Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

邮发代号 80-973

2018 Impact Factor: 3.883

Frontiers of Environmental Science & Engineering  2023, Vol. 17 Issue (2): 21   https://doi.org/10.1007/s11783-023-1621-4
  本期目录
Prediction and cause investigation of ozone based on a double-stage attention mechanism recurrent neural network
Yuanxin Zhang1, Fei Li1(), Chaoqiong Ni2, Song Gao1(), Shuwei Zhang1, Jin Xue1, Zhukai Ning1, Chuanming Wei1, Fang Fang2, Yongyou Nie3, Zheng Jiao1()
1. School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
2. Shanghai Jinshan Environmental Monitoring Station, Shanghai 201500, China
3. School of Economics, Shanghai University, Shanghai 200237, China
 全文: PDF(14712 KB)   HTML
Abstract

● Used a double-stage attention mechanism model to predict ozone.

● The model can autonomously select the appropriate time series for forecasting.

● The model outperforms other machine learning models and WRF-CMAQ.

● We used the model to analyze the driving factors of VOCs that cause ozone pollution.

Ozone is becoming a significant air pollutant in some regions, and VOCs are essential for ozone prediction as necessary ozone precursors. In this study, we proposed a recurrent neural network based on a double-stage attention mechanism model to predict ozone, selected an appropriate time series for prediction through the input attention and temporal attention mechanisms, and analyzed the cause of ozone generation according to the contribution of feature parameters. The experimental data show that our model had an RMSE of 7.71 μg/m3 and a mean absolute error of 5.97 μg/m3 for 1-h predictions. The DA-RNN model predicted ozone closer to observations than the other models. Based on the importance of the characteristics, we found that the ozone pollution in the Jinshan Industrial Zone mainly comes from the emissions of petrochemical enterprises, and the good generalization performance of the model is proved through testing multiple stations. Our experimental results demonstrate the validity and promising application of the DA-RNN model in predicting atmospheric pollutants and investigating their causes.

Key wordsOzone prediction    Deep learning    Time series    Attention    Volatile organic compounds
收稿日期: 2022-05-03      出版日期: 2022-09-16
Corresponding Author(s): Fei Li,Song Gao,Zheng Jiao   
 引用本文:   
. [J]. Frontiers of Environmental Science & Engineering, 2023, 17(2): 21.
Yuanxin Zhang, Fei Li, Chaoqiong Ni, Song Gao, Shuwei Zhang, Jin Xue, Zhukai Ning, Chuanming Wei, Fang Fang, Yongyou Nie, Zheng Jiao. Prediction and cause investigation of ozone based on a double-stage attention mechanism recurrent neural network. Front. Environ. Sci. Eng., 2023, 17(2): 21.
 链接本文:  
https://academic.hep.com.cn/fese/CN/10.1007/s11783-023-1621-4
https://academic.hep.com.cn/fese/CN/Y2023/V17/I2/21
Fig.1  
Fig.2  
  
