, K H Kim. (2015). Review of PAH contamination in food products and their health hazards. Environment International, 84 : 26– 38
https://doi.org/10.1016/j.envint.2015.06.016 pmid: 26203892
5 M Bollasina, S Nigam, K M Lau. (2008). Absorbing aerosols and summer monsoon evolution over South Asia: an observational portrayal. Journal of Climate, 21( 13): 3221– 3239
https://doi.org/10.1175/2007JCLI2094.1
6 A B A Boxall, A Hardy, S Beulke, T Boucard, L Burgin, P D Falloon, P M Haygarth, T Hutchinson, R S Kovats, G Leonardi, L S Levy, G Nichols, S A Parsons, L Potts, D Stone, E Topp, D B Turley, K Walsh, E M H Wellington, R J Williams. (2009). Impacts of climate change on indirect human exposure to pathogens and chemicals from agriculture. Environmental Health Perspectives, 117( 4): 508– 514
https://doi.org/10.1289/ehp.0800084 pmid: 19440487
7 H A Burezq. (2020). Combating wind erosion through soil stabilization under simulated wind flow condition: case of Kuwait. International Soil and Water Conservation Research, 8( 2): 154– 163
https://doi.org/10.1016/j.iswcr.2020.03.001
8 A Cabrerizo, J Dachs, C Moeckel, M J Ojeda, G Caballero, D Barceló, K C Jones. (2011). Ubiquitous net volatilization of polycyclic aromatic hydrocarbons from soils and parameters influencing their soil-air partitioning. Environmental Science & Technology, 45( 11): 4740– 4747
https://doi.org/10.1021/es104131f pmid: 21534593
9 B Cetin, S Yurdakul, M Keles, I Celik, F Ozturk, C Dogan. (2017). Atmospheric concentrations, distributions and air-soil exchange tendencies of PAHs and PCBs in a heavily industrialized area in Kocaeli, Turkey. Chemosphere, 183 : 69– 79
https://doi.org/10.1016/j.chemosphere.2017.05.103 pmid: 28535463
10 N T Edwards. (1983). Polycyclic aromatic hydrocarbons (PAHs) in the terrestrial environment: a review. Journal of Environmental Quality, 12( 4): 427– 441
https://doi.org/10.2134/jeq1983.00472425001200040001x
11 D Gillette, P A Goodwin. (1974). Microscale transport of sand-sized soil aggregates eroded by wind. Journal of Geophysical Research, 79( 27): 4080– 4084
https://doi.org/10.1029/JC079i027p04080
12 D Golomb, D Ryan, J Underhill, T Wade, S Zembar. (1997). Atmospheric deposition of toxics onto Massachusetts Bay—II. Polycyclic aromatic hydrocarbons. Atmospheric Environment, 31( 9): 1361– 1368
https://doi.org/10.1016/S1352-2310(96)00277-4
13 C Gunawardana, A Goonetilleke, P Egodawatta, L Dawes, S Kokot. (2012). Source characterisation of road dust based on chemical and mineralogical composition. Chemosphere, 87( 2): 163– 170
https://doi.org/10.1016/j.chemosphere.2011.12.012 pmid: 22209254
14 T Harner, T F Bidleman. (1998). Octanol-air partition coefficient for describing particle/gas partitioning of aromatic compounds in urban air. Environmental Science & Technology, 32( 10): 1494– 1502
https://doi.org/10.1021/es970890r
15 R M Harrison, J P Shi, S H Xi, A Khan, D Mark, R Kinnersley, J X Yin. (2000). Measurement of number, mass and size distribution of particles in the atmosphere. Philosophical Transactions of the Royal Society A, Mathematical Physical and Engineering Sciences, 358( 1775): 2567– 2579
https://doi.org/10.1098/rsta.2000.0669
16 S H Hwang, J Y Lee, S M Yi, H Kim. (2017). Associations of particulate matter and its components with emergency room visits for cardiovascular and respiratory diseases. PLoS One, 12( 8): e0183224
https://doi.org/10.1371/journal.pone.0183224 pmid: 28813509
17 K C Jones, J A Stratford, K S Waterhouse, N B Vogt. (1989). Organic contaminants in Welsh soils-polynuclear aromatic hydrocarbons. Environmental Science & Technology, 23( 5): 540– 550
https://doi.org/10.1021/es00063a005
18 I J Keyte, R M Harrison, G Lammel. (2013). Chemical reactivity and long-range transport potential of polycyclic aromatic hydrocarbons: a review. Chemical Society Reviews, 42( 24): 9333– 9391
https://doi.org/10.1039/c3cs60147a pmid: 24077263
19 J F Kok. (2011). A scaling theory for the size distribution of emitted dust aerosols suggests climate models underestimate the size of the global dust cycle. Proceedings of the National Academy of Sciences of the United States of America, 108( 3): 1016– 1021
https://doi.org/10.1073/pnas.1014798108 pmid: 21189304
20 M Krauss, W Wilcke. (2002). Sorption strength of persistent organic pollutants in particle-size fractions of urban soils. Soil Science Society of America Journal, 66( 2): 430– 437
https://doi.org/10.2136/sssaj2002.4300
21 S Lafon, S C Alfaro, S Chevaillier, J L Rajot. (2014). A new generator for mineral dust aerosol production from soil samples in the laboratory: GAMEL. Aeolian Research, 15 : 319– 334
https://doi.org/10.1016/j.aeolia.2014.04.004
22 K M Lau, K M Kim. (2006). Observational relationships between aerosol and Asian monsoon rainfall, and circulation. Geophysical Research Letters, 33( 21): L21810
https://doi.org/10.1029/2006GL027546
23 B Maliszewskakordybach ( 1996). Polycyclic aromatic hydrocarbons in agricultural soils in Poland: preliminary proposals for criteria to evaluate the level of soil contamination. Applied Geochemistry, 11( 1–2): 121– 127
24 Abelló P Masclans, Iglesias V Medina, Los Santos López M A De, J Álvarez-Flórez. (2021). Real drive cycles analysis by ordered power methodology applied to fuel consumption, CO2, NOx and PM emissions estimation. Frontiers of Environmental Science & Engineering, 15( 1): 4
https://doi.org/10.1007/s11783-020-1296-z
25 E Morillo, A S Romero, C Maqueda, L Madrid, F Ajmone-Marsan, H Grcman, C M Davidson, A S Hursthouse, J Villaverde. (2007). Soil pollution by PAHs in urban soils: a comparison of three European cities. Journal of Environmental Monitoring, 9( 9): 1001– 1008
https://doi.org/10.1039/b705955h pmid: 17726562
26 T Mukherjee, V Vinoj, S K Midya, B Adhikary. (2020). Aerosol radiative impact on surface ozone during a heavy dust and biomass burning event over South Asia. Atmospheric Environment, 223 : 117201
https://doi.org/10.1016/j.atmosenv.2019.117201
27 T Okuda, K Okamoto, S Tanaka, Z Shen, Y Han, Z Huo. (2010). Measurement and source identification of polycyclic aromatic hydrocarbons (PAHs) in the aerosol in Xi’an, China, by using automated column chromatography and applying positive matrix factorization (PMF). Science of the Total Environment, 408( 8): 1909– 1914
https://doi.org/10.1016/j.scitotenv.2010.01.040 pmid: 20156638
28 D T Pham, A Tarafdar, P G Kim, J H Kwon ( 2022). Profiling and assessing soil-air exchange of polycyclic aromatic hydrocarbons (PAHs) in playground dust and soil using ex situ equilibrium passive sampling. Chemosphere, 291( Pt 3): 133083
https://doi.org/10.1016/j.chemosphere.2021.133083 pmid: 34848229
29 J M Prospero, P J Lamb. (2003). African droughts and dust transport to the Caribbean: climate change implications. Science, 302( 5647): 1024– 1027
https://doi.org/10.1126/science.1089915 pmid: 14605365
30 Y Q Ren, G H Wang, J J Li, C Wu, C Cao, J Li, J Y Wang, S S Ge, Y N Xie, X R Li, F Meng, H Li. (2019). Evolution of aerosol chemistry in Xi’an during the spring dust storm periods: implications for heterogeneous formation of secondary organic aerosols on the dust surface. Chemosphere, 215 : 413– 421
https://doi.org/10.1016/j.chemosphere.2018.10.064 pmid: 30336318
31 C D Simpson, A A Mosi, W R Cullen, K J Reimer. (1996). Composition and distribution of polycyclic aromatic hydrocarbon contamination in surficial marine sediments from Kitimat Harbor, Canada. Science of the Total Environment, 181( 3): 265– 278
https://doi.org/10.1016/0048-9697(95)05026-4 pmid: 8820441
32 P Song, J F Fei, C S Li, X G Huang. (2019). Simulation of an Asian dust storm event in May 2017. Atmosphere (Basel), 10( 3): 135
https://doi.org/10.3390/atmos10030135
33 L Schütz. (1980). Long range transport of desert dust with special emphasis on the Sahara. Annals of the New York Academy of Sciences, 338( 1): 515– 532
https://doi.org/10.1111/j.1749-6632.1980.tb17144.x
34 V Subramanyam, K T Valsaraj, L J Thibodeaux, D D Reible. (1994). Gas-to-particle partition of polycyclic aromatic-hydrocarbons in an urban atmosphere. Atmospheric Environment, 28( 19): 3083– 3091
https://doi.org/10.1016/1352-2310(94)00137-A
35 S Tamamura, T Sato, Y Ota, X L Wang, N Tang, K Hayakawa. (2007). Long-range transport of polycyclic aromatic hydrocarbons (PAHs) from the eastern Asian continent to Kanazawa, Japan with Asian dust. Atmospheric Environment, 41( 12): 2580– 2593
https://doi.org/10.1016/j.atmosenv.2006.11.021
36 S Upadhyay, A S Raghubanshi ( 2020). Chapter 16—Determinants of soil carbon dynamics in urban ecosystems. In: Verma P, Singh P, Singh R, Raghubanshi A S, eds. Urban Ecology Amsterdam: Elsevier, 299– 314
37 L Van Vaeck, K Van Cauwenberghe. (1978). Cascade impactor measurements of the size distribution of the major classes of organic pollutants in atmospheric particulate matter. Atmospheric Environment, 12( 11): 2229– 2239
https://doi.org/10.1016/0004-6981(78)90179-8
38 B Veyrand, V Sirot, S Durand, C Pollono, P Marchand, G Dervilly-Pinel, A Tard, J C Leblanc, B Le Bizec. (2013). Human dietary exposure to polycyclic aromatic hydrocarbons: results of the second French Total Diet Study. Environment International, 54 : 11– 17
https://doi.org/10.1016/j.envint.2012.12.011 pmid: 23376598
39 L Viñas, M A Franco, J J González. (2009). Polycyclic aromatic hydrocarbon composition of sediments in the Ría de Vigo (NW Spain). Archives of Environmental Contamination and Toxicology, 57( 1): 42– 49
https://doi.org/10.1007/s00244-008-9230-6 pmid: 18825447
40 W Wang, S Simonich, B Giri, Y Chang, Y Zhang, Y Jia, S Tao, R Wang, B Wang, W Li, J Cao, X Lu. (2011). Atmospheric concentrations and air-soil gas exchange of polycyclic aromatic hydrocarbons (PAHs) in remote, rural village and urban areas of Beijing-Tianjin region, North China. Science of the Total Environment, 409( 15): 2942– 2950
https://doi.org/10.1016/j.scitotenv.2011.04.021 pmid: 21669328
41 Y Wang, M Shi, Z Lv, H Liu, K He. (2021). Local and regional contributions to PM2.5 in the Beijing 2022 Winter Olympics infrastructure areas during haze episodes. Frontiers of Environmental Science & Engineering, 15( 6): 140
https://doi.org/10.1007/s11783-021-1434-2
42 X Y Wei, M Liu, J Yang, W N Du, X Sun, Y P Huang, X Zhang, S K Khalil, D M Luo, Y D Zhou. (2019). Characterization of PM2.5-bound PAHs and carbonaceous aerosols during three-month severe haze episode in Shanghai, China: Chemical composition, source apportionment and long-range transportation. Atmospheric Environment, 203 : 1– 9
https://doi.org/10.1016/j.atmosenv.2019.01.046 pmid: 34434068
43 W Wilcke, W Amelung. (2000). Persistent organic pollutants in native grassland soils along a climosequence in North America. Soil Science Society of America Journal, 64( 6): 2140– 2148
https://doi.org/10.2136/sssaj2000.6462140x
44 W Wilcke, W Zech, J Kobza. (1996). PAH-pools in soils along a PAH-deposition gradient. Environmental Pollution, 92( 3): 307– 313
https://doi.org/10.1016/0269-7491(95)00110-7 pmid: 15091383
45 H Yahi, B Marticorena, S Thiria, B Chatenet, C Schmechtig, J L Rajot, M Crepon. (2013). Statistical relationship between surface PM10 concentration and aerosol optical depth over the Sahel as a function of weather type, using neural network methodology. Journal of Geophysical Research: Atmospheres, 118( 23): 13265– 13281
https://doi.org/10.1002/2013JD019465
46 H Zhang, P B Wu, M M Fan, S Y Zheng, J T Wu, X H Yang, M Zhang, A J Yin, C Gao. (2018). Dynamics and driving factors of the organic carbon fractions in agricultural land reclaimed from coastal wetlands in eastern China. Ecological Indicators, 89 : 639– 647
https://doi.org/10.1016/j.ecolind.2018.01.039
47 J Zhang, F Yu, Y Yu(2017). Content and source apportionment of polycyclic aromatic hydrocarbons in surface soil in major areas of China. Ecology and Environment Sciences, 26(6): 1059–1067 (in Chinese)
48 T Zhu , L Sun (2020). Pollution and health risk assessment of polycyclic aromatic hydrocarbons from PM2.5 by inhalation in Huairou District. Preventive Medicine, 32(12): 1272–1276 (in Chinese)
49 Y Zhong, B Xia, J Shi, P Ning, C Zhang, X Han, J Hao. (2022). Particle-bound polycyclic aromatic hydrocarbons in typical urban of Yunnan-Guizhou Plateau: characterization, sources and risk assessment. Frontiers of Environmental Science & Engineering, 16( 9): 114
https://doi.org/10.1007/s11783-022-1535-6
[1] FSE-22055-OF-GQQ_suppl_1 Download
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed