● Present a general concept called “salinity exchange”.
● Salts transferred from seawater to treated wastewater until completely switch.
● Process demonstrated using a laboratory-scale electrodialysis system.
● High-quality desalinated water obtained at ~1 mL/min consuming < 1 kWh/m 3 energy.
Two-thirds of the world’s population has limited access to potable water. As we continue to use up our freshwater resources, new and improved techniques for potable water production are warranted. Here, we present a general concept called “salinity exchange” that transfers salts from seawater or brackish water to treated wastewater until their salinity values approximately switch, thus producing wastewater with an increased salinity for discharge and desalinated seawater as the potable water source. We have demonstrated this process using electrodialysis. Salinity exchange has been successfully achieved between influents of different salinities under various operating conditions. Laboratory-scale salinity exchange electrodialysis (SEE) systems can produce high-quality desalinated water at ~1 mL/min with an energy consumption less than 1 kWh/m3. SEE has also been operated using real water, and the challenges of its implementation at a larger scale are evaluated.
A Achilli, T Y Cath, A E Childress ( 2009). Power generation with pressure retarded osmosis: a n experimental and theoretical investigation. Journal of Membrane Science, 343( 1– 2): 42– 52 https://doi.org/10.1016/j.memsci.2009.07.006
2
A Al-Karaghouli, D Renne, L L Kazmerski. (2010). Technical and economic assessment of photovoltaic-driven desalination systems. Renewable Energy, 35( 2): 323– 328 https://doi.org/10.1016/j.renene.2009.05.018
3
S Baggett, P Jeffrey, B Jefferson. (2006). Risk perception in participatory planning for water reuse. Desalination, 187( 1–3): 149– 158 https://doi.org/10.1016/j.desal.2005.04.075
4
T N Bitaw, K Park, D R Yang. (2016). Optimization on a new hybrid forward osmosis-electrodialysis-reverse osmosis seawater desalination process. Desalination, 398 : 265– 281 https://doi.org/10.1016/j.desal.2016.07.032
5
G Blandin, A R D Verliefde, J Comas, I Rodriguez-Roda, P Le-Clech. (2016). Efficiently combining water reuse and desalination through forward osmosis-reverse osmosis (FO-RO) hybrids: a critical review. Membranes (Basel), 6( 3): 37 https://doi.org/10.3390/membranes6030037
pmid: 27376337
6
E Brauns ( 2010). An alternative hybrid concept combining seawater desalination, solar energy and reverse electrodialysis for a sustainable production of sweet water and electrical energy. Desalination and Water Treatment, 13( 1– 3): 53– 62 https://doi.org/10.5004/dwt.2010.1090
7
A Cipollina, G Micale, A Tamburini, M Tedesco, L Gurreri, J Veerman, S Grasman. (2016). Sustainable Energy from Salinity Gradients. Cambridge: Woodhead Publishing, 135– 180
8
C O S Diego ( 2013). Water Purification Demonstration Project. Project Report
Dolnicar S, Schäfer A I (2006). Public perception of desalinated versus recycled water in Australia
11
S Dolnicar, A I Schäfer. (2009). Desalinated versus recycled water: public perceptions and profiles of the accepters. Journal of Environmental Management, 90( 2): 888– 900 https://doi.org/10.1016/j.jenvman.2008.02.003
pmid: 18433981
12
P Du Pisani, J G Menge. (2013). Direct potable reclamation in Windhoek: a critical review of the design philosophy of new Goreangab drinking water reclamation plant. Water Science and Technology: Water Supply, 13( 2): 214– 226 https://doi.org/10.2166/ws.2013.009
13
J Eke, A Yusuf, A Giwa, A Sodiq. (2020). The global status of desalination: an assessment of current desalination technologies, plants and capacity. Desalination, 495 : 114633 https://doi.org/10.1016/j.desal.2020.114633
14
M Elimelech, W A Phillip. (2011). The future of seawater desalination: energy, technology, and the environment. Science, 333( 6043): 712– 717 https://doi.org/10.1126/science.1200488
pmid: 21817042
15
K Elsaid, E T Sayed, M A Abdelkareem, M S Mahmoud, M Ramadan, A G Olabi. (2020). Environmental impact of emerging desalination technologies: a preliminary evaluation. Journal of Environmental Chemical Engineering, 8( 5): 104099 https://doi.org/10.1016/j.jece.2020.104099
16
J D Englehardt, T Wu, F Bloetscher, Y Deng, P Du Pisani, S Eilert, S Elmir, T Guo, J Jacangelo, M Lechevallier, H Leverenz, E Mancha, E Plater-Zyberk, B Sheikh, E Steinle-Darling, G Tchobanoglous. (2016). Net-zero water management: achieving energy-positive municipal water supply. Environmental Science. Water Research & Technology, 2( 2): 250– 260 https://doi.org/10.1039/C5EW00204D
17
H Fan, N Y Yip. (2019). Elucidating conductivity-permselectivity tradeoffs in electrodialysis and reverse electrodialysis by structure-property analysis of ion-exchange membranes. Journal of Membrane Science, 573 : 668– 681 https://doi.org/10.1016/j.memsci.2018.11.045
18
C Fernandez-Gonzalez, A Dominguez-Ramos, R Ibañez, A Irabien. (2019). Current Trends and Future Developments on (Bio-) Membranes. Boston: Elsevier, 111– 131
19
C Fritzmann, J Löwenberg, T Wintgens, T Melin. (2007). State-of-the-art of reverse osmosis desalination. Desalination, 216( 1): 1– 76 https://doi.org/10.1016/j.desal.2006.12.009
20
A H Galama, M Saakes, H Bruning, H H M Rijnaarts, J W Post. (2014). Seawater predesalination with electrodialysis. Desalination, 342 : 61– 69 https://doi.org/10.1016/j.desal.2013.07.012
21
D Ghernaout, N Elboughdiri, A Alghamdi. (2019). Direct potable reuse: the Singapore NEWater project as a role model. OAlib, 6( 12): 1– 10 https://doi.org/10.4236/oalib.1105980
22
M C Gilstrap ( 2013). Renewable Electricity from Salinity Gradients Using Reverse Electrodialysis. Atlanta: Georgia Institute of Technology
23
S B Grant, J D Saphores, D L Feldman, A J Hamilton, T D Fletcher, P L M Cook, M Stewardson, B F Sanders, L A Levin, R F Ambrose. et al.. (2012). Taking the “waste” out of “wastewater” for human water security and ecosystem sustainability. Science, 337( 6095): 681– 686 https://doi.org/10.1126/science.1216852
pmid: 22879506
24
T Guo, J D Englehardt. (2015). Principles for scaling of distributed direct potable water reuse systems: a modeling study. Water Research, 75 : 146– 163 https://doi.org/10.1016/j.watres.2015.02.033
pmid: 25768987
25
V K Indusekhar, N Krishnaswamy. (1985). Water transport studies on interpolymer ion-exchange membranes. Desalination, 52( 3): 309– 316 https://doi.org/10.1016/0011-9164(85)80040-0
26
A S Johnson, H O Hillestad, S F Shanholtzer, G F Shanholtzer, U S N P Service ( 1974). An Ecological Survey of the Coastal Region of Georgia. Atlanta: National Park Service
27
S A Kalogirou. (2005). Seawater desalination using renewable energy sources. Progress in Energy and Combustion Science, 31( 3): 242– 281 https://doi.org/10.1016/j.pecs.2005.03.001
O Lefebvre. (2018). Beyond NEWater: an insight into Singapore’s water reuse prospects. Current Opinion in Environmental Science & Health, 2 : 26– 31 https://doi.org/10.1016/j.coesh.2017.12.001
30
H L Leverenz, G Tchobanoglous, T Asano. (2011). Direct potable reuse: a future imperative. Journal of Water Reuse and Desalination, 1( 1): 2– 10 https://doi.org/10.2166/wrd.2011.000
31
W Li, W B Krantz, E R Cornelissen, J W Post, A R D Verliefde, C Y Tang. (2013). A novel hybrid process of reverse electrodialysis and reverse osmosis for low energy seawater desalination and brine management. Applied Energy, 104 : 592– 602 https://doi.org/10.1016/j.apenergy.2012.11.064
32
Y Liu, C Nie, X Liu, X Xu, Z Sun, L Pan. (2015). Review on carbon-based composite materials for capacitive deionization. RSC Advances, 5( 20): 15205– 15225 https://doi.org/10.1039/C4RA14447C
33
B E Logan, M Elimelech. (2012). Membrane-based processes for sustainable power generation using water. Nature, 488( 7411): 313– 319 https://doi.org/10.1038/nature11477
pmid: 22895336
34
F Luo, Y Wang, C Jiang, B Wu, H Feng, T Xu. (2017). A power free electrodialysis (PFED) for desalination. Desalination, 404 : 138– 146 https://doi.org/10.1016/j.desal.2016.11.011
A Morel, K Zuo, X Xia, J Wei, X Luo, P Liang, X Huang. (2012). Microbial desalination cells packed with ion-exchange resin to enhance water desalination rate. Reviews in Chemical Engineering, 118( 1): 43– 48
pmid: 22695145
38
J Y Nam, K S Hwang, H C Kim, H Jeong, H Kim, E Jwa, S Yang, J Choi, C S Kim, J H Han, N Jeong. (2019). Assessing the behavior of the feed-water constituents of a pilot-scale 1000-cell-pair reverse electrodialysis with seawater and municipal wastewater effluent. Water Research, 148 : 261– 271 https://doi.org/10.1016/j.watres.2018.10.054
pmid: 30388527
39
C G Patel, D Barad, J Swaminathan. (2022). Desalination using pressure or electric field? a fundamental comparison of RO and electrodialysis. Desalination, 530 : 115620 https://doi.org/10.1016/j.desal.2022.115620
40
S K Patel, P M Biesheuvel, M Elimelech. (2021). Energy Consumption of Brackish Water Desalination: Identifying the Sweet Spots for Electrodialysis and Reverse Osmosis. ACS ES&T Engineering, 1( 5): 851– 864
41
B M Pecson, S C Triolo, S Olivieri, E C Chen, A N Pisarenko, C C Yang, A Olivieri, C N Haas, R S Trussell, R R Trussell. (2017). Reliability of pathogen control in direct potable reuse: Performance evaluation and QMRA of a full-scale 1 MGD advanced treatment train. Water Research, 122 : 258– 268 https://doi.org/10.1016/j.watres.2017.06.014
pmid: 28609729
42
J Pellegrino, C Gorman, L Richards. (2007). A speculative hybrid reverse osmosis/electrodialysis unit operation. Desalination, 214( 1): 11– 30 https://doi.org/10.1016/j.desal.2006.09.024
M Qasim, M Badrelzaman, N N Darwish, N A Darwish, N Hilal. (2019). Reverse osmosis desalination: a state-of-the-art review. Desalination, 459 : 59– 104 https://doi.org/10.1016/j.desal.2019.02.008
45
S Rajindar ( 2015). Membrane Technology and Engineering for Water Purification, 2nd ed. Oxford: Butterworth-Heinemann
46
G Z Ramon, B J Feinberg, E M V Hoek. (2011). Membrane-based production of salinity-gradient power. Energy & Environmental Science, 4( 11): 4423– 4434 https://doi.org/10.1039/c1ee01913a
47
M Roman, L Gutierrez, L H Van Dijk, M Vanoppen, J W Post, B A Wols, E R Cornelissen, A R D Verliefde. (2020). Effect of pH on the transport and adsorption of organic micropollutants in ion-exchange membranes in electrodialysis-based desalination. Separation and Purification Technology, 252 : 117487 https://doi.org/10.1016/j.seppur.2020.117487
48
M Roman, L H Van Dijk, L Gutierrez, M Vanoppen, J W Post, B A Wols, E R Cornelissen, A R D Verliefde. (2019). Key physicochemical characteristics governing organic micropollutant adsorption and transport in ion-exchange membranes during reverse electrodialysis. Desalination, 468 : 114084 https://doi.org/10.1016/j.desal.2019.114084
49
M Sadrzadeh, T Mohammadi. (2009). Treatment of sea water using electrodialysis: current efficiency evaluation. Desalination, 249( 1): 279– 285 https://doi.org/10.1016/j.desal.2008.10.029
R Singh, N P Hankins ( 2016). Emerging Membrane Technology for Sustainable Water Treatment. Boston: Elsevier
54
S E Skilhagen, J E Dugstad, R J Aaberg ( 2008). Osmotic power—power production based on the osmotic pressure difference between waters with varying salt gradients. Desalination, 220( 1– 3): 476– 482 https://doi.org/10.1016/j.desal.2007.02.045
, AWWA, WEF SMCAPHA( 2005). Standard Methods for the Examination of Water and Wastewater. New York: Standard Methods Committee of the American Public Health Association, American Water Works Association, Water Environment Federation
S K Thampy, P K Narayanan, W P Harkare, K P Govindan. (1988). Seawater desalination by electrodialysis. Part II: a novel approach to combat scaling in seawater desalination by electrodialysis. Desalination, 69( 3): 261– 273 https://doi.org/10.1016/0011-9164(88)80029-8
59
R Valladares Linares, Z Li, S Sarp, S S Bucs, G Amy, J S Vrouwenvelder. (2014). Forward osmosis niches in seawater desalination and wastewater reuse. Water Research, 66 : 122– 139 https://doi.org/10.1016/j.watres.2014.08.021
pmid: 25201336
60
M Vanoppen, G Blandin, S Derese, P Le Clech, J Post, A R D Verliefde. (2016). Sustainable Energy from Salinity Gradients. Cambridge: Woodhead Publishing, 281– 313
61
M Vanoppen, T Van Vooren, L Gutierrez, M Roman, L J P Croué, K Verbeken, J Philips, A R D Verliefde ( 2019). Secondary treated domestic wastewater in reverse electrodialysis: What is the best pre-treatment? Separation and Purification Technology, 218: 25– 42 https://doi.org/10.1016/j.seppur.2018.12.057
V Yangali-Quintanilla, Z Li, R Valladares, Q Li, G Amy ( 2011). Indirect desalination of Red Sea water with forward osmosis and low pressure reverse osmosis for water reuse. Desalination, 280( 1– 3): 160– 166 https://doi.org/10.1016/j.desal.2011.06.066
64
N Y Yip, M Elimelech. (2012). Thermodynamic and energy efficiency analysis of power generation from natural salinity gradients by pressure retarded osmosis. Environmental Science & Technology, 46( 9): 5230– 5239 https://doi.org/10.1021/es300060m
pmid: 22463483
65
P G Youssef, R K Al-Dadah, S M Mahmoud. (2014). Comparative analysis of desalination technologies. Energy Procedia, 61 : 2604– 2607 https://doi.org/10.1016/j.egypro.2014.12.258