Fig.3  
Fig.4  
Time (h) MAE (μg/m3) RMSE (μg/m3) R2
1 5.97 7.71 0.958
2 6.54 9.18 0.940
3 7.59 10.95 0.914
6 9.54 14.11 0.858
12 13.13 17.98 0.770
24 14.71 20.57 0.699
Tab.1  
Fig.5  
Fig.6  
Fig.7  
Model R2 MAE (μg/m³) RMSE (μg/m³)
DA-RNN 0.958 5.97 7.71
CatBoost 0.901 8.46 13.25
LightGBM 0.896 8.72 13.61
LightGBMLarge 0.889 8.96 14.07
XGBoost 0.888 9.08 14.14
RandomForest 0.848 10.93 16.43
ExtraTrees 0.842 11.2 16.8
NeuralNet 0.832 11.39 17.31
KNeighbors 0.748 14.19 21.19
Tab.2  
Fig.8  
1–31 Jul 2020 1–30 Nov 2020
WRF-CMAQ DA-RNN WRF-CMAQ DA-RNN
MAE (μg/m3) 31.22 7.03 27.15 6.74
RMSE (μg/m3) 43.03 11.72 33.38 9.04
Tab.3  
1 R Atkinson ( 2000). Atmospheric chemistry of VOCs and NO x . Atmospheric Environment, 34( 12– 14): 2063– 2101
https://doi.org/10.1016/S1352-2310(99)00460-4
2 R J Avery. (2006). Reactivity-based VOC control for solvent products: more efficient ozone reduction strategies. Environmental Science & Technology, 40( 16): 4845– 4850
https://doi.org/10.1021/es060296u pmid: 16955876
3 M D Bas, J Ortiz, L Ballesteros, S Martorell. (2017). Evaluation of a multiple linear regression model and SARIMA model in forecasting 7Be air concentrations. Chemosphere, 177 : 326– 333
https://doi.org/10.1016/j.chemosphere.2017.03.029 pmid: 28319886
4 Y Bengio, P Simard, P Frasconi. (1994). Learning long-term dependencies with gradient descent is difficult. IEEE Transactions on Neural Networks, 5( 2): 157– 166
https://doi.org/10.1109/72.279181 pmid: 18267787
5 D Byun, K L Schere. (2006). Review of the governing equations, computational algorithms, and other components of the Models-3 community multiscale air quality (CMAQ) modeling system. Applied Mechanics Reviews, 59( 2): 51– 77
https://doi.org/10.1115/1.2128636
6 Y Chen, V Phonevilay, J Tao, X Chen, R Xia, Q Zhang, K Yang, J Xiong, J Xie. (2021). The face image super-resolution algorithm based on combined representation learning. Multimedia Tools and Applications, 80( 20): 30839– 30861
https://doi.org/10.1007/s11042-020-09969-1
7 M Chin, P Ginoux, S Kinne, O Torres, B N Holben, B N Duncan, R V Martin, J A Logan, A Higurashi, T Nakajima. (2002). Tropospheric aerosol optical thickness from the GOCART model and comparisons with satellite and Sun photometer measurements. Journal of the Atmospheric Sciences, 59( 3): 461– 483
https://doi.org/10.1175/1520-0469(2002)059<0461:TAOTFT>2.0.CO;2
8 L Delle Monache, T Nipen, X X Deng, Y M Zhou, R Stull. (2006). Ozone ensemble forecasts: 2. A Kalman filter predictor bias correction. Journal of Geophysical Research, 111( D5): D05308
https://doi.org/10.1029/2005JD006311
9 Y Ding, Z Chen, W Lu, X Wang. (2021). A CatBoost approach with wavelet decomposition to improve satellite-derived high-resolution PM2.5 estimates in Beijing-Tianjin-Hebei. Atmospheric Environment, 249 : 118212
https://doi.org/10.1016/j.atmosenv.2021.118212
10 A Donnelly, B Misstear, B Broderick. (2015). Real time air quality forecasting using integrated parametric and non-parametric regression techniques. Atmospheric Environment, 103 : 53– 65
https://doi.org/10.1016/j.atmosenv.2014.12.011
11 G A Efstathiou, N M Zoumakis, D Melas, C J Lolis, P Kassomenos ( 2013). Sensitivity of WRF to boundary layer parameterizations in simulating a heavy rainfall event using different microphysical schemes : e ffect on large-scale processes. Atmospheric Research, 132– 133: 125– 143
https://doi.org/10.1016/j.atmosres.2013.05.004
12 M B Ek, K E Mitchell, Y Lin, E Rogers, P Grunmann, V Koren, G Gayno, J D Tarpley. (2003). Implementation of Noah land surface model advances in the national centers for environmental prediction operational mesoscale Eta model. Journal of Geophysical Research, 108( D22): 2002JD003296
https://doi.org/10.1029/2002JD003296
13 E Erdem, J Shi. (2011). ARMA based approaches for forecasting the tuple of wind speed and direction. Applied Energy, 88( 4): 1405– 1414
https://doi.org/10.1016/j.apenergy.2010.10.031
14 D Garaud, V Mallet. (2011). Automatic calibration of an ensemble for uncertainty estimation and probabilistic forecast: application to air quality. Journal of Geophysical Research, 116( D19): D19304
https://doi.org/10.1029/2011JD015780
15 B Z Ge, Z F Wang, X B Xu, J B Wu, X L Yu, J Li. (2014). Wet deposition of acidifying substances in different regions of China and the rest of East Asia: modeling with updated NAQPMS. Environmental Pollution, 187 : 10– 21
https://doi.org/10.1016/j.envpol.2013.12.014 pmid: 24418974
16 S Y Hong, Y Noh, J Dudhia. (2006). A new vertical diffusion package with an explicit treatment of entrainment processes. Monthly Weather Review, 134( 9): 2318– 2341
https://doi.org/10.1175/MWR3199.1
17 X Hu, J H Belle, X Meng, A Wildani, L A Waller, M J Strickland, Y Liu. (2017). Estimating PM2.5 concentrations in the conterminous United States using the random forest approach. Environmental Science & Technology, 51( 12): 6936– 6944
https://doi.org/10.1021/acs.est.7b01210 pmid: 28534414
18 L Hui, X Liu, Q Tan, M Feng, J An, Y Qu, Y Zhang, M Jiang. (2018). Characteristics, source apportionment and contribution of VOCs to ozone formation in Wuhan, Central China. Atmospheric Environment, 192 : 55– 71
https://doi.org/10.1016/j.atmosenv.2018.08.042
19 P Jia, N Cao, S Yang. (2021). Real-time hourly ozone prediction system for Yangtze River Delta area using attention based on a sequence to sequence model. Atmospheric Environment, 244 : 117917
https://doi.org/10.1016/j.atmosenv.2020.117917
20 M Kampa, E Castanas. (2008). Human health effects of air pollution. Environmental Pollution, 151( 2): 362– 367
https://doi.org/10.1016/j.envpol.2007.06.012 pmid: 17646040
21 R G Kavasseri, K Seetharaman. (2009). Day-ahead wind speed forecasting using f-ARIMA models. Renewable Energy, 34( 5): 1388– 1393
https://doi.org/10.1016/j.renene.2008.09.006
22 C Liu, H Zhang, Z Cheng, J Shen, J Zhao, Y Wang, S Wang, Y Cheng. (2021). Emulation of an atmospheric gas-phase chemistry solver through deep learning: case study of Chinese mainland. Atmospheric Pollution Research, 12( 6): 101079
https://doi.org/10.1016/j.apr.2021.101079
23 E J Mlawer, S J Taubman, P D Brown, M J Iacono, S A Clough. (1997). Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. Journal of Geophysical Research, 102( D14): 16663– 16682
https://doi.org/10.1029/97JD00237
24 N I Molina-Gómez, J L Diaz-Arevalo, P A Lopez-Jimenez. (2021). Air quality and urban sustainable development: the application of machine learning tools. International Journal of Environmental Science and Technology, 18( 4): 1029– 1046
https://doi.org/10.1007/s13762-020-02896-6
25 J Ou, J Zheng, R Li, X Huang, Z Zhong, L Zhong, H Lin ( 2015). Speciated OVOC and VOC emission inventories and their implications for reactivity-based ozone control strategy in the Pearl River Delta region, China. Sci ence of the Total Environ ment, 530– 531: 393– 402
https://doi.org/10.1016/j.scitotenv.2015.05.062 pmid: 26057544
26 Y Qin, D Song, H Cheng, W Cheng, G Jiang, G W Cottrell. (2017). A Dual-Stage Attention-Based Recurrent Neural Network for Time Series Prediction. Melbourne, Australia : 2627– 2633
https://doi.org/10.48550/arXiv.1704.02971
27 M Reichstein, G Camps-Valls, B Stevens, M Jung, J Denzler, N Carvalhais. (2019). Deep learning and process understanding for data-driven Earth system science. Nature, 566( 7743): 195– 204
https://doi.org/10.1038/s41586-019-0912-1 pmid: 30760912
28 M Shao, Y Zhang, L Zeng, X Tang, J Zhang, L Zhong, B Wang. (2009). Ground-level ozone in the Pearl River Delta and the roles of VOC and NOx in its production. Journal of Environmental Management, 90( 1): 512– 518
https://doi.org/10.1016/j.jenvman.2007.12.008 pmid: 18207632
29 Q Tao F Liu Y Li D Sidorov ( 2019). Air pollution forecasting using a deep learning model based on 1D convnets and bidirectional GRU. IEEE Access: Practical Innovations, Open Solutions, 7: 76690– 76698
https://doi.org/10.1109/ACCESS.2019.2921578
30 R Vautard, P H J Builtjes, P Thunis, C Cuvelier, M Bedogni, B Bessagnet, C Honore, N Moussiopoulos, G Pirovano, M Schaap, R Stern, L Tarrason, P Wind. (2007). Evaluation and intercomparison of ozone and PM10 simulations by several chemistry transport models over four European cities within the CityDelta project. Atmospheric Environment, 41( 1): 173– 188
https://doi.org/10.1016/j.atmosenv.2006.07.039
31 B Wang, Q Yuan, Q Yang, L Zhu, T Li, L Zhang. (2021). Estimate hourly PM2.5 concentrations from Himawari-8 TOA reflectance directly using geo-intelligent long short-term memory network. Environmental Pollution, 271 : 116327
https://doi.org/10.1016/j.envpol.2020.116327 pmid: 33360654
32 H Wang, Z Xiang, L Wang, S Jing, S Lou, S Tao, J Liu, M Yu, L Li, L Lin, Y Chen, A Wiedensohler, C Chen. (2018). Emissions of volatile organic compounds (VOCs) from cooking and their speciation: A case study for Shanghai with implications for China. Science of the Total Environment, 621 : 1300– 1309
https://doi.org/10.1016/j.scitotenv.2017.10.098 pmid: 29054635
33 S Wang, C Fang, H Ma, Y Wang, J Qin. (2014). Spatial differences and multi-mechanism of carbon footprint based on GWR model in provincial China. Journal of Geographical Sciences, 24( 4): 612– 630
https://doi.org/10.1007/s11442-014-1109-z
34 P Y Wong, H J Su, H Y Lee, Y C Chen, Y P Hsiao, J W Huang, T A Teo, C D Wu, J D Spengler. (2021). Using land-use machine learning models to estimate daily NO2 concentration variations in Taiwan, China. Journal of Cleaner Production, 317 : 128411
https://doi.org/10.1016/j.jclepro.2021.128411
35 R Xia, Y Chen, B Ren ( 2022). Improved anti-occlusion object tracking algorithm using Unscented Rauch-Tung-Striebel smoother and kernel correlation filter. Journal of King Saud University - Computer and Information Sciences
36 X Xu, C Zhang, Y Liang. (2021). Review of satellite-driven statistical models PM2.5 concentration estimation with comprehensive information. Atmospheric Environment, 256 : 118302
https://doi.org/10.1016/j.atmosenv.2021.118302
37 H Zhang, J C Linford, A Sandu, R Sander. (2011). Chemical mechanism solvers in air quality models. Atmosphere (Toronto), 2( 3): 510– 532
https://doi.org/10.3390/atmos2030510
38 J M Zhang, W J Feng, T Y Yuan, J Wang, A K Sangaiah. (2022a). SCSTCF: spatial-channel selection and temporal regularized correlation filters for visual tracking. Applied Soft Computing, 118 : 108485
https://doi.org/10.1016/j.asoc.2022.108485
39 J M Zhang, J Sun, J Wang, Z P Li, X Chen. (2022b). An object tracking framework with recapture based on correlation filters and Siamese networks. Computers & Electrical Engineering, 98 : 107730
https://doi.org/10.1016/j.compeleceng.2022.107730
40 Y Zhang, X Y Wen, C J Jang. (2010). Simulating chemistry-aerosol-cloud-radiation-climate feedbacks over the continental US using the online-coupled Weather Research Forecasting Model with chemistry (WRF/Chem). Atmospheric Environment, 44( 29): 3568– 3582
https://doi.org/10.1016/j.atmosenv.2010.05.056
[1] FSE-22070-OF-ZSW_suppl_1 Download
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed